Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Бифуркации теория

Эта глава, которая является вводной, содержит изложение основных понятий и положений, необходимых для изучения нелинейных колебаний. Прежде всего следует сказать несколько слов о колебательных явлениях вообще и о нелинейных колебаниях в частности. Общие закономерности, которыми обладают колебательные процессы в системах различной физической природы, составляют предмет науки, получившей название теории колебаний. Под колебательным явлением принято понимать либо то, что связано с фактом установившегося движения в рассматриваемой системе, либо то, что связано с процессом перехода от одного установившегося движения к другому. Установившееся движение характеризуется повторяемостью и определенной устойчивостью (смысл последнего понятия будет уточнен ниже). Переходные процессы характеризуются тем установившимся движением, к которому они приближаются. Множество переходных процессов данного установившегося движения образует его область притяжения. Смена установившихся движений, которая происходит в результате изменения какого-нибудь физического параметра рассматривае.мой системы при его переходе через некоторое значение, называется бифуркацией. Если при этом смена установившихся движений происходит достаточно быстро, т. е. скачкообразно, то говорят о жестком возникновении нового режима. В противном случае возникновение нового режима называют мягким . Колебательные явления, возникающие в так называемых нелинейных системах, называются нелинейными колебаниями. Однако, прежде чем определить, что такое нелинейная система, рассмотрим более общий класс систем, называемых динамическими системами.  [c.7]


Для системы (3.4), содержащей лишь один параметр X, пространство параметров представляет собою прямую, а бифуркационные значения i = Xi — точки, разбивающие эту прямую на области, в каждой из которых изменение параметра X не приводит к изменению фазового портрета. Если система (3.4) содержит два параметра X и [i, тогда пространством параметров будет плоскость, разделенная на области одинакового поведения системы при помощи бифуркационных кривых. Зная структуру разбиения фазового пространства для какой-нибудь точки плоскости параметров Хц можно, непрерывно перемещаясь в этой плоскости, найти структуру фазового пространства для любой другой точки плоскости параметров. При этом нужно знать лишь характер бифуркации, которая происходит в фазовом пространстве при переходе той или другой бифуркационной границы. В этом заключается эвристическая ценность теории бифуркаций [7J.  [c.52]

Задачей качественной теории многомерных динамических систем является совместное изучение структур разбиения фазового пространства и пространства параметров. Эта общая трактовка предмета исследования качественной теории, как математической основы теории нелинейных колебаний, включает в себя изучение установившихся движений и их бифуркаций, выяснение областей притяжения установившихся движений, а также глобальной картины их взаиморасположения и перехода друг в друга при изменении параметров [1—3, 36, 41].  [c.237]

На границе таких областей происходит либо исчезновение одного из этих движений, либо нарушение устойчивости. Поэтому задача выделения областей существования и устойчивости простейших установившихся движений (состояний равновесия и периодических движений) является частью более обш,ей задачи изучения бифуркаций особых точек и замкнутых фазовых кривых. Однако значимость теории бифуркации состоит не только в этом, но и в том, что она открывает путь к более полному изучению динамических систем и оказывается полезной даже при изучении конкретной динамической системы, которая ни от каких параметров не зависит. Последнее означает, что в ряде случаев изучение конкретной динамической системы существенно облегчается путем искусственного введения параметров и последующего использования теории бифуркаций.  [c.251]

Заметим, что основное содержание методов малого параметра [34] и асимптотических методов [20] может трактоваться как исследование специфических бифуркаций и возмущений. Так, теория периодических движений Пуанкаре решает вопрос о рождении периодических движений от семейств периодических движений, теория квазилинейных систем с быстровращающимися фазами — вопрос о рождении интегральных тороидальных многообразий от многопараметрических семейств тороидальных многообразий, теория дифференциальных уравнений с малыми параметрами при старших производных исследует сингулярные возмущения решений дифференциальных уравнений и т. д.  [c.267]


