Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Определение скоростей деформации из уравнений движения

Первое слагаемое представляет обычную обратимую работу сжатия материала фазы, а второе — диссипируемую энергию в г-й фазе из-за внутренних вязких сил, проявляющихся как за счет градиентов в поле скоростей Г , так и за счет взаимодействия с другой фазой. Так как непосредственное определение истинного тензора скоростей деформации в рассматриваемом случае является затруднительным, следует попытаться описать диссипируемую энергию в фазе с помощью используемых средних макроскопических параметров и воспользоваться некоторыми допущениями, вытекающими из анализа движения включений в несущем потоке среды и анализа уравнения баланса внутренней энергии фазы  [c.37]


Предложена теория обобщенного метода определения коэффициентов трения скольжения, качения и верчения между элементами кинематических пар. Даны дифференциальные уравнения кулисного и вибрационного механизмов, вала ва-личного джина, а также уравнение движения машинного агрегата КДМ-1 с учетом деформации вала. Кроме того, авторы попытались расширить область применения общего дифференциального уравнения, выведенного И. И. Артоболевским, которое описывает движение машинного агрегата для случая, когда приведенный момент инерции зависит от перемещения, скорости и времени.  [c.6]

Для определения величины dQ/dl можно использовать или прямой эксперимент, или же решение нестационарной упругопластической задачи о начале движения трещины при этом следует применять уравнения теории пластичности в скоростях деформаций.  [c.282]

Задача определения сложных пространственных пластических течений относится к задачам математической теории пластичности и в принципе формулируется так соотношения (4.11) выражают шесть компонент тензора напряжений через шесть компонент тензора скоростей деформаций и среднее напряжение а, т. е., согласно (4.4), через три компоненты вектора скорости и , Uy, и и о. Если подставить (4.11) в три уравнения движения бесконечно малого элемента, получатся три уравнения с указанными четырьмя неизвестными функ-  [c.201]

ВИЯ учитываются в дискретных уравнениях движения, а кинематические — при определении новых скоростей. Затем процесс повторяется, переходя к шагу /г = 2, т. е. по найденным скоростям узлов и формулам (3.2.5) рассчитываются приращения координатных функций и их значение при г = 2, а далее — скорости деформаций и приращения напряжений.  [c.62]

Алгоритм расчета состоит из следующих основных этапов. По заданным начальным скоростям или поверхностным нагрузкам определяются приращение перемещений на шаг Af и положение узловых точек срединной поверхности. Затем вычисляются скорости деформаций и их приращения, а на основе полученных значений по закону среды находятся приращения напряжений и сами напряжения. Далее интегрированием по толщине находятся усилия и мом енты и из уравнений движения вычисляются ускорения узловых точек. Заключительный этап циклической процедуры состоит в определении новых скоростей по найденным ускорениям.  [c.75]

Ои вывел общие уравнения равновесия для пространственной изогнутой кривой стержня в предположении больших прогибов. Он доказал далее, что если силы приложены только по концам стержня, то эти уравнения оказываются тождественными с уравнениями движения твердого тела относительно неподвижной точки. Благодаря этому стало возможным уже известные решения динамики твердого тела применить непосредственно к определению деформации тонкого стержня. Этот прием получил известность под наименованием динамической аналогии Кирхгоффа. В качестве простого примера применения этой аналогии сопоставим поперечное выпучивание сжатого стержня АВ (рис. 131, а) с колебанием математического маятника (рис. 131,6). Оба эти явления описываются одним и тем же дифференциальным уравнением, существующая же между ними связь сводится к следующему если точка М движется но кривой АВ с постоянной скоростью, так что дугу АВ она проходит за время, равное полупериоду маятника, и если М начинает удаляться от в тот момент, когда маятник находится в крайнем положении п касательная к кривой в А образует с вертикалью угол, равный тому, которым определяется крайнее положение маятника, то и при всяком  [c.307]


