Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Движение дислокаций

Рис. U. Плоскость сдвига (С) как след движения дислокации А—А) В — экстраплоскость Рис. U. <a href="/info/46399">Плоскость сдвига</a> (С) как <a href="/info/414929">след движения</a> дислокации А—А) В — экстраплоскость

Если таких частиц будет больше, например если при термической обработке измельчаются частицы цементита (рис. 221,6), то вокруг этих частиц возникает искажение кристаллической решетки, что препятствует движению дислокаций, и сталь упрочняется. Наоборот, в результате укрупнения частиц (рнс. 221,в) освободятся некоторые объемы феррита для движения дислокаций, и способность стали к пластической деформации увеличится.  [c.276]

Исследование механических свойств сталей показало, что их пластические и вязкие свойства, а отсюда и возможность упрочнения зависят от чистоты стали, содержания примесей внедрения (азот, кислород, водород) и неметаллических включений. Примеси внедрения, т. е. элементы, образующие с железом твердые растворы внедрения, создавая местные искажения, затрудняют движение дислокаций. Пластическая деформация при этом затруднена, и в местах скопления неподвижных дислокаций облегчается зарождение микротрещин.  [c.396]

Вернемся к случаю монотонного нагружения тела, когда q и q,n различных, но неизменных в процессе нагружения знаков. Здесь пластический рост поры является монотонным и реверс в движении дислокаций отсутствует. Поэтому целесообразно допустить, что направление пластического деформирования, а следовательно, и знак скорости пластического роста поры однозначно определяется параметром вт- Тогда рост поры опи- ывается с помощью зависимости (3.18) при  [c.164]

Для такого движения дислокации требуется незначительное напряжение, определяемое выражением Тр = G ехр (—2nw/b), где Тр — реальное сопротивление сдвигу G — модуль сдвига W — ширина дислокации Ь — вектор Бюргерса.  [c.44]

Зоны ГП или дисперсные ча-стиц > избыточной р (Р,)-фазы тормозят движение дислокаций и повышают прочность и твердость сплава.  [c.109]

При образовании зон ГП, расстояние между которыми составляет около Ю " нм, дислокации проходят через них (перерезают), что требует повышенных напряжений (рис. 67, а). Зоны ГП имеют модуль сдвига больше, чем у исходного твердого раствора а. Чем прочнее зоны ГП и больше их модуль упругости, тем труднее они перерезаются дислокациями. Вокруг зон ГП создается зона значительных упругих напряжений, в которой движение дислокаций также тормозится, что, следовательно, определяет упрочнение при старении.  [c.109]

Повышение сопротивления движению дислокаций приводит к увеличению прочности металла. Этого достигают введением в металлы специальных примесей, термической обработкой, наклепом и т. п. В настоящее время сделаны первые шаги по созданию металлов, не имеющих дефектов кристаллической решетки. Получены бездислокационные нитевидные металлические кристаллы ( усш), обладающие очень высокой прочностью, приближающейся к теоретической.  [c.107]


Дислокация представляет собой энергетически неуравновешенный атомный комплекс с повышенной свободной энергией. Под влиянием внешнего силового (энергетического) воздействия она начинает двигаться к положению с наименьшей свободной энергией (стабильному состоянию). В процессах возникновения и движения дислокаций, в том числе при пластической деформации, они перемещаются к поверхности, где увеличивают плотность участков с повышенной свободной энергией, повышенной активностью, что имеет большое значение при сварке металлов давлением в твердом состоянии.  [c.472]

Существует два основных типа движения дислокаций. При скольжении или консервативном движении дислокации движутся в плоскости, определенной линией дислокации и вектором Бюргерса. При переползании или неконсервативном движении дислокация выходит из плоскости сдвига.  [c.472]

Величина объема активации в общем случае при термоактивационных актах движения дислокаций определяется следующим образом  [c.195]

Пластическая деформация кристаллов создает в них дислокации и повреждения решетки сдвигообразование (скольжение) и разрушение, которому предшествует образование трещин [21]. Все эти дефекты связаны с движением дислокаций.  [c.51]

Различают два вида движений дислокаций скольжение, или консервативное движение, и переползание, или неконсервативное движение. При консервативном движении перемещение дислокации происходит в плоскости, в которой находится сама дислокация и ее вектор Бюргерса, который характеризует энергию искажения кристаллической решетки. Эту плоскость называют плоскостью скольжения. В случае скольжения экстраплоскость посредством незначительного смещения перейдет в полную плоскость кристалла, а Б соседнем месте возникнет новая экстраплоскость (рис. 34). Дислокации одинакового знака отталкиваются, а разного знака взаимно притягиваются. Сближение дислокаций разного знака приводит к их взаимному уничтожению.  [c.52]

