Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Оболочки Уравнения дифференциальные разрешающие

В монографии приведены результаты теоретических и экспериментальных исследований изгиба и устойчивости пологих оболочек вращения, работающих в условиях ползучести. С учетом технической теории гибких оболочек и допущенных физических соотношений для неоднородного анизотропного материала в инкрементальной форме построены разрешающие вариационные и соответствующие им дифференциальные уравнения краевой задачи. Поставлены и решены малоизученные практически важные задачи деформирования гибких пологих оболочек с учетом реологических свойств материала. Рассмотрены случаи замкнутых, открытых и подкрепленных в вершине изотропных и анизотропных оболочек вращения постоянной и переменной толщины.  [c.2]


Приведенная выше система уравнений сводится обычно к системе двух разрешающих дифференциальных уравнений, которая для частных видов оболочек путем специальных подстановок может быть, в свою очередь, сведена к одному дифференциальному уравнению.  [c.400]

Одномерные и квазиодномерные задачи механики описываются системами обыкновенных диф ренциальных уравнений. К одномерным можно отнести задачи о деформировании стержней, балок, а также круглых пластин и оболочек вращения при осесимметричном нагружении. В ряде случаев для трехмерных и двумерных задач теории упругости можно применить метод разделения переменных и решать задачу в рядах Фурье или методом Канторовича. Задачи, для которых тем или иным способом возможно приближенно перейти от уравнений в частных производных к обыкновенным уравнениям, называются квазиодномерными. Для расчетов на ЭВМ наиболее удобной формой представления разрешающих дифференциальных уравнений является система дифференциальных уравнений первого порядка, или каноническая система. Для таких систем разработаны стандартные программы интегрирования, а также различные вычислительные приемы, обеспечивающие достаточную точность решения краевых задач [20, 33].  [c.85]

Математическое описание деформирования тонких многослойных оболочек вращения может быть сведено к системам обыкновенных дифференциальных уравнений. Для решения таких систем в настоящее время разработаны эффективные численные методы. Наиболее удобной формой для интегрирования на ЭВМ является представление разрешающих дифференциальных уравнений в виде системы дифференциальных уравнений первого порядка (или канонической системы). В 3.5 был представлен в общем виде вариационно-матричный способ получения канонических систем. Ниже рассмотрим конкретную реализацию этого способа для оболочек вращения.  [c.149]

Рассмотрим получение вариационно-матричным способом канонической системы дифференциальных уравнений для решения задач устойчивости н колебаний. При получении разрешающих уравнений будем считать, что в исходном невозмущенном состоянии оболочка напряжена, но не деформирована. Исходное напряженное состояние определяется решением- задачи статики в линейной постановке. При составлении уравнений движения в окрестности исходного состояния будем учитывать начальное напряженное состояние. В деформационных соотношениях кроме линейных составляющих будем учитывать нелинейные слагаемые, связанные с дополнительными углами поворота нормалей. При решении задач рассмотрим только осесимметричное начальное напряженное состояние. Будем считать, что действующие на конструкцию внешние нагрузки при движении системы не изменяются ни по величине, ни по направлению. В целом систему, включая внешние нагрузки и условия связи, будем считать консервативной. Исследование движения системы относительно начального состояния проведем без учета демпфирующих свойств.  [c.156]


Отличие матрицы канонической системы (4.143) от матрицы разрешающей системы дифференциальных уравнений для решения задачи статики (4.133) заключается в вычислении для блока [Ah матрицы [5 1 ] [см. (4.141)], в которую входит искомый параметр Л (параметр нагружения) для решения задачи устойчивости или со (квадрат угловой частоты) для решения задачи колебаний. Система дифференциальных уравнений (4.143) позволяет для тонкой многослойной оболочки вращения решать задачи устойчивости и определять критический параметр нагружения. При этом в выражении [Sfi] (4.141) следует положить = 0. Для определения частот ко-  [c.158]

