Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Эйлера нелинейная

Считая смещения частиц жидкости малыми, можно ограничиться линейной задачей и пренебречь в уравнении Эйлера нелинейным членом (z V)f, что соответствует малости амплитуды волны по сравнению с ее длиной %. Тогда для несжимаемой жидкости волновое движение на ее поверхности без учета сил поверхностного натяжения определяется такой системой уравнений для потенциала ф (напомним, что г> = Тф) il i  [c.25]


Уравнение неразрывности скалярно и, как и уравнение Эйлера, нелинейно относительно характеристик среды.  [c.34]

В отличие от переменных Эйлера, переменные Лагранжа а, Ь, с связаны с определенными частицами среды. Трехмерные уравнения движения в переменных Лагранжа слишком громоздки и поэтому используются редко. Однако одномерные задачи часто целесообразнее решать в переменных Лагранжа. Дело в том, что в переменных Лагранжа в одномерном случае задача легко сводится к решению только одного уравнения. Оно не содержит характерный для переменных Эйлера нелинейный член (уУ)у. Кроме того, в переменных Лагранжа просто записывается граничное условие для смещения излучающей поверхности. В окончательных же формулах сравнительно легко перейти от переменных Лагранжа к переменным Эйлера. Здесь мы вначале приведем формулы перехода от одних переменных к другим, а затем и основное уравнение для одномерного плоского движения.  [c.55]

Совокупность динамических и кинематических уравнений Эйлера является системой шести нелинейных дифференциальных уравнений первого порядка относительно ф, гр, 0 и сот,, со . При заданном моменте внешних сил М и известных начальных условиях определение движения тела сводится к указанной системе дифференциальных уравнений. В общем виде эта задача не решена. Однако несколько частных случаев движения тела около неподвижной точки всесторонне исследованы и уравнения их проинтегрированы. Среди них наиболее простой и широко применяемый в технике случай движения симметричного гироскопа, для которого А = В.  [c.180]

Интегрирование системы нелинейных дифференциальных уравнений (14) и (15) при общих начальных условиях (16) — задача чрезвычайно трудная. Она в общем случае начальных условий не решена даже тогда, когда внешними силами являются только сила тяжести самого тела и реакция закрепленной точки. Для тяжелого твердого тела, вращающегося вокруг неподвижной точки, в трех случаях была указана система первых интегралов дифференциальных уравнений, из которых неизвестные углы Эйлера в зависимости от времени определяются в квадратурах, т. е. путем вычисления интегралов. Эти частные случаи называют случаями интегрируемости уравнений Эйлера.  [c.481]

Получена система нелинейных обыкновенных дифференциальных уравнений (42), (43) и (44), интегрированием которых можно определить углы Эйлера Ф, 0, ср в зависимости от времени при заданных начальных условиях. Это сложная для интегрирования система уравнений. Подготовим ее для приближенного интегрирования.  [c.490]


Для стержней и пластин (рис. 15.1, 15.2) после бифуркации при нагрузке р наблюдается неединственность решения задачи и резкое возрастание прогибов, которое, как правило, приводит либо к разрушению, либо к недопустимо большим деформациям. Такое поведение стержней и пластин предопределило успех бифуркационной теории Эйлера. У оболочек (рис. 15.3) после бифуркации при нагрузке р наблюдается резкое падение сжимающей нагрузки при одновременном росте перемещений. Оболочки весьма чувствительны к начальным несовершенствам формы и поэтому при анализе их поведения основное значение имеет максимальная нагрузка Рт, которую она выдерживает перед наступлением катастрофического выпучивания. Для определения же максимальной нагрузки необходимо решать нелинейную задачу о выпучивании оболочки с учетом начальных прогибов fo (рис. 15.3) либо других начальных несовершенств.  [c.321]

