Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Оболочки вращения Уравнения — Интегрирование

Таким образом, поставленная здесь задача термоупругости ортотропной оболочки вращения сводится к интегрированию системы дифференциальных уравнений (13.52). Имея значения V и IV, с помощью приведенных выше формул найдем все расчетные величины оболочки. Однако легко заметить, что в общем случае интегрирование полученной системы линейных дифференциальных уравнений с переменными коэффициентами сопряжено с большими трудностями поэтому целесообразнее вопросом интегрирования разрешающих уравнений заниматься лишь для конкретных типов оболочек, при конкретных закономерностях (13.37), в случае заданного закона изменения температуры Т=Т з, у). Очевидно, при этом мы придем к частным задачам неоднородных оболочек, достаточно полно изученным в современной литературе.  [c.334]


Исключив ИЗ этих уравнений мембранное усилие N2, получим одно дифференциальное уравнение первого порядка для отыскания усилия Л/i, а затем без интегрирования находим N2- Однако для оболочек вращения при осесимметричной деформации проще поступить следующим образом.  [c.432]

Теперь w (s) легко определить из второго уравнения (18.33). Следует обратить внимание на то, что в построенном решении присутствует лишь одна постоянная интегрирования i- Вторая постоянная интегрирования, которая должна получиться после интегрирования первого из уравнений равновесия (18.29), нами уже использована, так как это дифференциальное уравнение равновесия было заменено уравнением равновесия (18.30) конечной части оболочки. Таким образом, в обш,ем случае интегрирования оболочки вращения при осесимметричной деформации в нашем распоряжении имеются две постоянные интегрирования.  [c.433]

Для произвольно нагруженной оболочки вращения, а также для незамкнутой цилиндрической оболочки, опертой по торцам на жесткие в своей плоскости диафрагмы, о помощью разложения в тригонометрические ряды достигается разделение переменных, и задача сводится к интегрированию систем обыкновенных дифференциальных уравнений. В 26 и 28 соответствующие уравнения записаны в виде, удобном для численного интегрирования на ЭВМ методами, изложенными в гл. И.  [c.233]

Практически, во всех случаях кососимметричного (й = 1) нагружения оболочек вращения при статически определимых значениях f и 9R можно сформулировать необходимые граничные условия для интегрирования системы (5.88) уравнений четвертого порядка. При заданных нагрузках на торец оболочки известны значения Si(i) и М (1). Если торец жестко связано недеформируемым фланцем, то Р = О (ввиду равенства нулю 8j) и 0 = 0. Возможны н смешанные случаи задания граничных условий. Так, например, если торец шарнирно связан о жестким фланцем, то = О, Ali (i> = = 0. Поэтому для определения основных неизвестных , 0, 5 (i), All (1) и выражающихся через них внутренних силовых факторов в оболочке достаточно проинтегрировать уравнения (5.88) четвертого порядка.  [c.274]

Программа составлена на языке Алгол и реализовалась на ЭЦВМ М-220 с транслятором TAI-M. В программе не использована библиотека стандартных программ. С небольшими изменениями приведенной программой можно пользоваться и для интегрирования системы уравнений восьмого порядка при расчете несимметрично нагруженных оболочек вращения.  [c.480]


Еще более эффективное упрощение уравнений теории оболочек дает комплексное преобразование их для оболочек вращения при симметричной нагрузке. В этом случае решение задачи сводится к интегрированию одного уравнения второго порядка.  [c.39]

Задачу по определению НДС гофрированной оболочки решаем в квазистационарной несвязной постановке, используя численное интегрирование системы нелинейных дифференциальных уравнений, описывающих НДС геометрически линейных тонких неупругих осесимметрично нагруженных оболочек вращения. Учитываем только физическую нелинейность, обусловленную работой материала за пределами упругости (пластичность, ползучесть). Физически нелинейную задачу  [c.154]

