Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Упругость Понятие

Выпускниками и профессорами этой школы Пуассоном (1781 — 1840), Коши (1789—1857), Ламе (1795—1870) и другими были заложены основы математической теории упругости. Понятие механического  [c.6]

Определение 282 --упругая — Понятие 132 — Приращение 144 --упругопластическая 36, 56, 201  [c.447]

Если попытаться включить понятие упругости в реологическое уравнение состояния, то сразу же столкнемся с основной проблемой определения упругости и жидкости . Интуитивно упругость представляется таким свойством материалов, которое предполагает, что внутренние напряжения определяются деформациями. В свою очередь, деформация может быть определена лишь в терминах конфигурации отсчета, т. е. через некоторое понятие предпочтительной формы рассматриваемого материала. Деформацию понимают как отклонение от этой предпочтительной формы.  [c.74]


В противоположность этому под жидкими материалами понимают такие материалы, которые не имеют предпочтительной формы, так что попытка соединения интуитивных понятий упругости и текучести приводит, по крайней мере на первый взгляд, к внутреннему противоречию. Действительно, та идея, что текучие материалы нечувствительны к деформации, приводит к концепции, что внутренние напряжения должны определяться скоростью деформации,— концепции, которая воплощена в уравнении (2-3.1). (Тензор растяжения D, как будет показано в следующей главе, описывает мгновенную скорость деформации.)  [c.74]

Трусделл [16] предложил модель реологического уравнения состояния, которое, удовлетворяя принципу объективности поведения материала, объединяет оба понятия — упругость и текучесть — в единые рамки. Жидкость с конвективной упругостью определяется как материал, для которого напряжение зависит от деформации (т. е. как упругий материал ) однако эта деформация определяется не в терминах предпочтительной формы, а через отличие конфигурации материала в момент наблюдения (когда измеряется напряжение) от конфигурации материала в некоторый фиксированный момент, предшествующий моменту наблюдения.  [c.74]

Более того, модель Трусделла может привести к введению понятия, которое оказывается очень полезным в гидромеханике упругих жидкостей, а именно к понятию памяти. Это понятие необходимо рассмотреть более подробно.  [c.75]

Жесткость — это способность системы сопротивляться действию внешних нагрузок с наименьшими деформациями. Для машиностроения можно сформулировать следующее определение жесткость — это способность системы сопротивляться действию внешних нагрузок с деформациями, допустимыми без нарушения работоспособности системы. Понятием, обратным жесткости, является упругость, т. е. свойство системы приобретать относительно большие деформации под действием внешних нагрузок. Для машиностроительных конструкций наибольшее значение имеет жесткость. Однако в ряде случаев важным свойством оказывается и упругость (пружины, рессоры и другие упругие детали).  [c.203]

Учитывая, что практически трудно установить начало отклонения от закона пропорциональности и начало появления первых остаточных деформаций, вводят также понятия условных предела пропорциональности и предела упругости.  [c.95]

Такое расхождение объясняется тем, что теоретический коэффициент концентрации о отражает характер распределения напряжений лишь для идеально упругого материала. В реальных же материалах за счет пластических деформаций в микрообласти места концентрации напряжения несколько перераспределяются и сглаживаются. Учитывая это, наряду с теоретическим коэффициентом концентрации при рассмотрении вопросов усталости используют понятие эффективного, или действительного, коэффициента концентрации, представляюш,его собой отношение предела выносливости гладкого образца без концентрации напряжений к пределу выносливости образца с концентрацией напряжений, имеющего такие же абсолютные размеры сечений. Эти коэффициенты в дальнейшем обозначены так  [c.601]


Для введения некоторых понятий, которые будут использованы в дальнейшем, рассмотрим горизонтальную упругую балку, защемленную на конце л = 0, свободно опертую на конце х = 1 и подвергнутую действию распределенной вертикальной направленной вниз нагрузки с удельной интенсивностью Pi (х) и распределенных направленных против часовой стрелки моментов с удельной интенсивностью Р> х). Для упрощения терминологии мы будем называть Ра х) ( =1, 2) обобщенными нагрузками, действующими на балку. Для краткости в этой главе не будут рассматриваться сосредоточенные нагрузки и моменты.  [c.9]