Задачей о потере устойчивости системы в виде колонны, нагруженной продольной силой, занимались Эйлер, Вернули и др. Одним из первых термин "бифуркация" (что означает раздвоение) ввел Якоби в 1834 г. Теория бифуркаций получила фундаментальное развитие в работах при решении различных задач нелинейного поведения систем.  [c.40]

В общем случае главный момент внешних сил зависит от координат центра инерции твердого тела, мгновенной угловой скорости и углов Эйлера. Исключая из уравнений (III. 4) проекции мгновенной угловой скорости на основании уравнений (III.5), получим вместе с (III.1) шесть дифференциальных уравнений движения тела с координатами центра инерции и углами Эйлера в качестве неизвестных функций. Эти уравнения нелинейны и их интегрирование связано с большими математическими трудностями.  [c.401]

Отдельная глава посвящена расчету элементов конструкций с учетом ползучести расширен по сравнению с другими сборниками задач состав задач по вопросам усталостной прочности включен параграф, посвященный расчету тонкостенных стержней замкнутого профиля на стесненное кручение. В отдельные параграфы выделены вопросы нелинейного деформирования элементов конструкций. В главе Устойчивость и продольно-поперечный изгиб стержней помещены задачи, которые помогут студентам приобрести не только навыки расчетов на устойчивость, но и уяснить понятие критического состояния системы и применяемого в исследовании устойчивости метода Эйлера. Креме того, решение этих задач подготовит студентов к более успешному освоению курса устойчивости сооружений.  [c.3]

Выпишем нелинейную систему уравнений одномерных движений идеальной сжимаемой жидкости в случае баротропных процессов. Она состоит из уравнения Эйлера  [c.221]

Однако не следует придерживаться той точки зрения, что метод анализа по шагам следует применять во всех случаях. Этот метод возник в результате необходимости рассчитывать системы с учетом нелинейности и начальных несовершенств. Понятно, что многие задачи, легко поддающиеся анализу с позиций классического подхода, решались и будут по-прежнему решаться на основе критерия Эйлера — Лагранжа. Те задачи, где необходимо рассматривать не формы равновесия, а формы движения, будут, очевидно, решаться на основе динамического критерия.  [c.149]

Метод Эйлера применим к анализу таких типов потери устойчивости, т. е. таких явлений, которые характеризуются наличием возможности перехода от одной формы равновесия к другой, бесконечно близкой к ней, при фиксированной нагрузке (т. е. равенство нулю производной Р/й/ при некотором значении Р, где Р — сила, а [ — характерный параметр деформации системы). В то же время этот метод не может быть применен в тех случаях, когда потеря устойчивости формы равновесия состоит в переходе не к другой форме равновесия, а к колебательному движению. Остановимся на вопросе о применимости метода Эйлера в случае, если потеря устойчивости принадлежит типу перехода к новой устойчивой форме равновесия, но посредством скачка. Можно отметить два характерных варианта. Водном из них этот переход происходит в точке бифуркации, до которой (Р < Р ) зависимость Р — / линейна. В другом — переход происходит в предельной точке, до которой (Р < Р,) зависимость Р—[ нелинейна. В первом случае метод Эйлера позволяет найти Р, во втором же — этот метод неприменим.  [c.372]


Дифференциальные уравнения, входящие в граничные условия для каждого из рассматриваемых блоков, решаются методом Эйлера с использованием итерационных процессов [1]. Коэффициенты при переменных в уравнениях меняются от шага к шагу с учетом нелинейностей (табл. 1). Опуская запись исходных уравнений в разностной форме, приведем описание программы.  [c.94]

Применение точных методов, связанных с интегрированием уравнения Эйлера, ограничивается следующими соображениями. 1) Интегрирование в замкнутом виде нелинейного дифференциального уравнения, которым в общем случае является дифференциальное уравнение Эйлера, часто представляет большие сложности. Кроме того, определение постоянных интегрирования из граничных условий также представляет трудности, так как постоянные интегрирования часто входят в решение нелинейным образом. 2) В тех случаях, когда по условиям работы механизм должен удовлетворять граничным условиям, превышающим число постоянных интегрирования уравнения Эйлера, применение точных методов невозможно. В этих случаях приходится применять приближенные методы решения поставленной задачи оптимизации.  [c.20]