Одномерные и квазиодномерные задачи механики описываются системами обыкновенных диф ренциальных уравнений. К одномерным можно отнести задачи о деформировании стержней, балок, а также круглых пластин и оболочек вращения при осесимметричном нагружении. В ряде случаев для трехмерных и двумерных задач теории упругости можно применить метод разделения переменных и решать задачу в рядах Фурье или методом Канторовича. Задачи, для которых тем или иным способом возможно приближенно перейти от уравнений в частных производных к обыкновенным уравнениям, называются квазиодномерными. Для расчетов на ЭВМ наиболее удобной формой представления разрешающих дифференциальных уравнений является система дифференциальных уравнений первого порядка, или каноническая система. Для таких систем разработаны стандартные программы интегрирования, а также различные вычислительные приемы, обеспечивающие достаточную точность решения краевых задач [20, 33].  [c.85]

В гл. 4 основное внимание уделено многослойным оболочкам вращения, у которых упругие характеристики отдельных слоев примерно одинаковы. Для описания деформирования применяются два подхода. Первый основан на гипотезах Кирхгофа—Лява, второй — на обобщении гипотез С. П. Тимошенко. Рассмотрены способы решения с помощью МКЭ и численного интегрирования систем дифференциальных уравнений задач статики, устойчивости и колебаний, а также вопросы стыковки оболочек с кольцевыми подкрепляющими элементами. Приводится решение задач об осесимметричном деформировании тонкой многослойной оболочки, выполненной из композиционного материала с хрупкой полимерной матрицей, с учетом геометрической, физической и структурной нелинейностей.  [c.122]

Математическое описание деформирования тонких многослойных оболочек вращения может быть сведено к системам обыкновенных дифференциальных уравнений. Для решения таких систем в настоящее время разработаны эффективные численные методы. Наиболее удобной формой для интегрирования на ЭВМ является представление разрешающих дифференциальных уравнений в виде системы дифференциальных уравнений первого порядка (или канонической системы). В 3.5 был представлен в общем виде вариационно-матричный способ получения канонических систем. Ниже рассмотрим конкретную реализацию этого способа для оболочек вращения.  [c.149]

Итак, при интегрировании системы уравнений моментной оболочки вращения имеется шесть произвольных постоянных четыре входят в решение системы уравнений Е. Мейснера (9.5.13) и две (Р и w j) имеют смысл осевой силы в крайнем сечении и перемещения оболочки вдоль оси как твердого тела.  [c.147]

Рассмотренная последовательность решения задачи для цилиндрической оболочки может быть распространена на оболочку вращения произвольной геометрии меридиана. В этом случае несколько усложняется расчет коэффициентов уравнений (9.8.25), разных для всех точек интервала интегрирования. Но общий алгоритм расчета остается тем же.  [c.177]

М+4В](4 (9.8.37) Матрица [/)] упругих констант для изотропной оболочки определяется зависимостями (9.5.4). После подстановки формул (9.8.36) и (9.8.37) в выражение (9.8.35) и интегрирования по Z левой части уравнения условие равновесия тонкой оболочки вращения, соответствующее принципу возможных перемещений,  [c.177]


Матрица [D] упругих констант для изотропной оболочки определяется зависимостью (3.105). После подстановки формул 9.36) и (9. 37) в выражение (9.35) и интегрирования по г. левой части уравнения получим условие равновесия тонкой оболочки вращения, соответствующее принципу возможных перемещений, в виде  [c.262]

Коэффициенты дифференциальных уравнений теории оболочек вращения не зависят от q>. Это позволяет в общем случае, т. е. при любом очертании меридиана, искать решение при помощи тригонометрических рядов. Применим этот метод к интегрированию статических безмоментных уравнений.  [c.202]

Задачу о расчете оболочек вращения на произвольную нагрузку удобнее всего рассматривать в комплексной форме. Оказывается, что получающиеся при этом дифференциальные уравнения допускают преобразования, аналогичные тем, какие юз-можны для уравнений безмоментной теории. В итоге расчет оболочки вращения приводится к решению дифференциальной системы четвертого порядка, содержащей всего два уравнений. Из этой системы, во-первых, сразу же может быть получен известный результат для осесимметричной деформации оболочек вращения, т. е. решение этой задачи может быть сведено к интегрированию одного уравнения второго порядка. Кроме того, аналогичный результат может быть получен и для так называемых ветровых нагрузок.  [c.187]