Рис. 34. Движение дислокации под действием касательного напряжения (т) Рис. 34. Движение дислокации под действием касательного напряжения (т)
Напомним, что по мере роста пластической деформации растет усилие, которое необходимо прикладывать к образцу для обеспечения дальнейшего деформирования, Рост напряжения пластического течения твердого тела по мере увеличения деформации связан с увеличением плотности дефектов в кристалле и называется механическим упрочнением или наклепом. Движение дислокаций, обусловливающее пластическое течение твердых тел, может тормозиться различными дефектами кристаллической решетки в частности, другими дислокациями и границами зерен.  [c.129]

ВОЛНОВЫЕ АКУСТИЧЕСКИЕ ЭФФЕКТЫ ПРИ ДВИЖЕНИИ ДИСЛОКАЦИЙ  [c.353]

Но при этом необходимо учесть, что движение дислокаций сопровождается, помимо изменения упругой деформации, также и изменением формы кристалла, не связанным с возникновением напряжений — пластической деформацией. Как уже упоминалось, движение дислокаций как раз и представляет собой механизм пластической деформации. (Связь движения дислокаций с пластической деформацией ясно демонстрируется рис. 25 в результате прохождения краевой дислокации слева направо верхняя — над плоскостью скольжения — часть кристалла оказывается сдвинутой на один период решетки поскольку решетка в результате остается правильной, то кристалл остается ненапряженным.) В противоположность упругой деформации, однозначно связанной с термодинамическим состоянием тела, пластическая деформация является функцией процесса. При рассмотрении неподвижных дислокаций вопрос о разделении упругой и пластической деформаций не возникает нас интересуют при этом лишь напряжения, не зависящие от предыдущей истории кристалла.  [c.165]


Мы не занимаемся здесь вопросом об определении самого движения дислокаций по приложенным к телу силам. Решение этого вопроса требует детального изучения микроскопического механизма движения дислокаций и их торможения на различных дефектах, которое должно производиться с учетом фактических данных о реальных кристаллах.  [c.165]

Граница зерна является иреиятствнем для движения дислокаций, поэтому у границ зерен плотность дислокаций больше (рис. 10,а). Напряжения, концентрируясь у различных включений, порождают (генерируют) дислокации (рис. 10,6). Дислокации неравномерно распределены по объему металла, поэтому их расирсделенпе образует дислокационную структуру (рис. 10,(3, ж). Часто дислокации образуют сетку, точнее ячеистую структуру (рис. 10,6).  [c.30]

Напряжспнс при достижении им предела текучести вызовет пластическую деформацию, т. е. приведет в движение дислокации. Если препятствий для свободного перемещения дислокаций нет и они не возникают в процессе деформации, то деформация может быть сколь угодно большой. При растяжении образец может удлиниться в десятки и сотни раз, превращаясь в подобие проволок. В некоторых случаях (при определенных температурах и скоростях деформации иек оторых металлов) это наблюдается и носит название сверх-пластичность. Конечно, так удлиниться на многие сотни и даже тысячи нро-цептов образец сможет лишь тогда, когда не возникает местное сужение (Шейка). Если возникает шейка, то деформация локализуется и в таком металле, в конечном итоге, произойдет разделение образца на два куска, но тогда, когда в месте разделения сечение утонилось до нуля. Это не редкий случай (рис. 48).  [c.70]

При скоплении дислокаций может образоваться несплошиость, т. е. трещина. Эта зародышевая трещина уже является препятствием для Движения дислокаций, и дальнейшее накопление дислокаций (т. е. дальнейшая пластическая деформация) приведет к ее росту.  [c.71]

Дисперсноупрочненные материалы — это металлы и сплавы, которые содержат равномерно распределенные частицы окислов или других соединений (нитридов, карбидов, боридов и т. д.), сохраняющих достаточную устойчивость при температурах, близких к температуре плавления матрицы. При нагружении таких материалов матрица несет основную нагрузку, а дисперсные частицы действуют как препятствия, задерживающие движение дислокаций. От обычных стареющих сплавов дисперсноупрочненные материалы отличаются природой упрочнения и методом изготовления.  [c.635]

BOM приближении прочность металлов при высоких температурах увеличивается с повышением их температуры плавления. Это связано с тем, что ползучесть металлов при высоких температурах совершается путем восходящего движения дислокаций, которое может осуществляться при наличии термической активации и диффузии атомов. Энергия активации процесса ползучести при высоких температурах Т по Дорну, равна энергии акти-  [c.117]