Бернулли — Эйлера гипотеза 200 Био число 127 Больцмана подстановка 69 Блок граничных условий 160 ---нелинейных 103  [c.249]

Здесь р, Р, V — плотность, давление и скорость жидкости. Для баротропной жидкости, когда Р = Л(р), ур-ния Эйлера можно линеаризовать на фоне тривиального решения р = Ро, о = 0 в предположении потенциальности поля скоростей V = уф. Полагая р = Ро + бр, 5р <й Ро, получае.м из (1) волновое уравнение для звуковых волн. Однако при рассмотрении вихревых движений жидкости, когда её можно считать не-сжи.маемой, р = ро, у = 0, ур-ния Эйлера (1) становятся существенно нелинейными. Их линеаризация на фоне решения Сд = 0 приводит к тривиальному ур-нию дь д1 — 0.  [c.314]

При нелинейном статическом анализе устойчивости приложенная нагрузка должна быть заведомо больше критической. Очевидно, что для линейного и нелинейного поведения материала критические нагрузки будут существенно отличаться. Для анализа с линейным материалом оценку критической нагрузки даст анализ устойчивости по Эйлеру.  [c.427]

Уравнения устойчивости тонких оболочек получим из нелинейных уравнений, используя статический критерий Эйлера. Подставляя в уравнения (2.14), (2.15) гл. П  [c.54]

В уравнении (7.96) матрица жесткости [/С] зависит от достигнутого уровня скоростей узловых перемещений. Это усложняет задачу отыскания решения указанного уравнения из-за необходимости рассматривать на каждом шаге по времени систему нелинейных алгебраических уравнений с многими неизвестными. Для этой цели удобно использовать итерационные методы, сводящие решение нелинейных задач к последовательности упругих решений. В расчетах использовался метод переменных параметров упругости. Интегрирование (7.96) по времени осуществлялось методом Эйлера с итерациями.  [c.191]

Рассмотрим, следуя Эйлеру, смежные формы равновесия в процессе деформирования оболочки. Критическая нагрузка определяется как наименьшая из нагрузок, при достижении которых наряду с исходной формой равновесия становятся возможными смежные формы равновесия, близкие к исходной, но отличные от нее. С практической стороны использование критерия Эйлера сводится к нахождению собственных значений линеаризованных уравнений, полученных из нелинейных дифференциальных уравнений при рассмотрении двух смежных равновесных форм.  [c.62]

Исторически первой задачей такого рода бьша возникшая и исследованная в трудах Я. Бернулли, Л. Эйлера, ЖЛ. Лагранжа задача деформирования гибких стержней (задача эластики), являющая пример геометрически нелинейной задачи, (годящейся к краевой задаче для нелинейного дифференциального уравнения  [c.7]

Это соотношение может быть рассмотрено как нелинейная неявная разностная схема, которая включает новое неизвестное Р, и поэтому дол) (на решаться совместно с исходным уравнением (В.1.2), что делает ее прямую реализацию нерациональной. На основе приближенного представления выражения (В.1.13) можно получить самые различные-разностные схемы. Так, при P=Pf получаем явную разностную схему Эйлера (В.1.11). Методы построения других явных разностных схем на базе различных формул численного интегрирования соотношения (В.1.12) рассмотрены, например, в книге Н.С. Бахвалова [35]. Положим в выражении (В.1.13) J(X P),P) -/(АГ(,), P/+i) и используем следующую формулу численного дифференцирования  [c.16]