Поскольку искомый параметр собственного значения Л (или со ) входит в коэффициенты матрицы разрешающих дифференциальных уравнений, то коэффициенты матрицы фундаментальных решений [см. (4.135)1, а следовательно, и коэффициенты матрицы жесткости [см. (4.136)1 будут иметь нелинейную зависимость от Л (или со ). В случае разбивки оболочки на короткие элементы для каждого элемента можно применить прием линеаризации матрицы жесткости по параметру собственного значения (см. 3.6)- и выделить для элемента матрицу, аналогичную матрице приведенных начальных напряжений (или матрице приведенных масс). В случае необходимости стыковки отдельных элементов в глобальной системе координат преобразования матриц и векторов выполняются в соответствии с зависимостями (4.103), (4.109), которые были приведены в предыдущем параграфе.  [c.159]

Все представленные выше аппроксимирующие функции в силу непрерывности по z обеспечивают сопряжение отдельных слоев по напряжения.м сдвига, а функции распределения перемещений (4.197) — геометрические условия стыковки отдельных слоев. Порядок разрешающей системы дифференциальных уравнений не зависит от числа слоев оболочки, а также от числа коэффициентов, аппроксимирующих напряжения.  [c.179]

В гл. 5 получены разрешающее дифференциальное уравнение устойчивости слоистой цилиндрической оболочки относительно прогиба выпучивания с произвольным строением пакета по толщине и расчетные формулы для определения критических усилий при различных видах нагружения, в частности, в оболочках, изготовленных прямой, однозаходной, перекрестной и изотропной намотками. Сформулирована задача поиска оптимальных параметров неравномерно нагретых по толщине многослойных цилиндрических оболочек. Для случая, когда активным является ограничение по устойчивости, оценено влияние схемы армирования на критические параметры нагрузки и волнообразования. Эти исследования расширяют представление о роли проектных параметров оболочечных конструкций, оцениваемых по моделям В. И. Королева и С. А. Амбарцумяна.  [c.8]

Рассмотрены задачи выбора оптимальной намотки тонкостенных цилиндрических оболочек, теряющих устойчивость при кручении, при нормальном равномерно распределенном давлении, при осевом сжатии, при совместном действии осевого сжатия и давления и при совместном действии кручения и внешнего давления. Получены расчетные формулы для определения критических усилий в оболочках, изготовленных различными видами намотки, исходя из разрешающего дифференциального уравнения устойчивости слоистой цилиндрической оболочки для общего случая анизотропии материала, когда его оси не совпадают с главными линиями кривизны оболочки. Изучены виды намотки прямая, косая, перекрестная, изотропная. Проведено сравнение с результатами, полученными по приближенным формулам.  [c.197]

Следовательно, исходные разрешающие уравнения ТТО и пластин в классическом варианте (в соответствии с моделью рис. 1.1) должны быть записаны не в дифференциальной, а в конечно-разностной форме. Но это, в свою очередь, требует, с одной стороны, оценки размеров конечного элемента оболочки (пластины), с другой, — оценки границы работоспособности дифференциальной и ко-нечно-разностной форм. Как следствие, следует спрогнозировать появление какого-то нового варианта теории, удовлетворяющего классической дифференциальной форме представления зависимостей.  [c.22]


В этой связи рассмотрим соотношение между конечно-раз-ностными и дифференциальными производными (рис. 2.2). Отличие конечных производных вперед, назад и центральных в соответствии с (2.14) от дифференциальной является функцией О (Дх). И тем не менее, несмотря на конечно-разностный характер разрешающих уравнений (2.17) использование дифференциальных соотношений, не следующих из принятой модели оболочки, дает достаточно устойчивые результаты. Это может быть следствием комплекса причин  [c.22]

Приступим к выводу нормальной системы обыкновенных дифференциальных уравнений, которая является разрешающей и полностью определяет напряженно-деформированное состояние оболочки. С этой целью введем новую силовую функцию  [c.23]

Приступим к выводу нормальной системы обыкновенных дифференциальных уравнений, которая является разрешающей и полностью определяет напряженно-деформированное состояние оболочки. Первые 2N + 3 уравнений уже получены. Это уравнения равновесия в удельных усилиях и моментах (8.34). Другая группа из 2Л + 3 уравнений следует из деформационных соотношений (8.32), (8.33) и может быть записана в виде  [c.175]