На начальной стадии пластическая деформация монокристалла осуществляется движением дислокаций но одной системе плоскостей—стадия легкого скольжения. Дислокации на этой стадии перемещаются сравнительно беспрепятственно на большие расстояния, обеспечивая прогрессивную деформацию без значительного роста действующих напряжений (стадия I деформационного упрочнения). После стадии единичного (легкого) скольжения начинается стадия множественного скольжения — движение дислокации в двух и более системах. На этой стадии после значительной деформации дислокационная структура металла сильно усложняется и плотность дислокаций возрастает по сравпепшо с исходным состоянием на 4—6 порядков, достигая см" .  [c.46]

Термическое и деформационное старение повышают прочность и твердость, но одновременно резко снижают ударную вязкость и повышают порог хладноломкости, Повышение прочности при термическом старении объясняется тем, что выделившиеся из феррита карбиды, нитриды и другие фазы создают препятствия для движения дислокаций. При деформационном старении основное упрочнение, вероятно связано не с выделением избыточных фаз, а с взаимодействием примесей (атомов углерода и азота) со скоплениями дислокаций, что затрудняет их движение. При нагреве деформированной стали возможно образование частиц метастабильной карбонитридной фазы Feie(N, )j или стабильного нитрида Fe4N,  [c.190]

Таким образом, если при низких температурах границы зереи тормозят движение дислокаций и упрочняют сплав, то при высоких температурах, наоборот, они помогают ускоренному разупрочпепню иоликристаллических металлов. Более крупное зерно способствует повьпиепию жаропрочности, хотя пластичность при этом снижается.  [c.287]

Движение дислокаций задерживается у точечных и линейных дефектов атомно-кристаллических решеток, включений примесных атомов, облаков примесей (атмосферы Котрелла), у границ фаз, кристаллических блоков и зерен. Перемещение дислокаций тормозят поперечные дислокации и дислокации одинакового направления, но противоположного знака. Разноименные дислокации, столкнувшись одна с другой, взаимно погашаются.  [c.172]

Деформационное старение развивается после х0Л0Д 10Й деформации при последующей выдержке при нормальной температуре и особенно при нагреве до относительно невысоких температур (например, для технического железа до 470 К). Деформационное старение возможно как в слабо пересыщенных, так и равновесных сплавах типа твердых растворов внедрения, в которых не происходит закалочное старение (например, в железе с содержанием углерода менее 0,006% и азота менее 0,01%). Механизм деформационного старения отличен от закалочного. Деформационное старение связано не с выделением какой-либо фазы, а с сегрегацией растворенного элемента на дислокациях, образовавшихся в процессе деформации. На них образуются облака Коттрелла. При последующей пластической деформации для движения дислокаций необходимо вырывание их из облаков Коттрелла. Последнее требует повышения усилий для деформирования, что и служит причиной упрочнения сплава.  [c.500]


Метод акустической эмиссии (АЭ) относится к диагностике и направлен на выяснение состояния объектов путем определения и анализа шумов, сопровождающих процесс образования и роста трещины в контролируемых объектах. Он базируется на регистрации акустических волн, возникающих в металле и сварных соединениях при нагружении в результате образования пластических деформаций, движения дислокаций, появления микро- и макротрещин. В основу метода положено явление излучения (эмиссии) упругих волн твердым телом при локальных динамических перестройках его структуры при его деформировании и локальном разрушении (пластическая деформация, скачкообразное развитие т )ещин). Метод применяется для выявления состояния предразруше-ния тяжело нагруженных конструкций сосудов высокого  [c.254]

Физическая природа возникновения АЭ в материале при его пластическом деформировании и разрушении, очевидно, связана с микропроцессами необратимого деформирования и разрушения материалов. Приложенная нагрузка приводит к возникновению в материале конструкции полей напряжений и деформаций, за счет энергии которых зарождаются и развиваются дефекты, приводящие в конечном итоге к разупрочнению материала. Зарождение, перемещение, рост дефек1 ов, а также их исчезновение сопровождаются изменением напря-женно-деформированного состояния и перестроением микроструктуры материала. При этом в материале перераспределяется внутренняя энергия, что приводит к возникновению АЭ. В металлах возникновение АЭ связано с образованием и движение дислокаций, зарождением и развитием трещин, с фазе-  [c.255]