Для стержней и пластин (рис. 15.1, 15.2) после бифуркации при нагрузке р наблюдается неединственность решения задачи и резкое возрастание прогибов, которое, как правило, приводит либо к разрушению, либо к недопустимо большим деформациям. Такое поведение стержней и пластин предопределило успех бифуркационной теории Эйлера. У оболочек (рис. 15.3) после бифуркации при нагрузке р наблюдается резкое падение сжимающей нагрузки при одновременном росте перемещений. Оболочки весьма чувствительны к начальным несовершенствам формы и поэтому при анализе их поведения основное значение имеет максимальная нагрузка Рт, которую она выдерживает перед наступлением катастрофического выпучивания. Для определения же максимальной нагрузки необходимо решать нелинейную задачу о выпучивании оболочки с учетом начальных прогибов fo (рис. 15.3) либо других начальных несовершенств.  [c.321]

Исторически первой строгой теорией бифуркаций и устойчивости за пределом упругости была теория, построенная А. А. Ильюшиным в 1944 г. [7]. Она же дает и лучшее соответствие экспериментальным данным по сравнению с другими теориями.  [c.346]

На рис. 16.3 приведены результаты расчета по теории Ильюшина (кривая 1), теории устойчивости, построенной на основе теории течения с изотропным упрочнением (кривая 2) и модифицированной теории (кривая 3) для сжатых стальных цилиндрических оболочек ( = 2-10 МПа, ат = = 390 МПа). Экспериментальные результаты (отмечены кружочками) лучше подтверждают теорию устойчивости Ильюшина, построенную на основе деформационной теории. Дело в том, что до-критический сложный процесс по траекториям малой кривизны в момент бифуркации имеет бесконечно малое продолжение без излома траектории в направлении касательной к траектории деформации. Следовательно, теория течения с изотропным упрочнением не описывает сложный процесс выпучивания в момент бифуркации. Аналогичное явление наблюдается при использовании теории пластичности для траекторий средних кривизн. Если используются теория течения и теория средних кривизн, для вычисления интегралов Nm, Рт следует применять соотношения (16.45), (16.46) при со = 0 и со = (й соответственно.  [c.347]

Модифицированный вариант теории устойчивости Ильюшина получим, если примем для Nm, Рт выражения (16.48). Он тоже учитывает излом траектории деформирования в момент бифуркации.  [c.347]

На рис. 16.7, 16.8, 16.9 приведены результаты расчетов по определению интенсивности напряжений сг в момент чисто пластической бифуркации для цилиндрической оболочки из сплава В95 по различным теориям при сжатии, кручении и сжатии с кручением. Кривые 1 отвечают модифицированной теории, 2 — теории устойчиво-  [c.355]

Задачей о потере устойчивости системы в виде колонны, нагруженной продольной силой, занимались Эйлер, Вернули и др. Одним из первых термин "бифуркация" (что означает раздвоение) ввел Якоби в 1834 г. Теория бифуркаций получила фундаментальное развитие в работах при решении различных задач нелинейного поведения систем.  [c.40]

ЛР1 говорить об автономных системах, то такие физические понятия, как автоколебания, мягкое и жесткое возбуждение автоколебаний, Затягивание и т.д. получили теперь твердую математическую основу в виде предельных циклов, теории бифуркаций, областей устойчивости в большом и т.д. Если говорить о неавтономных системах, то такие физические понятия как феррорезонанс, захватывание разных видов, получили математическую основу в теории периодических решений и их бифуркаций, а ряд других физических понятий, например, резонанс второго рода, асинхронное возбуждение и т.д. были вновь выдвинуты, отправляясь от математической теории [189].  [c.344]

Излагаемая ниже количественная теория исходит из предпосылки, что бифуркации следуют друг за другом (при увеличении R) настолько быстро, что даже в промежутках между ними занимаемая множеством траекторий область пространства состояний остается почти двумерной, и вся последовательность бифуркаций может быть описана одномерным отображением Пуанкаре, зависящим от одного параметра.  [c.172]