Для реализации намеченных выше в общих чертах путей решения задач теории оболочек должны быть сформулированы соответствующие краевые (граничные) условия, т. е. заданы на граничном контуре (или контурах) некоторые соотношения, связывающие усилия, моменты, перемещения или их функции. Необходимое число граничных условий для выявления из общего интеграла разрешающих дифференциальных уравнений искомого решения определяется порядком системы этих уравнений и равно четырем на каждом крае оболочки. Покажем, что для описания условий закрепления края оболочки (как в статическом, так и в геометрическом отношении) достаточно задать на этом крае четыре граничные величины.  [c.54]

Интегрирование системы дифференциальных уравнений цилиндрической оболочки в обобщенных смещениях является довольно сложной задачей, так как сводится к решению совместной системы пяти алгебраических уравнений (метод двойных тригонометрических рядов) либо к решению пяти обыкновенных дифференциальных уравнений, каждое из которых второго порядка (метод одинарных тригонометрических рядов). Естественно поэтому стремление иметь в арсенале разрешающих средств теории цилиндрических оболочек и более простые по структуре уравнения, обеспечивающие одновременно достаточную точность в инженерных расчетах.  [c.126]

Поскольку искомый параметр собственного значения Л (или (0 ) входит в коэффициенты матрицы разрешающих дифференциальных уравнений, то коэффициенты матрицы фундаментальных решений, а следовательно, и коэффициенты жесткости кольцевого оболочечного элемента будут в общем случае иметь нелинейную зависимость от Л (или со ). В случае разбивки оболочки на короткие элементы для каждого элемента можно применить прием линеаризации матрицы жесткости по параметру собственного значения и выделить для элемента мат-  [c.232]

Для анализа краевого эффекта в тонких многослойных цилиндрических оболочках коэффициенты разрешающей системы дифференциальных уравнений упрощаются  [c.251]

Соотношения (15.1)—(15.2) представляют собой математическую запись обобщенной геометрической гипотезы Кирхгофа (гипотезы плоских сечений). Принятое обобщение позволяет учесть деформационное изменение размеров поперечного сечения стержня как вследствие его равномерного растяжения (>v), так и изгиба (ХгУ РлО- При этом, как и в изложенной в гл. И теории оболочек, введение указанных параметров не увеличивает порядка разрешающей системы дифференциальных уравнений.  [c.229]

Варианты основных уравнений, относящиеся к данному направлению теории слоистых пластин и оболочек и установленные разными авторами, можно разделить на три группы. Первую составляют уравнения, выведенные преимущественно в ранних исследованиях по неклассической теории слоистых оболочек [8, 215, 253 и др. ]. Здесь уравнения равновесия пластин и оболочек устанавливаются без использования вариационных принципов по следующей схеме. При заданной кинематической гипотезе, позволяющей учесть поперечные сдвиговые деформации, удовлетворить кинематическим и силовым условиям межслоевого контакта и условиям на верхней и нижней граничных поверхностях оболочки, определяются традиционные усилия и моменты, которые и подставляются в уравнения равновесия либо классической теории [8, 215], либо теории, основанной на кинематической модели прямой линии [253 ]. Тем самым остается неустановленной система внутренних обобщенных усилий и моментов, соответствующая принятой геометрической модели. Математически это проявляется в заниженном порядке разрешающей системы дифференциальных уравнений, что не позволяет удовлетворить необходимому числу краевых условий и приводит к существенным погрешностям в определении напряженного состояния оболочки, особенно в зонах краевых закреплений.  [c.9]

По итогам данного обзора можно констатировать, что к настоящему времени разработаны и описаны в литературе многие варианты неклассических двумерных уравнений слоистых анизотропных оболочек и пластин. Для вывода таких уравнений используются различные методы — метод асимптотического интегрирования уравнений пространственной задачи теории упругости, метод разложения в ряды по функциям поперечной координаты, метод гипотез для каждого слоя или для пакета слоев в целом в сочетании с вариационным принципом Лагранжа или Рейсснера и т.д. С точки зрения практических приложений наиболее перспективным из них представляется метод гипотез для пакета слоев, приводящий к математическим моделям, сочетающим в себе возможность адекватного описания процессов деформирования тонкостенных анизотропных слоистых систем с относительной простотой разрешающих дифференциальных уравнений.  [c.11]