Повышение скоростей движения машин технологического назначения (тракторов, автомобилей, подвижного состава железных дорог), достигнутое в созданных рядом отраслей конструкциях увеличенной эффективности и проходимости, а также успешное применение импульсных процессов в теХ нологии формоизменения и упрочнения, были связаны с разработкой задач о распространении упругих и упруго-пластических волн, преимущественно в одномерной постановке. Применение метода характеристик и изыскание вычисляемых алгоритмов уравнений упруго-пластических деформаций позволили решить ряд задач расчета динамических усилий и деформаций при соударении деталей и при импульсных процессах формообразования, образующих зоны упрочнения на поверхности деталей. Большое практическое значение получили экспериментальные работы этого направления, позволившие измерить как протекание деформаций во времени, так и получение уравнений состояния, необходимых для определения действительных усилий. Полученные уравнения состояния показали существенное значение эффекта повышения сопротивления пластическим деформациям и их запаздывания в зависимости от скорости процесса.  [c.39]

В середине XX в. в теории пластичности выработаны общие принципы ее построения, и произошло существенное обогащение и развитие основ МСС. Уже в начале столетия стало ясно, что законы упругости и вязкости приближенно представляют уравнения состояния сред лишь в определенных диапазонах параметров движения, но не представляют их, например, в пластической и вязкоупругой области деформаций металлов и полимеров, в области неоднородных турбулентных движений вязких жидкостей и газов с большими скоростями и т. д. Постулатом макроскопической определимости в МСС устанавливается, что в малых макрочастицах любых сплошных сред в момент времени  [c.4]

Разрушение при ползучести. В. И. Розенблюм (1957) получил решение задачи об определении времени до разрушения диска постоянной толщины с отверстием. В основу положены уравнения установившейся ползучести, распространенные на случай конечных деформаций, таким образом, рассмотрена схема вязкого разрушения. Л. М. Качанов (1960) рассмотрел на основе своей теории некоторые задачи о времени разрушения стержневых систем, сформулировал общую постановку задачи о движении фронта разрушения и определил время разрушения скручиваемого вала. Ю. Н. Работнов (1963) решил задачу о разрушении диска с отверстием по схеме хрупкого разрушения. При этом учитывалось влияние накопления поврежденности на скорость ползучести и, следовательно, на распределение напряжений. Позже Ю. Н. Работнов (1968) рассмотрел вопрос о влиянии концентрации напряжений на длительную прочность. При этом считалось, что распределение напряжений мало отличается от распределения напряжений в жестко-пластическом теле, но переменная величина степени поврежденности со фигурирует в условии пластичности, которое становится подобным условию равновесия неоднородной сыпучей среды.  [c.149]

В автоматически действующих механизмах часто появляется необходимость в быстром саморасклинивании с определенной скоростью и ускорением расклинивания. Последнее зависит от величины моментов инерции системы звездочки и обоймы и величины угла расклинивания механизма. В этом случае после снятия внешней нагрузки (Л4о = 0) освободившаяся потенциальная энергия деформации механизма будет расходоваться не только цз преодоление трения качения, но и на преодоление сил инерции его элементов (роликов, звездочки и обоймы). Пусть приведенные моменты инерции звездочки и обоймы будут и У 2. соответствующие угловые скорости расклинивания % и со2. а угловые ускорения У1 и Уг- Все остальные обозначения остаются прежними. Тогда при расклинивании дифференциальные уравнения плоскопараллельного движения ролика рис. 55 напишем  [c.76]