Подпрограмма использует вариационно-матричный способ получения канонической системы разрешающих уравнений, численное интегрирование методом Рунге—Кутта для формирования матрицы фундаментальных решений (М.ФР) на кольцевом оболочечном элементе и получение на основе МФР матрицы жесткости конечного элемента оболочки вращения.  [c.227]

В седьмой главе рассмотрены вопросы численного интегрирования линейных и нелинейных краевых задач для систем обыкновенных дифференциальных уравнений, возникающих при исследовании прочности, устойчивости, свободных колебаний анизотропных слоистых композитных оболочек вращения после разделения угловой и меридиональной переменных. Разработан и апробирован алгоритм численного решения таких задач, основанный на идее инвариантного погружения, в котором проблема интегрирования первоначальной краевой задачи редуцируется к решению задачи Коши для жестких матричных дифференциальных уравнений. Приведенные тестовые примеры позволяют сделать вывод об эффективности метода. Показано, что сочетание метода Бубнова — Галеркина с обобщенной формой метода инвариантного погружения дает эффективный инструмент численного исследования устойчивости и свободных колебаний слоистых композитных оболочек вращения. Разработан метод численного определения матрицы Грина краевой задачи и на примере проблемы выпучивания длинной панели по цилиндрической поверхности показана его эффективность в задачах устойчивости оболочек вращения. Метод решения нелинейных краевых задач, объединяющий в себе итерационный процесс Ньютона с методом инвариантного погружения, рассмотрен в параграфах 7.4, 7.5.  [c.14]

В ходе расчетов, выполненных [17—19, 21, 23, 24, 30] для слоистых оболочек вращения важных частных классов (цилиндрических, конических и др.) с использованием разработанных в настоящей монографии неклассических уравнений, выявлено, что спектральный радиус матрицы Якоби правой части системы дифференциальных уравнений (7.2.21), (7.2.28) и спектральный радиус матрицы коэффициентов первоначальной системы уравнений изгиба — величины одного порядка. Спектр матрицы Якоби характеризуется большим разбросом и, что существенно, весь лежит в левой комплексной полуплоскости. Такие системы дифференциальных уравнений относятся к классу жестких (в смысле определения [131, 256, 283]). Их устойчивое численное решение классическими явными методами Рунге — Кутта, Адамса и др. [41] возможно лишь при существенном ограничении на шаг интегрирования h  [c.203]

В заключение следует отметить, что интегрирование уравнений теории оболочек и пластинок в элементарных или специальных (табулированных) функциях удается лишь в исключительных случаях. Далеко идущие результаты в этом направлении достигнуты А. Д. Коваленко, разработавшим применение теории обобщенных гипергеометрических функций для определения напряженного состояния в дисках, круглых пластинках переменной толщины и конических оболочках вращения по линейной теории равновесия. Эти результаты частично изложены в монографиях и обзорной ста.тье А. Д. Коваленко (1955, 1959, 1963) и в книге А. Д. Коваленко, Я. М. Григоренко и Л. А. Ильина (1963).  [c.234]

Основным методом получения общего решения однородного уравнения симметрично нагруженных анизотропных оболочек вращения, соответствующего уравнению (89), будем считать метод асимптотического интегрирования, который в состоянии обеспечить необходимую точность, отвечающую точности разрешающего уравнения (89).  [c.176]

Среди многослойных конструкций, выполненных из композитов, оболочки вращения занимают особое место, поскольку они весьма технологичны при изготовлении естественным для волокнистых композитов методом — методом намотки. С точки зрения расчета многослойных конструкций, оболочки вращения являются достаточно простыми объектами исследования, поскольку модельное представление о распределении деформаций в трансверсальном направлении и периодичность решений по окружной координате позволяют свести решение трехмерной задачи теории упругости к последовательности решений одномерных краевых задач. При расчете на ЭВМ наиболее удобной формой представления разрешающих дифференциальных уравнений одномерных задач являются системы дифференциальных уравнений первого порядка, или канонические системы. Для таких систем разработаны стандартные программы интегрирования, а также различные вычислительные приемы, обеспечивающие достаточную точность решения [1, 2,  [c.376]