Разрешающую систему уравнений (22.2), (22.3), (22.6) целесообразнее свести к системе уравнений относительно обобщенных смещений, так как напряжения в оболочке (22.5), в элементах композиции (2.3), (2.7), (2.8) с учетом (22.4) и ряд краевых условий (например, (22.7)) определяются через смещения. Исключая из системы (22.2), (22.3), (22.6) усилия и моменты, получим основную систему дифференциальных уравнений относительно пяти обобщенных перемещений и,з, Uai  [c.133]

После подстановки в (7.3) соответствующих выражений из (7.5) е учетом ( 7.1) и (7.6) получим разрешающее интегральное уравнение поставленной задачи, которое, кроме искомого контактного давления о+(0), будет содержать также неизвестные напряжения О-(О) и т- ( О). Последние можно исключить при помощи дифференциальных уравнений равновесия сферического покрытия, трактуемого в рамках теории тонких оболочек. Предполагая, что оболочка находится в безмоментной напряженном состоянии, на основе уравнений (8.46) —(8.48) гл. I будем иметь  [c.429]

Для оболочек вращения, обладающих постоянной кривизной меридиана, рассматриваемая задача с помощью статико-геоме-трической аналогии и комплексного преобразования уравнений оболочек сводится к нахождению комплексной разрешающей функции, удовлетворяющей дифференциальному уравнению второго порядка. В случаях конической и сферической оболочек приводятся точные решения в специальных функциях для всех усилий, моментов и перемещений, необходимые для расчета тепловых напряжений.  [c.9]

В качестве наиболее простой задачи термоупругости оболочек в 6.6 рассматривается задача о тепловых напряжениях в цилиндрической оболочке разрешающее уравнение этой задачи является дифференциальным уравнением четвертого порядка с постоянными коэффициентами. Далее выводятся разрешающие уравнения для других форм оболочек с постоянной кривизной меридиана (конической, сферической, торообразной). Для каждой из них в 6.7 составляется разрешающее уравнение в виде дифференциального уравнения второго порядка относительно комплексной функции, при этом используются известные в теории оболочек стати ко-геометрическая аналогия и комплексное преобразование уравнений. Анализ форм решений и граничных условий для этих оболочек излагается в 6.8.  [c.170]

Среди многослойных конструкций, выполненных из композитов, оболочки вращения занимают особое место, поскольку они весьма технологичны при изготовлении естественным для волокнистых композитов методом — методом намотки. С точки зрения расчета многослойных конструкций, оболочки вращения являются достаточно простыми объектами исследования, поскольку модельное представление о распределении деформаций в трансверсальном направлении и периодичность решений по окружной координате позволяют свести решение трехмерной задачи теории упругости к последовательности решений одномерных краевых задач. При расчете на ЭВМ наиболее удобной формой представления разрешающих дифференциальных уравнений одномерных задач являются системы дифференциальных уравнений первого порядка, или канонические системы. Для таких систем разработаны стандартные программы интегрирования, а также различные вычислительные приемы, обеспечивающие достаточную точность решения [1, 2,  [c.376]

Процедуры получения канонических систем разрешающих дифференциальных уравнений для рещения задач статики многослойных оболочек вращения общего вида приведены ниже.  [c.376]

Тонкие многослойные оболочки. Исходные данные для получения разрешающей системы дифференциальных уравнений (4.9) имеют следующий вид.  [c.380]