Теория бифуркаций, созданная А. Пуанкаре, развивалась в дальнейшем многими учеными, в частности Н. Г. Четаевым,  [c.71]


Связи с теорией бифуркаций пронизывают все естествознание. Дифференциальные уравнения, описывающие реальные физические системы, всегда содержат параметры, точные значения которых, как правило, неизвестны. Если уравнение, моделирующее физическую систему, оказывается структурно неустойчивым, то есть поведение его решений может качественно измениться при сколь угодно малом изменении правой части, то необходимо понять, какие бифуркации фазового портрета происходят при изменении параметров.  [c.9]

Часто модельные системы оказываются настолько громоздкими, что не допускают содержательного исследования, прежде всего из-за обилия входящих в них переменных. При изучении таких систем часть переменных, мало меняющихся в ходе процесса, как правило, полагают постоянными. В результате получается система с меньшим количеством переменных, которая и исследуется. Однако учесть влияние отброшенных членов в исходной модели, рассматриваемой индивидуально , зачастую невозможно. В этом случае отброшенные члены можно рассматривать как типичные возмущения, и описывать исходную модель средствами теории бифуркаций.  [c.9]

В обзоре систематически используется связь теории бифуркаций с теорией особенностей. Решение многих, в основном, локальных, проблем теории бифуркаций состоит в том, чтобы предъявить и исследовать так называемое главное семейство — своего рода топологическую нормальную форму для семейств исследуемого класса. Теория особенностей позволяет угадать и частично исследовать главные семейства. Она описывает также бифуркации положений равновесия, особенности медленной поверхности, медленные движения в теории релаксационных колебаний и т. д.  [c.10]

Наш обзор, естественно, является неполным. Мы не включили в него, сравнительно немногочисленные, работы о локальных бифуркациях в трехпараметрических семействах и о нелокальных бифуркациях в двупараметрических семействах некоторые ссылки даны в списке литературы. В описании нелокальных бифуркаций мы ограничились только теми, которые происходят на границе множества систем Морса—Смейла. Теория таких бифуркаций в значительной части завершена, хотя и недостаточно широко известна посвященные ей работы математиков Горьковской школы зачастую публиковались в труднодоступных источниках. Не исследована та часть границы множества систем Морса—Смейла, на которой возникает счетное множество неблуждающих траекторий этой проблеме посвящен 7 гла-чы 3. Для сохранения единства стиля мы формулируем известные результаты зачастую не в том виде, как в первоисточниках.  [c.11]

Теория бифуркаций динамических систем описывает качественные, скачкообразные изменения фазовых портретов дифференциальных уравнений при непрерывном, плавном изменении параметров. Так, при потере устойчивости особой точкой может возникнуть предельный цикл, а при потере устойчивости предельным циклом — хаос. Такого рода изменения называются бифуркациями.  [c.12]

Проектирование построенного многообразия равновесий на пространство параметров является гладким отображением. Теория особенностей гладких отображений (в частности, проекций) доставляет классификацию критических точек типичных отображений (а следовательно, и бифуркаций положений равновесия в типичных семействах).  [c.15]

Выше была изложена созданная к настоящему времени локальная теория состояний равновесия и периодических движений, а также попутно и отчасти неподвижных точек преобразования. При этом полностью рассмотрены все основные типы равновесий и периодических движений и их основные бифуркации. Это рассмотрение носит в некотором смысле законченный и завершенный характер. Точнее, можно думать, что рассмотрение более сложных случаев не даст ничего принципиально нового для общего понимания и общего качественного изучения динамических систем. Это естественно в предположении, что речь идет об изучении классов динамических систем, в котором только этим бифуркациям соответствуют в пространстве параметров разделяющие его бифуркационные поверхности. Вместе с тем эта надежда уже ни в коей мере не оправдывается для специальных классов динамических систем и в первую очередь для так называемых консервативных систем, где понятие общности совсем друп е, Когсерва-тивные системы требуют своего, во многом специфического исследования. Эта специфичность проявляется не всегда, многие вопросы и, в частности те, которым в значительной мере будет посвящен дальнейший текст, в полной мере относятся и к консервативному случаю.  [c.267]