Теория устойчивости упругих систем была заложена трудами Л. Эйлера в XVHI в. В течение долгого времени она не находила себе практического применения. Только с широким использованием во второй половине XIX в. в инженерных конструкциях металла вопросы устойчивости гибких стержней и других тонкостенных элементов приобрели практическое значение. Основы устойчивости упругих стержней излагаются в курсе сопротивления материалов. Поэтому в настоящей главе рассматривается только теория устойчивости упругих пластин и оболочек как в линейной, так и нелинейной постановке. Интересующихся более глубоко вопросами устойчивости стержней мы отсылаем к книгам [5, 6, 7]. Критический подход к самому понятию упругой устойчивости в середине XX в. явился наиболее важным моментом в развитии теории устойчивости и позволил к настоящему времени сформировать единую концепцию устойчивости упругопластических систем, описанную в 15.1 настоящей главы.  [c.317]


Для составления дифференциальных уравнений движения твердого тела, имеющего одну неподвижную точку, связывающих углы Эйлера ф. О, <р с силами, действующими на это тело, достаточно к уравнениям (16) присоединить кинематические уравнения Эйлера (28, 75). Таким образом, движение твердого тела, имеющего одну неподвижную точку, вокруг этой точки описывается следующими шестью нелинейными ди()хреренциальными уравнениями первого Порядка относительно неизвестных функций <р, ф и 0  [c.702]

Интегрирование этого нелинейного дифференциального уравнения проводится по яростейшей неявной схеме Эйлера, т. е.  [c.237]

Первые 6 лекций Якоби посвящает изложению основных принципов механики принципу сохранения движения центра тяжести системы, принципу живой силы, принципу площадей и принципу наименьшего действия. С 10-ой лекции Якоби развивает теорию множителя" систем обыкновенных дифференциальных уравнений, являющуюся обобщением теории эйлеров-ского интегрирующего множителя. Якоби показывает каким образом можно в целом ряде случаев построить с помощью последнего множителя" всю систему п независимых интегралов. Изложив подробно теорию этого множителя, Якоби затем применяет ее к решению ряда механических задач. С 19-ой лекции Якоби, исходя из вариационного принципа Гамильтона, излагает тот метод интегрирования уравнения с частными производными первого порядка, который известен под названием метода Якоби-Гамильтона". В следующих лекциях этот метод примендется к ряду задач, взятых главным образом из области небесной механики. В 26 лекции Якоби излагает теорию эллиптических координат и показывает их приложение к разысканию геодезических линий эллипсоида, к задаче построения карт, к выводу основной теоремы Абеля и проч. Наконец, последние лекции Якоби посвящены изложению его классических методов интегрирования нелинейных уравнений в частных производных первого порядка.  [c.4]

Во втором и третьем разделах изложены основы математического моделирования режимов соответственно идеализированного и реального ЦН в координатах действительных чисел (скалярная модель). На базе модифицированного уравнения Эйлера предложена схема замещения насоса, которая состоит из гидравлического источника - аналога электродвижущей силы с постоянным гидравлическим сопротивлением (импедансом). Для учета конечного числа лопастей в рабочих колесах, наличия объемных, гидравлических и механических потерь схема дополняется соответствующими нелинейными сопротивлениями. Расчет параметров этой схемы по конструктивным данным машины ведется в системе относительных единиц, где базовыми приняты номинальные параметры ЦН. На основании уравнений Кирхгофа для схемы замещения записана система нелинейных уравнений равновесия расходов и напоров ЦН, решение которой позволяет построить рабочие характеристики ЦН и оптимизировать его конструктивные параметры. Рассмотрен также вопрос эквивалентирования многопоточных и многоступенчатых насосов одноступенчатой машиной с колесом с односторонним входом.  [c.5]

Нелинейные уравнения в физике. Н. у. м. ф., встречающиеся в физике, отличаются большим разнообразием. Их значит, часть представляет собой обобщения гидродинамич. ур-ний Эйлера, напр. Навье — Стокса уравнения для описания движений вязкой несжимаемой жидкости. Описываемая ими гидродииамич. турбулентность является предельно сильной.  [c.315]