Поскольку искомый параметр собственного значения Я (или со ) входит в коэффициенты матрицы разрешающих дифференциальных уравнений, то коэффициенты матрицы фундаментальных решений, а следовательно, и коэффициенты матрицы жесткости кольцевого оболочечного элемента будут иметь нелинейную зависимость от Я. (или т ). В случае разбивки оболочки на короткие элементы для каждого элемента можно применить прием линеаризации матрицы жесткости по параметру собственного значения и выделить для элемента матрицу, аналогичную матрице приведенных начальных напряжений (или матрице приведенных масс) конечного элемента в методе конечных элементов (МКЭ).  [c.386]

Для анализа краевого эффекта для тонкой слоистой цилиндрической оболочки коэффициенты разрешающей системы дифференциальных уравнений упрощаются  [c.397]

Уравнения (2.21), (2.25), (2.29) и (10.7) дают возможность получить систему разрешающих дифференциальных уравнений в каноническом виде относительно разрешающих параметров Д , Ди, А , Рь Qu, Qw, и Mi (см. стр. 32) для конструктивно ортотропной оболочки. При этом имеется в виду, как указано в п. 2.9, что эти параметры представляют собой амплитудные значения соответствующих величин при п-м члене рядов Фурье  [c.147]

Систему уравнений (600) можно свести к одному разрешающему дифференциальному уравнению десятого порядка относительно функции напряжений Ф (а, р), через которую можно выразить все величины, определяющие напряженное и деформированное состояния оболочки.  [c.178]

Для конической оболочки, если угол а не близок к нулю и к Л/2, то согласно работы [1 ] систему дифференциальных уравнений, разрешающих задачу устойчивости, можно заменить одним уравнением  [c.207]

Эта формула является аналогом (5.103) в мембранной теории тонкостенной сферической оболочки. Для получения разрешающего дифференциального уравнения достаточно продифферин-цировать (5.112) по времени  [c.556]

При численной реализации процедур заполнения МФР в ряде случаев (например, для моментных оболочечных элементов или. балочных на упругом основании) участки выбираются достаточно короткими. Это связано со спецификой разрешающей системы дифференциальных уравнений, для которой возможны быстровозраста-ющие и быстрозатухающие решения, а также с неизбежными погреш-ностями округления при вычислении на ЭВМ. При большом участке -интегрирования векторы решений в МФР при расчете на ЭВМ могут стать практически линейно зависимыми или вычисляться недоста-> точно точно. По этой причине метод начальных параметров, который, используется при расчете стержней, для моментных оболочек при-, меняется очень редко.  [c.94]

Он же. Решение задачи о концентрации напряжений около отверстий в тонких оболочках нулевой гауссовой кривизны с использованием приведения разрешающего уравнения к обыкновенному дифференциальному уравнению отности-тельно комплексного переменного//Проблемы прочности. 1989. № 11. С. 114—118.  [c.43]

Все рассмотренные работы основаны на линейных теориях слоя. Трудности решения задач в соответствии с этими теориями возрастают пропорционально числу слоев. Это побудило нас к построению теории, в которой прямая связь числа искомых функций и числа слоев отсутствует, причем равновесие слоев можно- описать нелинейными уравнениями (119, 120, 122—126]. Контактное давление исключено из числа искомых функций с помощью связи по Винклеру с поперечным обжатием, выраженным через разность прогибов соседних слоев. Представление искомой вектор-функции слоя суммой произведений новых неизвестных, зависящих от координат точек срединной поверхности пакета, на полиномы дискретного аргумента (аппликаты поверхности отсчета слоя) позволило получить разрешающие системы дифференциальных уравнений, порядок которых не зависит от числа слоев. Термин континуальная теория в названиях работ [119, 120] неудачен, его следовало бы заменить на дискретно-континуальная теория , поскольку зависимость искомых вектор-функций от номера слоя в этой-теории описана ортоиормированной системой полиномов дискретного аргумента. Предложенный в [119] итеративный процесс одновременно уточняет границы зон контакта и уменьшает невязку нелинейных уравнений равновесия оболочек.  [c.17]