Наука о механическом движении и взаимодействии материальных тел и называется механикой. Круг проблем, рассматриваемых в механике, очень велик и с развитием этой науки в ней появился целый ряд самостоятельных областей, связанных с изучением механики твердых деформируемых тел, жидкостей и газов. К этим областям относятся теория упругости, теория пластичности, гидромеханика, аэромеханика, газовая динамика и ряд разделов так называемой прикладной механики, в частности сопротивление материалов, статика сооружений, теория механизмов и машин, гидравлика, а также многие специальные инженерные дисциплины. Однако во всех этих областях наряду со специфическими для каждой из них закономерностями и методами исследования опираются на ряд основных законов или принципов и используют многие понятия и методы, общие для всех областей механики. Рассмотрение этих общих, понятий, законов и методов и составляет предмет так называемой теоретической (или общей) механики.  [c.5]

Как показывает опыт, переменные силы могут определенным образом зависеть от времени, положения тела и его скорости. В частности, от времени зависит сила тяги электровоза при постепенном выключении или включении реостата или сила, вызывающая колебания фундамента при работе мотора с плохо центрированным валом от положения тела зависит ньютонова сила тяготения или сила упругости пружины от скорости зависят силы сопротивления среды (подробнее см. 76). В заключение отметим, что все введенные в статике понятия и полученные там результаты относятся в равной мере и к переменным силам, так как условие постоянства сил нигде в статике не использовалось.  [c.180]

Высказанное соображение относится и к упруго деформируемым системам, но четкое разграничение указанных понятий приобретает особое значение в сфере задач, связанных с наличием пластических деформаций.  [c.454]

Эти колебания в реальных веществах имеют затухающий характер, в связи с чем наблюдаются затухание тепловых упругих волн и невысокое значение коэффициента теплопроводности. В теории теплопроводности предполагается, что колебания нормального вида квантуются. В дискретной кристаллической решетке связь между ангармоническими колебаниями приводит к взаимодействию фононов между собой. Для описания этого процесса можно воспользоваться понятием длины свободного пробега. По аналогии с кинетической теорией газов теплопроводность твердого тела можно предста-  [c.157]

Решение, предложенное Гиббсом, совпадает с рассмотренной моделью межфазной границы и сводится к замене реальной переходной области гипотетической мембраной пренебрежимо малой толщины, сосредоточившей в себе все поверхностные избытки свойств реального граничного слоя.. Выше уже использовалось понятие поверхностного избытка внутренней энергии U . Аналогично при анализе температурной зависимости упругих свойств границы и адсорбции на ней веществ помимо энергии натяжения мембраны надо рассматривать вдобавок ее экстенсивные термодинамические функции — энтропию 5 и количества составляющих п , т. е.  [c.138]

Рассмотрены в соответствии с утвержденной учебной программой курса Теория механизмов и машин общие для плоских и пространственных механизмов вопросы кинематики и динамики, влияние упругости звеньев механизмов на нх кинематические и динамические характеристики, причины возникновения вибраций простейших механизмов и пути борьбы с ними, а также требования по обеспечению качественных характеристик работы механизмов. Использовано понятие операторной функции для формализации алгоритмов расчета механизмов.  [c.2]


Первые исследователи в области теории упругости (Л. Навье, О. Коши, С. Пуассон, Г. Ламе, Б. Клапейрон и др.) исходили из гипотезы о том, что идеально упругое тело состоит из молекул, между которыми при его деформировании возникают взаимодействия. Так как молекулярные механизмы в среде не рассматриваются и все вводимые понятия и величины представляются как средние макроскопические или феноменологические, то их принимают в качестве истинных. В этом состоит идеализация истинной физической среды в механике.  [c.24]

История науки знает различные определения понятия устойчивости. Одним из первых определений в духе первой элементарной концепции было определение, данное Л. Эйлером [5] в 1749 г. в связи с практически важным вопросом того времени — вопросом об устойчивости кораблей ...тела равновесное положение будет устойчиво, ежели оное тело будучи несколько наклонено, опять справится . В дальнейшем это понятие устойчивости для твердых тел было распространено на упругие тела равновесие упругой системы считается устойчивым в смысле Эйлера при заданных внешних силах, если после статического приложения и последующего снятия малой возмущающей силы система возвращается к своему исходному состоянию. В противном случае система считается неустойчивой.  [c.318]