Большое разнообразие встречающихся в физике Н, у. м. ф. затрудняет развитие общих матем. методов их исследования. Лишь для сравнительно немногих Н. у. м. ф. доказаны теоремы существования и единственности, к таким относятся ур-ния Янга — Миллса, ур-ния Навье — Стокса в двумерном случае, ур-ния газовой динамики. Для ур-ний Навье — Стокса в трёхмерном случае теорема единственности решения задачи Коши до сих пор не доказана. Затруднена даже проблема классификации Н. у. м. ф. Часть их попадает под классич. разделение на эллиптич., гиперболич. и параболич. ур-ния, но значит, число важных Н. у. м. ф. (среди них Кортевега — де Фриса ур-ыие, Кадомцева — Петвиашвили ур-ние) не могут быть отнесены ни к одному из этих типов. Нек-рую классификацию Н. у. м. ф. можно осуществить на основе физ. соображений. Прежде всего это разделение на стационарные и ЭВО.ТЮЦ. ур-ния. Большинство стационарных ур-ний относится к эллиптич. типу. Среди эволюц. ур-ний, явно содержащих производные по времени, можно выделить консервативные Н. у. м. ф., сохраняющие интеграл энергии, и диссипативные Н. у. м. ф., описывающие открытые системы , обменивающиеся энергией с внешним миром . Одним из интересных достижений теории Н. у. м. ф. было обнаружение того факта, что консервативные Н. у. м. ф., как правило, являются гамильтоновыми системами, хотя явное введение кано-иич. переменных зачастую оказывается трудной задачей. Установлена гамильтонова природа большинства консервативных обобщений ур-ний Эйлера и даже системы ур-ний Власова, описывающих плазму без столкновений. Для гамильтоновых систем, близких к линейным, развиты методы теории возмущений, позволяющие учитывать нелинейные эффекты и производить статистич. описание решений. Все перечисленные выше универсальные Н. у. м. ф., за исключением Бюргерса ур-ния и Хохлова — Заболотской ур-ния, являются гамильтоновыми.  [c.315]

Динамика многомерных Т. с. Топологич. анализ дефектов даёт лишь качественные ответы и необходимые критерии существования стабильных Т. с. типа наличия изоморфизмов = Z для пространств вырождения параметров порядка. При этом в роли параметров порядка могут фигурировать скалярные, комплексные, векторные и в общем случае тензорные поля. Количественное описание Т. с, основывается на построении, как правило, нелинейных дикамич, моделей, обладающих след, свойствами (а) ур-ния Эйлера — Лагранжа модели допускают регулярные локализованные решения с конечными динамич. характеристиками (энергией, импульсом, моментом импульса и т. д.) (б) состояния наделены нетривиальными топологич. характеристиками Q (зарядами, индексами и т. д.) (в) функционал энергии модели оценивается снизу через топологич. инвариант Q < > /(Q), = onst, что обеспечивает динамич. устойчивость Т. с.  [c.138]

Если одно из перечисленных свойств не выполняется, анализ по Эйлеру не может считаться достоверным. В этом случае требуется выполнять нелинейный деформационный анализ конструкции Nonlinear Stati ), строить диаграмму равновесных состояний и по ее виду судить об устойчивости конструктивных элементов или конструкции в целом.  [c.416]

Диаграммы равновесных состояний р - f для перемещений по оси Y двух узлов панели (в отличие от диаграмм раздела 1.3, ось / на этом рисунке является осью ординат) показывают, что резкое изменение прогиба начинается при значениях = 0,8875 3400000 = 3017500Н. Процесс решения расходится при = 0.901563 3400000 = 3065314 Н. Таким образом, при нелинейном анализе потери устойчивости критическая сила лежит в диапазоне 3017500 <Р < 3065300 Н, что несколько ниже критической силы, полученной при анализе устойчивости по Эйлеру.  [c.432]