Необходимость развития теоретических исследований оболочек с несовершенным контактом слоев отмечена в параграфе 2 главы I. Выделим два различных типа задач. Первый — задачи анализа напряженного состояния слоистых оболочек со спаянными слоями при наличии отдельных зон несовершенного контакта слоев, возникаюш.его вследствие технологических дефектов или особенностей эксплуатации конструкции. гой проблеме посвящены многие работы, среди которых особо отметим [188, 201, 203]. Второй тип задач возникает при расчете оболочек, составленных из эквидистантных слоев, связанных между собой только на краях оболочки и взаимодействующ,их односторонне. Конструкции, включающие в качестве элементов эти оболочки, широко распространены в технике, например слоистые днища, сосуды, трубопроводы, сильфоны и т. д. Для таких оболочек характерно большое число слоев. Иногда внешние слои пакета отличаются от внутренних толщиной и механическими свойствами, возможно наличие зазоров между слоями. Слои, как правило, проскальзывают с треинем или свободно. Появление зон сцепления маловероятно, поскольку контактное давление между слоями невелико. В данной главе изложена теория, предназначенная для изучения именно таких оболочек. Условия контакта между слоями могут зависеть от коордииат и включают все виды несовершенного одностороннего контакта. Условия спайки слоев (в нормальном направлении на отрыв, в тангенциальном — на сдвпг) не рассматриваются. Поведение слоев подчинено одной из нелинейных теорий оболочек, одинаковой для всех слоев. Функции контактного давления между слоями исключены из числа неизвестных, аналогично тому, как это сделано в главах II и П1. Порядок разрешающей системы дифференциальных уравнений меньше или равен произведению числа слоев на порядок системы уравнений для слоя.  [c.100]

При численной реализации процедур заполнения матрицы фундаментальных решений в ряде случаев (например, для моментных оболочечных элементов или балочных на упругом основании) участки выбирают достаточно короткими, если не применяют приемы ортогон а лизацни [7, 15, 21]. Это связано со спецификой разрешающей системы дифференциальных уравнений, для которой возможны быстровозрастающие и быстрозатухающие решения, а также с неизбежными погрешностями округления при вычислении на ЭВМ. При большом участке интегрирования, если не применяются специальные приемы, векторы решений в ш при расчете на ЭВМ могут стать практически линейно зависимыми или будут вычисляться недостаточно точно. По этой причине метод начальных параметров, который часто используется при расчете стержней, для моментных оболочек применяется редко. Длину участка интегрирования необходимо выбирать, ориентируясь на собственные значения матрицы разрешающей системы А.  [c.33]

Рассмотрим многослойную оболочку вращения. Координаты аь 2 направим вдоль меридиана и параллели. Материалы слоев пусть будут ортотропными с осями упругой симметрии, совпадающими с направлениями координатных линий. В этом случае при получении разрешающих уравнений можно пользоваться соотношениями, записанными для амплитудных значений л-й гармоники разложений функции в ряды Фурье по угловой координате 2. Ниже приводятся процедуры получения канонических систем разрешающих дифференциальных уравнений для решения задач статики лмногослойных оболочек вращения общего вида.  [c.216]

В.Н. Паймушина и В.Г. Демидова [218], В.Е. Чепиги [324, 325] и др., для каждого слоя в отдельности принимается система кинематических гипотез. Выбор такой системы определяется деформативными и геометрическими параметрами слоя и является достаточно широким — гипотеза о жесткой нормали, гипотеза прямой линии, гипотеза о линейном или нелинейном распределении всех компонент вектора перемещений по толщине слоя и др. В рамках этого подхода удается достаточно точно аппроксимировать поле перемещений для каждого слоя и описать тонкие эффекты [111, 115, 165], связанные с локальными особенностями деформирования отдельных слоев оболочки. Следует отметить, что порядок разрешающей системы дифференциальных уравнений при таком подходе зависит от числа слоев оболочки и быстро растет при увеличении этого числа, что ограничивает возможности ее практического использования. Кроме того, не всеща оказывается возможным удовлетворить условиям межслоевого контакта по поперечным касательным напряжениям. Отметим, наконец, что всякое изменение структуры пакета слоев требует изменения системы гипотез и, следовательно, модификации разрешающей системы дифференциальных уравнений и пересмотра процедуры ее численного интегрирования, что вносит в расчет дополнительные трудности. Возможно, поэтому в литературе практически отсутствуют публикации численных исследований напряженно-деформированного состояния многослойных оболочек (с числом слоев больше трех), выполненных в такой постановке.  [c.8]