Леонтович-АндроноваЕ. A., ШильниковЛ. П., Современное состояние теории бифуркаций динамических систем, Тр. пятой международной конференции по нелинейным колебаниям, Качественные методы, т. 2, Киев, 1970.  [c.382]

Рассмотрим сжатые оболочки или пластины, находящиеся в плоском безмоментном напряженном состоянии. Для исследования возможной бифуркации состояния равновесия или квазистатиче-ского процесса нагружения воспользуемся методом Эйлера. Приложим статически к оболочке или пластине малую поперечную возмущающую распределенную нагрузку интенсивностью tq, которую затем статически же снимем. Допустим, что оболочка либо пластина не вернулась в исходное состояние, а перешла в смежное сколь угодно близкое моментное состояние и на ее поверхности появились локальные выпучины. Каждую такую выпучину с достаточной для практики степенью точности можно рассматривать как пологую оболочку и воспользоваться изложенной в 10.11 теорией упругих пологих оболочек. При переходе оболочки в смежное состояние точки срединной поверхности получат дополнительную деформацию бе,7, прогиб —6mi = y, а усилия и моменты — приращения 6Nij, bMij. На основании уравнений (10.111), (10.126) получим  [c.324]

Уравнения (16.64), (16.65) отвечают так называемой модифицированной теории бифуркаций и устойчивости предложенной В. Г. Зубчаниновым, и весьма просты по своей структуре.  [c.346]

В теории устойчивости Ильюшина в докритической стадии деформирования нагружение является простым, а при бесконечно малом продолжении процесса после бифуркации процесс деформирования является сложным и отвечает квазипростому образу процес-  [c.346]


Как видим, в уравнениях (16.66), (16.67) переменные разделяются и задача сводится к решению лишь одного дифференциального уравнения (16.66), которое обобщает известное в практике инженерных расчетов на устойчивость уравнение устойчивости пластин Ильюшина [7] на случай сложного нагружения. При 2 = onst оно позволяет решать задачи о бифуркации и устойчивости по всем частным теориям пластичности, которые не учитывают излом траектории в выражениях для Рт, Nm- В этих теориях граница раздела зон пластической догрузки и разгрузки находится из уравнения  [c.348]

Следовательно, синергетика логически связана с теорией нелинейных колебаний и волн, которая ыожет служить общей теорией структур в неравновесных средах. В связи с этим и методы, используемые при изучении нелинейных колебаний и волн, могут применяться и для описания структур в неравновесных средах. Примеры применения теории нелинейных колебаний при математическом моделировании диссипативных систем в окрестностях точки бифуркации даны в [13, 14].  [c.253]

Второй случа11, типичным проявлением которого является гистерезис при магнетронном реактивном напылении, может быть проанализирован, используя теорию бифуркаций. Это позволяет получить оценки параметров гвстерезисной области.  [c.178]

Перефразируя известные слова Пуанкаре о периодических решениях, можно сказать, что бифуркации, как факелы, освещают путь от исследованных динамических систем к неисследованным. Эту роль теории бифуркаций использовали Л. Д. Ландау и позже Э. Хопф, предложившие эвристическое описание перехода от ламинарного течения к турбулентному при возрастании числа Рейнольдса. В сценарии Ландау этот переход осуществлялся через бифуркации торов все возрастающей размерности. После того, как зоопарк динамических систем и их бифуркаций необозримо разросся, появилась масса работ, описывающих, в основном на физическом уровне строгости, переход от регулярного (ламинарного) движения к хаотическому (турбулентному). С помощью исследования цепочки бифуркаций объяснено хаотическое поведение трехмодовой модели Лоренца конвективного движения это объяснение не вошло в настоящий обзор, поскольку в него, по соображениям объема,  [c.9]