Одних только уравнений движения сплошной среды в напряжениях и уравнений несжимаемости недостаточно для нахождения поля скоростей (или поля смещений). Для определенности задачи необходимо еще охарактеризовать соотношение между компонентами тензора скоростей деформации (или тензора деформации или, в общем случае, некоторого кинематического тензора, построенного с помощью этих тензоров) и компонентами тензора напряжений, причем эти соотношения должны обладать некоторыми свойствами, определяемыми тензорностью величин. Связь между напряжениями, деформациями и их производными по времени называется уравнением (функцией) реологического состояния. Важным частным случаем уравнения состояния является уравнение течения, которое определяет собой зависимость между скоростями деформаций и напряжениями. Ниже рассматриваются, во-первых, задачи в условиях простого напряженного состояния, когда существует лишь одна составляющая тензора напряжений и соответствующая ей составляющая тензора скоростей деформаций, во-вторых (за исключением, когда это особо не оговаривается), только те случаи, когда скорость деформации — непрерывная однозначная 12  [c.12]

В работе [Р.67] развивается далее метод расчета неоднородного поля скоростей и высших гармоник нагрузок. При этом аэроупругие деформации лопасти, в частности зависимость угла взмаха р от азимута ip, определяются одновременно с интенсивностью присоединенного вихря. Как известно, в уравнения движения лопасти входят члены с первой и второй производными по времени. Для интересующего нас периодического решения эти производные могут быть выражены через коэффициенты разложения в ряд Фурье соответствующих смещений. Указанные коэффициенты выражаются в свою очередь через значения смещений в конечном числе точек по азимуту. Таким образом, уравнения движения лопасти преобразуются в систему линейных алгебраических уравнений относительно смещений в ряде точек по азимуту. Поскольку алгебраические уравнения для циркуляции и движения лопасти связаны между собой, для определения Г(г/, ijji) и P(ij3/) требуется совместное их решение. Авторы  [c.666]

Книга состоит из двух частей. В первой части изучаются уравнения нелинейного деформирования твердых тел как в начальной, так и в актуальной конфигурации. Рассмотрены различные определения тензоров деформаций и напряжений. Приведены альтернативные формы уравнений равновесия (движения) и формулировки этих уравнений относительно скоростей. Представлены определяющие соотношения для различных моделей материалов (упругие, упругопластические, термоупругопластические с учетом деформаций ползучести). Отмечается, что для каждой модели материала и/или для каждой степени нелинейности из всех возможных формулировок уравнений выгоднее использовать од-  [c.11]

В основу вывода уравнений движения вязкой жидкости Пуассон положил своеобразный анализ деформации частиц среды за бесконечно малые промежутки времени, представляя каждую элементарную деформацию состоящей из двух процессов — упругой деформации согласно уравнениям теории упругости и последующего перераспределения (выравнивания) давлений в жидкости. Применение этих рассуждений привело Пуассона к прспорцио-нальности касательных напряжений скоростям деформации частиц. Однако в результате он получил уравнения движения, содержащие формально не две, а три физические характеристики жидкости (помимо плотности). Причиной этого было отсутствие достаточно строгого определения равновесного давления в потоке вязкой жидкости. Впрочем для малосжимаемой капельной ншдкости и адиабатического движения газа Пуассон свел число независимых физических характеристик жидкости к двум, в результате чего его уравнения движения приняли форму, близкую к точным уравнениям движения вязкой жидкости.  [c.67]