Среди таких моделей наиболее полно разработана модель прямой линии (модель С.П. Тимошенко), составившая основу многих теоретических и прикладных исследований в области механики слоистых оболочек и широко используемая в расчетной практике. Однако область пригодности ее уравнений ограничена (см. параграф 3.10), поэтому корректный расчет многих практически важных классов многослойных оболочек (с сушественным различием жесткостных характеристик слоев, сильной анизотропией деформативных свойств и т.д.) требует отказа от нее и обрашения к моделям более высоких порядков, имеющих более широкие области применимости. Важно подчеркнуть, что при отказе от классической модели или модели С.П. Тимошенко и переходе к той или иной корректной математической модели высокого порядка одновременно приходится отказываться и от традиционных процедур численного интегрирования краевых задач классической теории оболочек. Дело в том, что такой переход сопровождается не только формальным повышением порядка разрешающей системы дифференциальных уравнений, но и качественным изменением структуры ее решений, появлением новых быстропеременных решений, описывающих краевые эффекты напряженного состояния, связанные с учетом поперечных сдвиговых деформаций и обжатия нормали (подробнее этот вопрос рассматривается в параграфе 3.7). На этом классе задач оказывается практически непригодным для использования, например, метод дискретной ортогонализации С.К. Годунова [97], известный [118, 162 и др.] своей эффективностью на классе краевых задач классической теории и теории типа  [c.11]

Задача устойчивости пологой сферической оболочки с круговым отверстием в геометрически нелинейной постановке при действии равномерно распределенного давления рассматривалась А. А. Киричуком [90]. Исходные соотношения сводились автором к системе обыкновенных дифференциальных уравнений путем разложения разрешающих функций в ру ды Фурье. Нелинейные уравнения решались методом продолжения решения по параметру. В работе изучено влияние размеров отверстия на величину критических нагрузок оболочки при осесимметричных и неосесимметричных формах потери устойчивости.  [c.304]

Аналогия между статическими и геометрическими соотношениями теории оболочек привела В. В. Новожилова (1946) к установлению уравнения в комплексной форме, где неизвестными являются комплексные перемещения. Этот способ применим только для линейных задач равновесия но при их решении он имеет явные достоинства. Уже в первой стадии разработки соответствующей теории были определены несущественные члены в разрешающих уравнениях. Введение комплексных функций позволило понизить вдвое порядок дифференциальных уравнений, что сделало систему уравнений более обозримой. Это имеет большое значение при решении задач с переменными коэффициентами. Например, при рассмотрении осесимметричной или обратносимметричной нагрузки для оболочек вращения задача сводится к уравнению второго порядка, где легко разобраться в осложнениях, вызванных наличием точек поворота. Типичным представителем такого случая является тороидальная оболочка (Е. Ф. Зе-нова, В. В. Новожилов, 1951 В. С. Чернина, 1955), Это замечание относится, однако, к любой оболочке неположительной кривизны в других случаях метод приводит просто к упрощению качественного анализа и нужных при решении выкладок (Р. Л. Малкина, 1954). Любопытно отметить, что существуют задачи, для которых краевые условия могут быть сформулированы в терминах комплексных усилий или перемещений,— в этом случае отпадает необходимость отделения вещественных и мнимых частей до получения решения (в аналитической форме). Задачи этого типа указаны в монографии К. Ф. Черных (1962, 1964), где излон ены все основные результаты, связанные с представлением соотношений теории оболочек в комплексной форме. Отметим из них следующие.  [c.242]


Смотреть страницы где упоминается термин Оболочки Уравнения дифференциальные разрешающие : [c.252]    [c.248]    [c.344]    [c.11]   
Прочность устойчивость колебания Том 2 (1968) -- [ c.136 ]



ПОИСК



Оболочки уравнения

Разрешающее уравнение



© 2025 Mash-xxl.info Реклама на сайте