Общий интеграл уравнений безмоментной теории симметрично нагруженных оболочек вращения. Интегрирование приведенных выше уравнений безмоментной теории анизотропных оболочек вращения, нагруженных симметричной относительно оси вращения z нагрузкой, может быть осуществлено элементарным образом.  [c.244]

Асимптотическое интегрирование разрешающего уравнения ортотропной симметрично собранной слоистой или однородной оболочки вращения. О частном решении неоднородного уравнения  [c.248]

Из формул (5.39) видно, что каждое перемещение ы, и, ш в отдельности зависит от всех трех компонент внешней поверхностной нагрузки X, У и г. Отсюда следует, что если симметрично нагруженная анизотропная оболочка вращения статически неопределима, т. е. если граничные условия не позволяют определить постоянные интегрирования /о и Уо без помощи уравнений  [c.182]

Таким образом, задача об изгибе оболочки, имеющей форму поверхности вращения, силами и моментами, равномерно распределенными по параллельному кругу, представляющему собой край оболочки, сводится к интегрированию двух уравнений (315) и (316) второго порядка.  [c.593]

Деформированное состояние оболочки компенсатора определялось на основе метода [140] решения задачи о длительном циклическом нагружении данной конструкции. Задача решалась в ква-зистациоиарной несвязанной постановке путем численного интегрирования на ЭВМ Минск-32 системы нелинейных дифференциальных уравнений, определяющих напряженно-деформированное состояние неупругих осесимметрично нагруженных оболочек вращения. Решение линейной краевой задачи производилось на основе метода ортогональной прогонки [52]. Рассматривалась только физическая нелинейность. Учет геометрической нелинейности при расчетах сильфонов, работающих как компенсаторы тепловых расширений в отличие от сильфонов измерительных приборов [193], обычно не производится [32, 150, 222], как не дающий существенного уточнения при умеренных перемещениях. Предполагалось, что все гофры сильфона деформируются одинаково. Поэтому расчет производился только для одного полугофра. Эквивалентный размах осевого перемещения полугофра, вызывающий те же деформации, что и полное смещение концов сильфона, определялся по формуле  [c.200]

Методы расчета безмоментного напряженного состояния и условия его существования рассмотрены в гл. 6. Заметим, что в отличие от осесимметричной деформации оболочек вращения, в общем случае возможен и другой вид медленно меня ющи хся де рмаций оболочки. Этот вид деформации оболочки, при котором срединная поверхность не испытывает рас- тяжениД , называется и з г и б а н н е м, а соответствующее иа пряженное состояние—чисто моментным. Перемещения при такой деформации определяются интегрированием уравнений  [c.258]

Круговая цилиндрическая оболочка представляет собой частный случай оболочки вращения, поэтому теория, изложенная в 26, полностью для нее применима. В частности, может быть проведен числовой расчет произвольно нагруженной оболочки (в том числе и переменной вдоль образующей толщины) путем численного интегрирования уравнений (5.78). Эти уравнения, однако, существенно упрощаются, так как для цилиндрической оболочки os 0 = = 0 sin 0 = 1 г = = R = onst Ri = oo. В отличие от других оболочек вращения, для круговой цилиндрической оболочки с постоянной толщиной стенки дифференциальные уравнения представляют собой систему уравнений с постоянными коэффициентами. Поэтому можно проанализировать их решения в общем виде. Выведем уравнения равновесия цилиндрической оболочки в перемещениях.  [c.277]

Задачу решали в квазистационарной несвязанной постановке путем численного интегрирования на ЭВМ системы нелинейных дифференциальных уравнений, определяющих напряженно-дефор-мированное состояние неупругих осесимметрично нагруженных оболочек вращения. Линейную краевую задачу решали на основе метода ортогональной прогонки. Рассматривали только физическую нелинейность, обусловленную работой материала за пределами упругости (пластичность, ползучесть), Физически нелинейную задачу для каждого полуцикла нагружения сводили к ряду линейных на основе последовательных приближений fl91.  [c.220]