Общие понятия о крутильных колебаниях и критической угловой скорости. Приложим к массам т (рис. 209) моменты, как показано сплошными стрелками. В результате действия моментов вал окажется скрученным и каждая масса повернется на угол ф. При этом предполагается, что вал скручен в пределах упругих деформаций.  [c.199]

Задачи сопротивления материалов. Понятия о деформациях, упругости и прочности. Основные допущения, принятые в сопротивлении материалов  [c.201]

Понятия о деформациях, упругости и прочности. Основные допущения, принятые в сопротивлении материалов  [c.176]

В теории упругости понятие дислокаций в связи с местными особенностями упругого поля применялось давно, еще в конце XIX в. Первыми работами для кристаллов являются исследования Поляни, Орована и Тэйлора (30 годы XX в.).  [c.82]

Для малых деформаций, следовательно особенно и для других упругих деформаций, это значение совпадает, помимо знака, с обычным в учении об упругости понятием об удлинении = Aljl.  [c.201]

Роль теплопередачи в нелинейной динамической теории упругости понята дд сих пор еще недостаточно. Теория упругости есть по существу теория термоупругости. В основных уравнениях изотермической эла-стостатики тепловые члены опускаются. Обращаясь к ситуациям, когда тепловые члены существенны, мы, не добавляем их в изотермические уравнения, а возвращаемся к первоначальным уравнениям, из которых были выведены изотермические. Поскольку отсутствие тепловых членов приводит к большим математическим упрощениям, особую важность в динамической теории упругости приобретает случай нулевой теплопроводности, илн адиабатическое деформирование. Прн адиабатическом деформировании можно решить много задач (см. гл. 2—4), которые в настоящее время не поддаются решению с учетом теплопередачи. Весьма важным является вопрос, в какой мере эти адиабатические решения представляют собой приближения к полным решениям для теплопроводных сред. Для немногих известных полных решений (гл. 5) ответ гласит, что адиабатическое приближение является достаточным, если исключить области быстрых изменений. В более общем случае вопрос остается открытым.  [c.8]

В сплошной среде число точек связ бесконечно, и именно это составляет основную трудность получения численных решений в теории упругости. Понятие конечных элементов, введенное впервые Тёрнером и др. [6], представляет собой попытку преодолеть эту трудность путем разбиения сплошного тела на Отдельные элементы, взаимодействуюш,ие между собой только в узловых точках, в которых вводятся фиктивные силы, эквивалентные поверхностным напряжениям, распределеннйм по границам элементов. Если такая идеализация допустима, то задача сводится к обычной задаче строительной механики, которая может быть решена численно.  [c.11]

Используя нестрогие определения, упругие тела можно считать материалами, обладающими совершенной памятью каждое из этих тел помнит, таким образом, свою предпочтительную форму. В то же время вязкие жидкости (или в общем случае жидкости Рейнара — Ривлина) не обладают памятью и чувствительны лишь к мгновенной скорости деформации. Между двумя этими крайними концепциями возможны промежуточные. Можно представить себе материалы, которые, хотя и лишены отсчетной конфигурации особой физической значимости — они не обладают способностью запоминать свою предпочтительную форму навсегда и, по существу, являются жидкостями ,— все же могут сохранять некоторую память о прошлых деформациях. Очевидно, здесь затронуто понятие о затухающей памяти , которую следует определить. При жэлании можно видеть, что, в то время как твердые тела запоминают одну форму навсегда, в памяти жидкости удерживаются все формы, но не навсегда.  [c.75]

Механическое состояние материала в точке зависит в первую очередь от напряженного состояния в этой точке, хотя и не определяется им полностью. Так, например, при наличии температурного воздействия на механическом состоянии материала заметно сказывается фактор времени. При малом времени нагружения состояние материала можно рассматривать как упругое, а при большом — как пластичное. На механическое состояние в точке имеет некоторое влияние состояние материала в соседних точках. Наконец, что самое важное, само понятие механического состояния в точке не свободно от противоцечий с принятым ранее предположением о непрерывности среды. Это обнаруживается в первую очередь при изучении вопросов разрушения, поскольку процесс образования трещин в металлах тесно связан с их молекулярной и кристаллической структурой.  [c.259]