Исходную систему компонентных и топологических уравнений (3.1) и (3.2) можно рассматривать как окончательную ММС, которая и подлежит численному решению. Численное решение этой системы уравнений предполагает ал-гебраизацию дифференциальных уравнений, например, с помощью преобразования Лапласа или формул численного рштегрирования. В программах анализа нелинейных объектов на макроуровне, как правило, применяются формулы численного интегрирования, примером которых может служить неявная формула Эйлера  [c.96]


В уравнении теплопроводности можно аппроксимировать конечными разностями производные не по всем независимым переменным. В итоге получится система дифференциальных уравнений (обыкновенных или в частных производных). Если удается получить аналитическое решение такой системы, то оно будет приближенным решением задачи, так как при конечноразностной аппроксимации внесена погрешность в математическое описание процесса тегглопро-водности. Однако обычно такой прием частичной замеггы производных конечными разностями, известный как метод прямых [27], используют для решения полученной системы уравнений одним из эффективных численных методов. Например, для задачи нестационарной теплопроводности- аппроксимация производных по пространственным координатам переводит уравнение в частных производных в систему обыкновенных дифференциальных уравнений (в общем случае нелинейных), которая может быть решена методами численного интегрирования Эйлера-Коши, Рунге-Кутта, Адамса и т.п. [4, 104]. Такую же систему обыкновенных диф -ренггиальных уравнений получают из условия баланса тепловых потоков в дискретной модели тела, состоящей из теплоемких масс и теплопроводящих стержней [27].  [c.210]

Движение твердого тела характеризуется шестью обобщенными координатами х,-, определяющими положение центра масс и углы Эйлера. В общем случае эти переменные и их производные связаны в уравнениях движения нелинейными соотношениями, обуслокленными описанными выше типами нелинейности (см. табл. 6.5.1). Предполагая не. шнейные члены малыми, можно представить уравнения движения в ква-зинормальной форме (27 ]  [c.371]

Метод Эйлера. F2i moti im алгоритм метода Эйлера для интегрирования нелинейной краевой задачи (3.1.1), (3.1.2) по параметру Л при начальном условии (3.1.3).  [c.98]

По-ввдимому, первой из работ такого рода, касающихся метода продолжения, было исследование Поскитта [489], который сравнил простейшую явную схему типа Эйлера для продолжения по параметру с другими методами решения нелинейных задач, как-то методом Ньютона - Рафсона, итераций и др. В качестве тестовой задачи бьша использована трехшаркир-ная арка Мизеса. Было установлено, что число шагов шагового метода значительно меньше зависит от величины конечного перемещения, чем у всех остальных методе .  [c.194]

В разделе 5.2 получены алгебраические уравнения в приращениях для решения нелинейных задач вида (6.4) о квазистатиче-ском деформировании тел. При использовании схемы Эйлера для решения уравнений (6.2) в разделе 6.1 установлена эквивалентность уравнений (6.2) и (6.4). Выполнение равенства (7.4) означает, что при решении уравнений (6.4) достигнуто критическое значение параметра деформирования.  [c.213]


Смотреть страницы где упоминается термин Эйлера нелинейная : [c.499]    [c.343]    [c.224]    [c.862]    [c.366]    [c.185]    [c.523]    [c.423]    [c.212]    [c.98]    [c.328]   
Нелинейное деформирование твердых тел (2000) -- [ c.212 ]



ПОИСК



Нелинейная упругость. Модификация критерия Эйлера. . П Пластичность. Критерий Эйлера—Кармана

УРАВНЕНИЯ ГИДРОДИНАМИКИ НЕЛИНЕЙНЫЕ ВЗАИМОДЕЙСТВИЯ Уравнения гидродинамики в эйлеровых координатах

Эйлер

Эйлера эйлеров



© 2025 Mash-xxl.info Реклама на сайте