Интегрирование уравнений (9.5.5) -(9.5.7) и получение аналитических решений возможно для некоторых частных видов оболочек вращения (цилиндра, сферы, конуса, кругового тора). При этом приведенные выше уравнения приводятся в системе Е. Мейснера [371- Если первое уравнение (9.5.5) умножить на sina, второе - на osa и сложить, то  [c.146]

При решении контактной задачи в качестве исходного приближения выбирается решение линейной бесконтактной задачи. Эффективность подобного подхода при решении контактных задач нелинейной теории оболочек продемонстрирована в работах [121,127, 1291. Линейные краевые задачи решаются методом ортогональной прогонки С. К. Годунова. Коэффициенты матрицы [С] и вектора [D] (11.27) получаем численным интегрированием по формулам Ньютона — Котеса четвертого порядка. Уравнения (11.24) — (11.29), дополненные граничными условиями (П. 12) и условиями сопряжения (11.23), полностью определяют НДС осесимметрично нагруженной конструкции из оболочек вращения на п-т приближении итерационного процесса. Если необходимо получить ряд решений при пошаговом изменении нагрузки q, то начальное приближение для находим экстраполяцией по решениям для. ... .. Процесс последовательных приближений заканчивается, когда модуль максимального относительного расхождения компонент yt вектора решения Y для каждой точки ортогона-лизации меньше наперед заданного значения  [c.39]

Из обзора, приведенного в параграфе 2 главы I, следует, что одной из мало изученных является задача о контактном вза имодействии между оболочками, в частности оболочками вращения, особенно при нелинейном характере их деформирования. В данной главе из. о жен метод решения задач этого класса. Построен итеративный процесс, на 1а дом шаге которого решаются модифицированные линеаризованные краевые задачи для каждой из оболочек изучена сходимость такого процесса, получены разрешающие системы уравнений. Приведены сведения об адаптивном алгоритме, на основе анализа контактного краевого эффекта даны рекомендации по выбору шага интегрирования. Получены решения задач о контакте между цилиндрическими оболочками.  [c.47]

В теории оболочек метод асимптотического интегрирования применяется уже давно. На его основе удалось разработать эффективные методы расчета осесимметричной деформации оболочек вращения [221, 249]. Далее он был перенесен на ограниченные одним или двумя параллельными кругами оболочки вращения, испытывающие деформацию общего вида [84, 251]. Первая попытка применить его к оболочкам произвольной формы была сделана С. М. Фейнбергом. Детальная разработка соответствующей теории была дана А. Л. Гольденвейзером [38, 40, 41 ], который рассматривает метод асимптотического интегрирования как универсальный прием, позволяющий, с одной стороны, строить приближенные решения задач теории оболочек, а с другой — классифицировать данные задачи с качественной стороны, обнаруживая при этом возможности упрощения общих уравнений теории оболочек, допустимые в тех или иных конкретных случаях.  [c.81]


Глава посвящена рассмотрению двух наиболее интересных случаев деформирования оболочки вращения — осесимметричному ( = 0) и обратносимметричному k — 1) изгибам. Решение однородной системы разрешающих уравнений определяется методом асимптотического интегрирования и является точным в рамках кирхгофовской теории оболочек. Однако для практических целей достаточной обычно является точность первого (так называемого геккелеровского) приближения, соответствующая пренебрежению слагаемыми порядка Y hlRo по сравнению с единицей. Частное решение также вычисляется приближенно на основе предложения о его плавности и совпадает с безмомент-ным решением. Главу заключают параграфы, посвященные отдельно цилиндрическим, коническим и сферическим оболочкам. Рассмотрен ряд задач, которые могут представлять самостоятельный интерес (например, аналог теоремы о трех моментах в теории оболочек).  [c.184]