Рейнольдса Тг = —рщи], являющихся лишними неизвестными в уравнениях Рейнольдса (1.3). Вид этих неизвестных (т. е. их зависимость от пространственных координат и времени), по-видимому, должен в значительной мере определяться крупномасштабными особенностями течения, т. е. в первую очередь полем средней скорости и. При определении общего характера зависимости от и можно опереться на внешнюю аналогию между беспорядочными турбулентными пульсациями и молекулярным хаосом и попытаться использовать методы кинетической теории газов. Поскольку в кинетической теории газов очень большую роль играет понятие средней длины свободного пробега молекул 1т, в теории турбулентности при таком подходе прежде всего вводится понятие пути перемешивания I (независимо друг от друга предложенное двумя создателями полу-эмпирического подхода к исследованию турбулентности Дж. Тейлором и Л. Прандтлем), определяемого как среднее расстояние, проходимое отдельным турбулентным образованием ( молем жидкости), прежде чем оно окончательно перемешается с окружающей средой и потеряет свою индивидуальность. Другим важным понятием кинетической теории газов является понятие средней скорости движения молекул в полуэмпирической теории турбулентности ему соответствует понятие интенсивности турбулентности — средней кинетической энергии турбулентного движения единицы массы жидкости. Наконец, ньютоновой гипотезе о линейности зависимости между вязким тензором напряжений (Тц и тензором скоростей деформации ди дх] + дщ1дх1 (причем коэффициентом пропорциональности в этой зависимости является коэффициент вязкости р1тЬт) в полуэмпирической теории турбулентности Прандтля отвечает гипотеза о линейности зависимости между напряжениями Рейнольдса и скоростями деформации осредненного течения.  [c.469]


Если считать, что при скорость деформации е — гИ постоянна, то из уравнения (71) е = бру = onst следует, что определенное количество дислокаций движется с постоянной скоростью [см. уравнение (17)1. Однако при том же условии на участке О — td при постоянной скорости движения дислокаций плотность их увеличивается  [c.239]

Хотя наша главная задача состоит в исследовании деформирующихся тел, мы довольно подробно рассмотрели движения абсолютно твердого тела по следующей причине. Определяющие уравнения для сплошной среды, как будет видно в следующем разделе, должны удовлетворять условию формин-вариантности по отношению к определенному классу систем отсчета. Условие инвариантности часто называется принципом равноправия систем отсчета, принципом объективности или условием реологической инвариантности. Для применения принципа объективности важно знать, какие геометрические объекты, в том числе характеризующие деформацию и скорость деформации, действительно имеют такую инвариантность при преобразовании системы отсчета или, другими словами, являются объективными величинами.  [c.93]

Другой метод определения коэффициентов упругости третьего порядка был использован для кубических кристаллов в работах Зигера и Бака 31 ] и Бейтмана и др. [301, В этих работах уравнения движения были представлены в виде разложения в ряд вблизи естественного состояния по градиентам деформации ди,п1дй , причем были оставлены все члены второго порядка, а величина П1 отсчитывалась от естественного состояния. Авторы подставили эти разложения в произвольные решения волнового уравнения, используя линейную теорию для вычисления различия значений величин в естественном и начальном состояниях, и в результате получили формулы для скоростей распространения в виде рУ = = 6 + тр. Оба подхода дают одинаковые значения (рУ )к.  [c.129]

В соответствии с указанными условиями однозначности скорости фаз на входе в канал равны (коэффициент скольжения фаз фг, = = 1), слой не продувается и находится под действием сил предельного равновесия в плотном состоянии. Последнее означает, что твердый компонент достиг такой объемной концентрации, при которой все соседние частицы обязательно кон-тактируются друг с другом. Движение плотного слоя возникает за счет периодического нарушения предельного равновесия, приводящего к конечным деформациям сдвига без разрыва контактов. Однако согласно граничным условиям на стенке канала скорость частиц не падает до нуля. Так как для газовой среды (и)ст = 0, то Фг с,т= ( т/ )ст—>-оо. Наконец, условие ф1,= 1 на входе в канал не означает, как это обычно полагают, автоматического равенства скоростей фаз непродуваемого слоя по длине канала. Предварительные опыты показали, что при определенных условиях и в ядре движущегося слоя возможно небольшое проскальзывание фаз потока. Если пренебречь отмеченными смещениями скорости компонентов слоя, т. е. если положить фч,= 1, то v vi = v n-Если дополнительно принять, что концентрация (пороз-ность) движущегося плотного слоя неизменна (p = onst), то тогда взамен уравнения сплошности (1-30) приближенно получим  [c.288]