Последующее поведение локального объема и процесс образования несплош-ности в этом объеме можно рассматривать как взаимосвязанную цепь элементарных процессов разрыва связей. Так, например, пересечение дислокаций, которое становится возможным при достижении некоторой пороговой плотности дислокаций, приводит к следующим связанным процессам образование порогов на дислокациях —> движение дислокаций с порогами —> порождение точечных дефектов -> объемная самодиффузия диффузия моновакансий и внедренных атомов. Таким образом, процесс необратимого разрыва межатомных связей можно рассматривать как цепную реакцию, состоящую из взаимосвязанных элементарных процессов, а следовательно удовлетворяющую функции самоподобия  [c.196]

Авторы [83] рассматривают явление пластической деформации как волновой процесс. Феноменологически он аналогичен распространению электромагнитных волн, когда электрическая составляющая поля порождает магнитную. Магнитная, в свою очередь, - электрическую и т.д. Так же, как существует две составляющие электромагнитного поля, взаимообусловли-вающие друг друга, существует две взаимообусловливающие составляющие движения дислокаций при пластической деформации. Выше (см. раздел 4.2) мы говорили о двух возможных видах движения дислокационных структур с целью диссипации вносимой в материал энергии - трансляционного и ротационного. Трансляционный сдвиг - это перемещение дислокаций параллельно самим себе в каком-либо направлении. Ротационный поворот - это поворот дислокаций как единого целого вокруг какой-либо точки.  [c.140]

Авторы работы [194] рассматривают явление пластической деформации как волновой процесс. Феноменологически он аналогичен распространению электромагнитных волн, когда электрическая составляющая поля порождает магнитную. Магнитная, в свою очередь, порождает электрическую и т.д. Так же, как существуют две составляющие электромагнитного поля, взаимообусловливаюндае друг друга, существует две взаимообусловливающие составляющие движения дислокаций при пластической деформации. Ранее (см. раздел 6.1) мы говорили о двух возможных вцдвх движения дислокационных  [c.346]

При выводе уравнений движения виртуальные пластическую и упругую деформации надо рассматривать как независимые переменные. Интересуясь уравнением движения дислокации, надо рассматривать только пластическую дефор- лацию.  [c.160]

Если же смещение дислокации происходит не в плоскости скольжения, то б К 0. Это значит, что смещение берегов разреза привело бы к появлению избытка вещества (когда один берег перехлестывает другой) или к его недостаче (образование щели между раздвигающймися берегами). Этого нельзя допустить, если полагать, что в процессе движения дислокации сплошность среды не нарушается и ее плотность остается неизменной (с точностью до упругих деформаций). Устранение избыточного вещества или заполнение его нехватки происходит в реальном кристалле диффузионным способом (ось дислокации становится источником или стоком диффузионных потоков вещества) ). О перемещении  [c.161]


Смотреть страницы где упоминается термин Движение дислокаций : [c.94]    [c.164]    [c.148]    [c.94]    [c.129]    [c.174]    [c.473]    [c.268]    [c.49]    [c.106]    [c.266]    [c.281]   
Смотреть главы в:

Физика твердого тела  -> Движение дислокаций

Ползучесть металлических материалов  -> Движение дислокаций

Металловедение и термическая обработка стали Том 1, 2 Издание 2  -> Движение дислокаций


Повреждение материалов в конструкциях (1984) -- [ c.53 , c.60 ]



ПОИСК



Griffith energy criterion) зарождение и движение дислокаций (generation and propagation of dislocations)

Возможные движения дислокаций

Возникновение и движение дислокаций. Плотность дислокаций

Вязкое движение дислокаций

Вязкое движение дислокаций скорость

Движение дислокаций и пластическая деформация

Движение дислокаций. Динамический возврат

Движение и пересечение дислокаций. Взаимодействие дислокаций с точечными дефектами

Движение и равновесие дислокаций

Движение и размножение дислокаций при развитии пластической деформации

Дислокации в кристаллах движение

Дислокация

Заключительные замечания о ползучести, контролируемой вязким движением дислокаций

Напряжения движения дислокаций

Особенности термоактивизированного движения дислокаций вблизи свободной поверхности

П римеси, влияние движение дислокаций

Ползучесть, контролируемая вязким движением дислокаций

Радиационные дефекты, обусловливающие изменение сопротивления движению дислокаций и механических свойств кристаллов

Разрывы — непрерывности, связанные дислокацией, 234 движение поверхности

Реальное сопротивление движению дислокаций

Сопротивление кристаллической решетки движению дислокаций



© 2025 Mash-xxl.info Реклама на сайте