Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Способ получения канонических систем

Подпрограмма использует вариационно-матричный способ получения канонической системы разрешающих уравнений, численное интегрирование методом Рунге—Кутта для формирования матрицы фундаментальных решений (М.ФР) на кольцевом оболочечном элементе и получение на основе МФР матрицы жесткости конечного элемента оболочки вращения.  [c.227]

Математическое описание деформирования тонких многослойных оболочек вращения может быть сведено к системам обыкновенных дифференциальных уравнений. Для решения таких систем в настоящее время разработаны эффективные численные методы. Наиболее удобной формой для интегрирования на ЭВМ является представление разрешающих дифференциальных уравнений в виде системы дифференциальных уравнений первого порядка (или канонической системы). В 3.5 был представлен в общем виде вариационно-матричный способ получения канонических систем. Ниже рассмотрим конкретную реализацию этого способа для оболочек вращения.  [c.149]


Рассмотрим один из способов получения канонических уравнений, причем выведем их для системы с голономными идеальными связями и обобщенно-потенциальными силами.  [c.202]

Рассмотрим получение вариационно-матричным способом канонической системы дифференциальных уравнений для решения задач устойчивости н колебаний. При получении разрешающих уравнений будем считать, что в исходном невозмущенном состоянии оболочка напряжена, но не деформирована. Исходное напряженное состояние определяется решением- задачи статики в линейной постановке. При составлении уравнений движения в окрестности исходного состояния будем учитывать начальное напряженное состояние. В деформационных соотношениях кроме линейных составляющих будем учитывать нелинейные слагаемые, связанные с дополнительными углами поворота нормалей. При решении задач рассмотрим только осесимметричное начальное напряженное состояние. Будем считать, что действующие на конструкцию внешние нагрузки при движении системы не изменяются ни по величине, ни по направлению. В целом систему, включая внешние нагрузки и условия связи, будем считать консервативной. Исследование движения системы относительно начального состояния проведем без учета демпфирующих свойств.  [c.156]

При использовании вариационной формулировки критерия устойчивости в форме Брайана (1.141) вариационно-матричный способ получения разрешающих уравнений приводит к канонической системе однородных дифференциальных уравнений  [c.42]

Полученная вариационно-матричным способом система диф ференциальных уравнений (5.9) в качестве неизвестных функ-. ций аргумента ai содержит компоненты вектор-столбцов обобщенных перемещений Х и обобщенных силовых факторов Соотношения (5.10) — (5.12) определяет алгоритм получения коэффициентов канонической системы. В качестве исходной информации выступают матрицы Bi , В2 (5.6), определяющие-кинематику деформирования матрица, (5.5), характеризующая приведенные жесткости многослойного пакета матрицы Сь Сг (5.7), устанавливающие связи между Х и Y вектор-столбец рге (5.12), определяющий-коэффициенты разложения в ряды Фурье внешних распределенных сил и моментов. Конкретное содержание исходной информации приводится в последую-щ х, разделах.  [c.220]

Полученные таким способом уравнения называются каноническими уравнениями движения системы, так как они решены относительно старших (первых) производных от искомых функций. Этим объясняется также введение термина канонические переменные.  [c.147]


Блоки разрешающей системы и вектор свободных членов были получены формальным вариационно-матричным способом. Для их вычисления согласно (3.61) необходимо иметь в качестве исходной информации законы распределения по сечению перемещений и деформаций [матрицы [Fi], [ 2 и [Li], [Lj] (см. (3.43) и (3.44)] соотношения упругости (матрица [G]), матрицы связи i iJ, [ j] [см. (3.45)] и вектор внешних распределенных нагрузок g . Представленные соотношения (3.57), (3.58) -и (3.61), определяющие алгоритм получения канонических систем, являются общими для Широкого класса одномерных систем.  [c.89]

Наиболее распространенным способом решения системы канонических уравнений является сокращенный способ Гаусса. Этот способ получил признание благодаря компактной форме ргшения, возможности осуществления промежуточных проверок и сравнительно быстрому получению значений неизвестных для каждой новой комбинавди нагрузок. И. В. Урбан [12] дополнил таблицу Гаусса так называемой таблицей обратного хода, результатом составления которой является получение неизвестных в виде общих формул.  [c.342]

Метод обобщенных рядов Фурье. Вводные замечания. Рассмотренные в предыдущих параграфах численные примеры показывают, что метод канонических функциональных уравнений может быть использован для получения приближенных решений граничных задач. Однако общего доказательства сходимости процесса приближения, применяемого в этом методе, мы не имеем, и теоремы 19 дают доказательство сходимости лишь в частных случаях. Теперь мы укажем другой способ приближенного решения граничных задач, в котором нам удалось доказать сходимость. Этот метод позволит получить решения в виде р.чдов по некоторым полным системам ортогональных функций и конечные их отрезки представляют приближения к точным решениям,  [c.394]


Смотреть страницы где упоминается термин Способ получения канонических систем : [c.26]   
Композиционные материалы (1990) -- [ c.0 ]



ПОИСК



157, системы 301, их получение

16 — Способы получения

Вариационно-матричный способ получения канонических систем дифференциальных уравнений

Вариационно-матричный способ получения канонических систем и матриц жесткости для одномерных задач

Вид канонический

Система каноническая



© 2025 Mash-xxl.info Реклама на сайте