При исследовании гетерогенных сред необходимо учитывать гот факт, что фазы присутствуют в виде макроскопических (по отношению к молеку [ярным размерам) включений или среды, окружающей эти включения. Поэтому деформация каждой фазы, определяющая ее состояние и реакцию, связана, в отличие от гомогенной смеси (см. (1.1.31)),не только со смещением внешних границ (описываемым полем скоростей Vj, которое прежде всего может существенно отличаться от ноля среднемассовых скоростей v) выделенного объема, но и со смещением межфазных поверхностен внутри выделенного объема смеси. Учет этого обстоятельства при определении тензоров напряжений Oi требует привлечепия условий совместного деформирования и движения фаз, условий, учитывающих структуру составляющих среды (форма и размер включений, их расположение и т. д.). Заметим, что в тех случаях, когда эффекты прочности не имеют значения (газовзвеси, эмульсии, суспензии, жидкость с пузырьками, твер дые тела при очень высоких давлениях), условия совместного деформирования являются существенно более простыми, чем в общем случае. Они по существу сводятся к уравнениям, определяющим объемные содержания фаз а,. Наиболее часто встречающимися такого рода уравнениями является условие равенства давлений фаз или несжимаемости одной нз фаз.  [c.27]

В заключение следует отметить, что диаграмма разрушения (рис. 4.16) может быть построена по опытным данным, относящимся к трещинам разного размера (при соответственно больших или меньших размахах напряжения). Эта диаграмма обычно строится на основании наблюдений за движением трещин длиной в несколько миллиметров. Перенос данных такой диаграммы на трещины значительно меньшей длины не вполне оправдан, особенно в области АК, близких к значениям AKth- Если несмотря на это, уравнение (3.40) или (3.44) все же не противоречит экспериментальным данным по усталости при стационарном циклическом нагружении, то это связано с поправкой, вносимой дополнительным параметром Ц. Кроме того, уравнение (4.36) и его дальнейшие модификации должны, вообще говоря, включать еще и параметры, зависящие от R, так как скорость движения трещины определяется не только размахом А/С, но в определенной степени еще и величиной Кт- Теоретически при R < О все циклы с одинаковыми амплитудами должны обладать одинаковыми повреждающими действиями, так как с появлением любых сжимающих напряжений трещина должна закрываться. Однако это не вполне согласуется с опытными данными вероятно вследствие того, что из-за остаточных деформаций, возникающих около кончика трещины, она полностью закрывается только при достаточно значительных сжимающих напряжениях.  [c.134]

Однако вследствие того, что при динамическом нагружении в течение одного опыта в разных сечениях образца протекают различные процессы деформации е ( ) (напряженно-деформированное состояние вдоль длины образца неоднородно), дисперсии волн и наличия радиальной инерции (неоднородность напряженно-деформированного состояния по радиусу стержня), а также большой слояшости (невозможности) одновременного замера в одной и той же точке образца процесса е ( ) и а ( ) из динамических экспериментов, в настояш ее время невозможно получение динамической зависимости а от е без привлечения априорно задаваемых соотношений между напряжениями и деформациями или использования расчетов для той или иной математической модели эксперимента (например, моде.ли тонкого стержня). Попытка определения динамических уравнений состояния по некоторым косвенным эффектам (скорости распространения деформации различной величины, распределения деформации в различные моменты времени, скорости движения поверхностей испытуемого образца и т. д.) также не увенчалась успехом, поскольку было обнаружено [20, 24, 25], что указанные эффекты могут быть описаны с практически одинаковой степенью точности при помощи различных соотношений Оц — вц. Вследствие этого до сих пор еще не получено надежных уравнений, описывающих динамическое поведение материала, а по ряду определяющих параметров данные различных экспериментальных работ не только расходятся в несколько раз, но имеют и качественно различную картину.  [c.135]