Сразу же вслед за появлением статьи [278] Е. Мейсснеру [264, 265] удалось обобщить указанные выше результаты иа случай осесимметричной деформации оболочки вращения про-изюльной формы (и даже переменной толщины). Тем самым трудности, связанные с расчетом оболочек вращения на осесимметричные нагрузки, были в значительной мере преодолены, тем более, что асимптотический метод открывал простые и достаточно точные пути интегрирования соответствующих Дифференциальных уравнений. Однако долгое время после появления цитированных работ усилия были направлены в сторону не приближенного, а математически точного решения данных уравнений ([244],  [c.185]

Наиболее простой и часто применяемый приближенный способ интегрирования уравнений осесимметричной деформации оболочек вращения, основанный на пренебрежении членами порядка до YhIRo (по сравнению с единицей) включительно, вошел в прак-  [c.185]

Сложнее обстояло с расчетом оболочек вращения на неосе-симметрнчные нагрузки. Наиболее важной из них является обратносимметричная нагрузка, иногда называемая также ветровой . Для сферической оболочки соответствующая задача была решена в диссертации Э. Шверииа [286], который (видимо, желая угодить своему учителю и оппоненту Г. Рейсснеру) преобразовывал дифференциальные уравнения в духе, типичном для цюрихской школы, стремясь получить решение в форме плохо сходящихся в данном случае гипергеометрических рядов, что ему и удалось. При этом были обнаружены две квадратуры, а также юзмож-ность комплексного преобразования, так что расчет сферической оболочки на ветровую нагрузку в итоге оказался сведенным к интегрированию одного уравнения второго порядка. Последний результат был обобщен затем в работе [126] для оболочек вращения произвольной формы.  [c.186]

Итак, переход от классической модели деформирования слоистых тонкостенных пластин к той или иной корректной уточненной модели сопровождается увеличением не только порядка системы дифференциальных уравнений, но и спектрального радиуса матрицы ее коэффициентов и, как следствие, появлением быстропеременных решений, имеющих ярко выраженный характер погранслоев и описывающих краевые эффекты напряженного состояния, связанные с учетом поперечных сдвигов и обжатия нормали. Такая ситуация характерна не только для балок или для длинных прямоугольных пластинок, изгибающихся по цилиндрической поверхности, но, как будет показано ниже, и для элементов конструкций других геометрических форм — цилиндрических панелей, оболочек вращения и др. Отметим, что стандратные методы их решения, которые согласно известной (см, [283 ]) классификации делятся на три основные группы (методы пристрелки, конечно-разностные методы, вариационные методы, метод колло-каций и др.), на этом классе задач малоэффективны. Так, группа методов пристрелки, включающая в себя, в частности, широко используемый и весьма эффективный в задачах классической теории оболочек метод дискретной ортого-нализации С.К. Годунова [97 ], на классе задач уточненной теории оболочек оказывается практически непригодной. Методами этой группы интегрирование краевой задачи сводится к интегрированию ряда задач Коши, формулируемых для той же системы уравнений. Для эллиптических дифференциальных уравнений теории оболочек такие задачи некорректны (см., например, [1]), что при их пошаговом интегрировании проявляется в форме неустойчивости вычислительного  [c.109]