Упругие звенья соединяются кинематическими парами в кинематическую цепь, обладающую упругими свойствами. Поэтому вводят понятие жесткости механизма, под которым подразумевают силу или момент силы, приложенные к вхоОному звену и вызывающие его единичное линейное или угловое перемеи ение. Жесткость механизма зависит от структурной и конструктивной схемы, жесткостей его звеньев, от вида кинематических пар, соединяющих звенья, и упругих свойств их элементов. Податливость механизма, состоящего из п звеньев, последовательно соединенных р кинематическими парами, равна сумме податливостей его звеньев и кинематических пар Х с  [c.295]

Теория устойчивости упругих систем была заложена трудами Л. Эйлера в XVHI в. В течение долгого времени она не находила себе практического применения. Только с широким использованием во второй половине XIX в. в инженерных конструкциях металла вопросы устойчивости гибких стержней и других тонкостенных элементов приобрели практическое значение. Основы устойчивости упругих стержней излагаются в курсе сопротивления материалов. Поэтому в настоящей главе рассматривается только теория устойчивости упругих пластин и оболочек как в линейной, так и нелинейной постановке. Интересующихся более глубоко вопросами устойчивости стержней мы отсылаем к книгам [5, 6, 7]. Критический подход к самому понятию упругой устойчивости в середине XX в. явился наиболее важным моментом в развитии теории устойчивости и позволил к настоящему времени сформировать единую концепцию устойчивости упругопластических систем, описанную в 15.1 настоящей главы.  [c.317]

Волны - одно из наиболее фундаментальных и значимых понятий окружающего нас физического мира. Одна из основных характеристик волны - частота V. Волны бывают продольные, когда колебания происходит вдоль линии распространения волны, и поперечные, когда колебания происходят поперек этой ]гинии (рисунок 4.8). Продольные волны могут распространяться исключительно в срсде, тогда как поперечные - и в вакууме. Звук - продольные колебания упругой среды. Наше ухо способгю слышать колебания с частотой 50-12000 Гц. Свет - поперечные электромагнитные колебания. Наши органы зрения способны воспринимать электромагнитные колебания с частотой 10 -10 Г ц. Для сравнения, частота переменно1 о тока в электросети составляет 50 Гц.  [c.248]

При переходе от одноосного напряженного к сложному напряженному состоянию возникает проблема формулировки условий перехода от упругого деформирования к упругопластическому. Если рассмотреть девятимерное пространство, каждое измерение которого соответствует одному компоненту тензора напряжений, то, обобщая понятие предела текучести, в этом пространстве можно ввести поверхность текучести, обладающую тем свойством, что при выходе точки, изображающей напряженное состояние данной частицы, на эту поверхность материал переходит в пластическое состояние. Таким образом, условие перехода от упругого состояния к упругопластическому, или, как говорят, условие текучести, может быть записано в виде  [c.265]

ВОЛНЫ ВОКРУГ НАС Волны - одно из наиболее фундаментальных и значимых понятий окружающего нас физического мира. Одна из основных характеристик волны -частота v. Волны бывают продольные, когда колебания происходят вдоль линии распространения волны, и поперечные, когда колебания происходят поперек этой линии (рис. 7.1). Продольные волны могут распрост-раняться исключительно в среде, тогда как поперечные - и в вакууме. Звук - продольные колебания упругой среды.  [c.337]


Смотреть страницы где упоминается термин Упругость Понятие : [c.756]    [c.761]    [c.764]    [c.633]    [c.644]    [c.656]    [c.756]    [c.761]    [c.764]    [c.75]    [c.235]    [c.618]    [c.549]    [c.219]    [c.254]    [c.365]   
Основы конструирования Справочно-методическое пособие Кн.3 Изд.2 (1977) -- [ c.203 ]



ПОИСК



25 — Понятие упругости — Понятие



© 2025 Mash-xxl.info Реклама на сайте