К теории бифуркаций, в которой параметры не меняются с течением времени, тесно примыкает теория релаксационных колебаний, изучающая семейства, в которых параметры с течением времени медленно меняются (эти параметры называются медленными переменными ), В быстро-медленн >1е системы теории релаксационных колебаний входит параметр медленности— характерная скорость изменения медленных переменных. При нулевом значении этого параметра быстро-медленная система превращается в семейство, изучаемое в теории бифуркаций при ненулевом возникают специфические явления, иногда называемые динамическими бифуркациями .  [c.10]

Отметим также, что для нелокальной теории бифуркаций оказываются особенно полезными конечногладкие нормальные формы локальных семейств дифференциальных уравнений. Эти нормальные формы значительно упрощают отыскание и исследование бифуркаций, а также обоснование и исследование полученных результатов. С другой стороны, нелокальная теория бифуркаций позволяет выделить задачи теории нормальных форм, важные для приложений. На наш взгляд, связь между теорией нормальных форм и нелокальной теорией бифуркаций в настоящее время используется недостаточно.  [c.10]

Полное описание бифуркаций получено только для первого из этих классов. Для ростков двух других классов аналогичное описание, по-видимому, невозможно. Теория нормальных форм дает в качестве упрощенной модели для исследования деформаций рЬстков этих классов вспомогательные локальные семейства эквивариантных векторных полей на плоскости. Переход от вспомогательных семейств к исходным также небезобиден. Исследование вспомогательных семейств — трудная задача из-за бифуркаций предельных циклов.  [c.26]

Бифуркации фазовых портретов в окрестности цикла полностью описываются бифуркациями соответствующего Преобразования монодромии. Поэтому основным объектом изучения в этой главе являются бифуркации ростков диффеоморфизмов в неподвижной точке. Локальные семейства ростков диффеоморфизмов, их эквивалентность, слабая эквивалентность, индуцированные и нереальные деформации ростков определяются так же, как и для ростков векторных полей (см. п. 1.5). Для ростков диффеоморфизмов в неподвижной точке справедливы аналоги теорем сведения ([26, п. 2.4, гл. 6] и п. 1.6, гл. 1). Ограничение ростка диффеоморфизма на центральное многообразие называется редуцированном ростком диффеоморфизма. Отметим, что редуцированный росток может менять ориентацию, даже если исходный росток ее не менял пример diag(l —1  [c.42]

Пятый параграф посвящен конечногладкой теории. В нем исследуются нормальные формы локальных семейств векторных полей и диффеоморфизмов, к которым семейства могут быть приведены конечногладкой заменой координат в фазовом пространстве. Эти нормальные формы полезны для теории нелокальных бифуркаций и релаксационных колебаний.  [c.42]


Смотреть страницы где упоминается термин Бифуркации теория : [c.352]    [c.241]    [c.327]    [c.347]    [c.356]    [c.70]    [c.345]    [c.227]    [c.1]    [c.2]    [c.3]    [c.4]    [c.11]    [c.532]    [c.378]   
Регулярная и стохастическая динамика (0) -- [ c.415 , c.416 , c.433 , c.438 , c.454 , c.457 , c.497 ]



ПОИСК



Бифуркация

Бифуркация общая теория

Дополнение Б. Теория бифуркаций в гамильтоновых системах

Некоторые вопросы качественной теории обыкновенных дифференциальных уравнений Замечания по бифуркации рождения цикла Пуанкаре-Андронова-Хопфа

Применение теории бифуркаций к исследованию режимов лампового генератора

ТЕОРИЯ БИФУРКАЦИЙ Арнольд, В. С. Афраймович, Ильяшенко, Л. П. Шильников Бифуркации положений равновесия

ТЕОРИЯ БИФУРКАЦИЙ Двумерные консервативные системы. Неконсервативные

Теория бифуркаций в случае автоколебательной системы, близкой к линейной консервативной системе

Теория бифуркаций и расчеты автоколебаний



© 2025 Mash-xxl.info Реклама на сайте