В этой главе рассмотрены вопросы численного интегрирования линейных и нелинейных краевых задач для систем обыкновенных дифференциальных уравнений, возникающих при исследовании прочности, устойчивости, свободных колебаний анизотропных слоистых композитных оболочек вращения после разделения угловой и меридиональной переменных. В предыдущих главах было показано, что корректный расчет таких оболочек и пластин в большинстве случаев требует привлечения неклассических дифференциальных уравнений повышенного порядка. Там же (см. параграфы 4.1, 4.4, 5.2, 6.2) отмечалась важная особенность таких уравнений — существование быстропеременных решений экспоненциального типа, имеющих ярко выраженный характер погранслоев и существенных лишь в малых окрестностях краевых закреплений, точек приложения сосредоточенных сил, мест резкого изменения геометрии конструкции и т.д. Стандартные схемы численного интегрирования краевых задач на таком классе дифференциальных уравнений малоэффективны — попытки их применения встречают принципиальные трудности, характер и формы проявления которых подробно обсуждались в параграфе 4.1 (см. также [136]). Добавим к этому замечание о закономерном характере данного явления — существование решений экспоненциального типа с чрезвычайно большим (по сравнению с длиной промежутка интегрирования) показателем изменяемости в неклассических математических моделях деформирования тонкостенных слоистых систем, дифференциальными уравнениями которых учитываются поперечные сдвиговые деформации, обжатие нормали и другие второстепенные" факторы, естественно и необходимо. Такие решения описывают краевые эффекты напряженного состояния, связанные с учетом этих факторов, и существуют не только у неклассических уравнений, установленных в настоящей монографии, но и в других вариантах неклассических уравнений повышенного порядка, что уже было показано (см. параграф 4.1) на конкретном примере. Болес того, подобные явления наблюдаются не только в теории оболочек, но и в других математических моделях механики и физики. Известным классическим примером такого рода может служить течение Навье—Стокса — при малой вязкости жидкости, как впервые было показано Л. Прандтлем (см., например, [330]), вблизи обтекаемого тела возникает зона пограничного слоя. Такие задачи согласно известной [56, 70 и др.] классификации относятся к классу сингулярно возмущенных, т.е. содержащих малый параметр и претерпевающих понижение порядка, если положить параметр равным нулю. Проблема сингулярных возмущений привлекала внимание многих авторов [56, 70, 173, 190 и др.]. Последние десятилетия отмечены значительными достижениями в ее разработке — в создании и обосновании методов асимптотического интегрирования для различных  [c.195]

Отметим прежде всего работы Б. Г, Галеркина (1932, 1935) по применению к анализу толстых плит общих решений уравнений теории упругости, выраженных через бигармонические функции, а также монографии Б. Г. Галеркина (1934) и Ю, А. Шиманского (1934), посвященные расчету пластинок разного очертания по классической теории изгиба. Метод асимптотического интегрирования для расчета оболочек вращения впервые был применен И. Я, Штаерманом (1924) он же указал на аналогию между статическими расчетами оболочки вращения и кривого (плоского) стержня на упругом основании. Решение ряда интересных задач безмоментной теории куполов дано в монографии В. Э. Новодворского (1932), с именем которого связано одно из условий применимости безмоментной теории тангенциальные краевые условия не должны допускать изгибания срединной поверхности (В. Э. Новодворский, 1933),  [c.228]

Не надо забывать также, что при получении разрешающего уравнения ортотропной оболочки вращения (2.24) было использовано равенство X = являющееся в случае слоистых оболочек приближенным. Однако, так как мы будем в дальнейшем ограничиваться лишь первым приближением асимптотического интегрирования уравнения (2.24), можно утверждать, что ограничивающее предположение X — Саг/Сц = геряет свою силу. В этом можно убедиться, рассматривая асимптотическое интегрирование разрешающего уравнения (2. 24) (см. гл. II, 4).  [c.162]

Путем элементарных рассуждений нетрудно показать, что первое приближение асимптотического интегрирования разрешающих уравнений симметрично нагруженной ортотропной оболочки вращения имеет погрешность порядка JhlRf, малую по сравнению с единицей.  [c.251]



Смотреть страницы где упоминается термин Оболочки вращения Уравнения — Интегрирование : [c.128]    [c.26]    [c.94]    [c.221]   
Прочность устойчивость колебания Том 2 (1968) -- [ c.0 ]



ПОИСК



124 — Уравнение с вращением

Асимптотическое интегрирование разрешающего уравнения ортотропной симметрично собранной слоистой или однородной оболочки вращения. О частном решении неоднородного уравнения

Интегрирование

Интегрирование уравнений

Оболочки вращения

Оболочки уравнения

РАЗРЕШАЮЩИЕ УРАВНЕНИЯ ОСНОВНЫХ КЛАССОВ ОБОЛОЧЕК И МЕТОДЫ ИХ ИНТЕГРИРОВАНИЯ Оболочки вращения

Теория оболочек вращения анизотропных многослойных нагруженви симметричном 167175 — Уравнения — Интегрирование асимптотическое 174178 — Уравнения дифференциальные 169, 170, 173, 174 У равнения равновесия 167 Уравнения упругости



© 2025 Mash-xxl.info Реклама на сайте