Существуют и другие подходы для определения критических параметров (в частности, скорости полета) на границе устойчивости. Для этого в уравнениях свободных колебаний (38) полагают Я, = ш и находят значения скорости, удовлетворяющие этим уравнениям. Критическую скорость флаттера можно также определить экспериментально в аэродинамической трубе на динамически подобной модели и в процессе летных испытаний летательного аппарата. В последнем случае прибегают к экстраполяции, чтобы по тенденции определяющих флаттер параметров с ростом скорости полета найти приближенно величину критической скорости флаттера. Возникновение флаттера связано с определенным тоном свободных упругих колебаний в потоке воздуха. Распределение деформаций по конструкции при потере устойчивости определяет комплексную форму колебаний флаттерного тона. В зависимости от преобладания амплитуд той или иной части ЛА и характера деформированного состояния различают виды флаттера. Например изгибно-крутильный флаттер крыла, изгибно-изгибный флаттер в системе стреловидное крыло — фюзеляж, изгибно-элеронный флаттер, рулевой флаттер и т. д. Для характеристик флаттера несущих поверхностей часто определяющее значение имеют различные грузы, размещенные иа них двигатели, подвесные баки с горючим, шасси. Существенными параметрами являются жесткости крепления этих тел на поверхности крыла. Вообще для флаттера принципиально важны параметры связаииости форм движения. Например, для совместных колебаний изгиба и кручения крыла такими параметрами являются координаты точек (линий) приложения сил аэродинамического давления, инерции и упругости. Смещение центра масс относительно оси жесткости вперед способствует стабилизации системы. Совмещение всех трех точек развязывает виды колебаний, и в этом случае флаттер невозможен. Это свойство обычно имеют в виду при динамической компоновке конструкции. Важными параметрами являются распределенные нли сосредоточенные жесткости. Последние характерны для органов управления  [c.490]


При совершенно правильной форме колеса и рельса, пренебрегая местными вдавливаниями в точках касания колеса и некоторой общей деформацией колеса, мы могли считать вертикальные перемещения центра тяжести колеса равными соответствующему прогибу рельса. Если на колесе или рельсе имеются какие-либо неправильности, то указанного равенства существовать не будет и нам придется несколько видоизменить уравнение (15). Обозначим через т] глубину впадины на рельсе или на колесе, отсчитывая ее от уровня правильного рельса или окружности правильного колеса. В таком случае вертикальному прогибу рельса у будет соответствовать опускание колеса, равное у+т], где т] — ордината впадины рельса или колеса, соответствующая точке касания. Если вид впадины нам известен, то при заданной скорости движения т] представится вполне определенной функцией от времени t. Дифференциальное уравнение для вертикальных перемещений колеса напишется так  [c.342]

В предыдущих выводах мы следовали общему ходу рассуждений, аналогичному тому, который принят при выводе двух систем уравнений гидр од ина-мики ). Система Эйлера описывает то, что происходит в определенной геометрической точке, фиксированной в пространстве, во время движения жидкости. Такой системе соответствует способ, которым определялся истинный сдвиг первого рода, поскольку это касалось измерения деформации сдвига. Вторая система, система Лаграно са, более удобна для определения действительных траекторий частиц жидкости, скоростей частиц вдоль их траектории р данные люменты времени п т. п. Этой системе соответствует использование условного сдвига 7, который определяет изменение угла меок ду двумя первоначально перпендикулярными материальными линиями или сечениями в теле.  [c.164]


Смотреть страницы где упоминается термин Определение скоростей деформации из уравнений движения : [c.165]    [c.27]   
Смотреть главы в:

Курс теории упругости Изд2  -> Определение скоростей деформации из уравнений движения



ПОИСК



Движение без деформации

Деформации Определени

Деформации Уравнения

Деформации скорость

Определение Скорость движения

Определение по деформациям

Скорость Определение

Скорость движения

Скоростях Уравнения движения

Уравнения для определения



© 2025 Mash-xxl.info Реклама на сайте