Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Изгибно-крутильный флаттер крыла

Изгибно-крутильный флаттер крыла. Подстановка в уравнения (12) выражений  [c.477]

В 1937 г. была установлена теоретическая основа моделирования в аэродинамических трубах изгибно-крутильного флаттера крыла в несжимаемом потоке этим давались правила построения динамически подобной в смысле флаттера модели (Л. С. Попов).  [c.306]

I. Изгибно-крутильный флаттер крыла  [c.287]

Как изменится критическая скорость изгибно-крутильного флаттера крыла, если в носок каждой консоли (рис. 9.21) по всей длине уложить снаряды, вес которых вместе с направляющими 20 кг Собственный вес консоли 400 кг. (Ответ скорость увеличится на 9%.)  [c.304]


Уравнения 354, 355 Изгибно-крутильный флаттер тонких крыльев 469, 477, 478  [c.551]

Так как критическая скорость обратно пропорциональна относительной величине расстояния г, то целесообразно уменьшать это расстояние. Перемещение положения центра жесткости по хорде крыла никакого влияния на Уфл не оказывает, так как крутящий момент от аэродинамических и массовых сил при этом практически не меняется. Для увеличения критической скорости изгибно-крутильного флаттера и носок крыла часто закладывают груз (рис.  [c.291]

Автоколебания возникают в системе, находящейся под действием сил, не обладающих колебательными свойствами. Энергия, вызывающая колебания, передается от источника постоянного действия (с постоянным моментом, силой и т. п.), через специальное клапанное устройство, управляющее колебаниями за счет дозирования энергии. В свою очередь в системах с автоколебаниями имеется обратная связь, через которую колебательная система управляет этим устройством. Во многих случаях в механизмах и сооружениях, находящихся в автоколебательном движении, трудно четко выделить источник энергии, клапанное устройство, колебательную систему и обратную связь. В колебательной системе часов они видны четко источник энергии — пружинный или гиревой двигатель, клапанное устройство — якорь (анкер), связанный с маятником, являющимся колебательной системой, посредством которого маятник получает энергию для колебания и одновременно (за счет обратной связи) дозирует величину и время подачи импульсов энергии. В колебательной системе железнодорожного вагона, совершающего интенсивное раскачивание, крыла самолета, находящегося в изгибно-крутильных колебаниях с двумя степенями свободы (флаттер) они четко не видны.  [c.97]

Обнаружено, что конструкция крыла самолета также может потерять устойчивость — при достижении определенной скорости полета возникают прогрессивно возрастающие изгибно-крутильные колебания, приводящие к катастрофе (флаттер крыла) анализу этой опасной возможности посвящен п. 16.  [c.153]

Простейшей моделью флаттера является система с двумя степенями свободы. Физически этой модели соответствует профиль крыла, имеющий поступательную (поперечную относительно потока) степень свободы у и вращательную в. К этой же модели приводятся изгибно-крутильные колебания упругого крыла н колебания управляемого стабилизатора при схематизации его абсолютно жестким телом, имеющим упругое крепление относительно двух осей физической оси вращения и перпендикулярной ей оси, проходящей по борту фюзеляжа (см. п. 9). Математическая модель колебаний в потоке профиля определяется следующими параметрами (рис. 8) массой т моментом инерции относительно центра масс / смещениями центра жесткости н угла поворота относительно вектора скорости набегающего потока у а в.  [c.491]


На рис. 8.17 представлен характер изменения частот колебаний модели крыла II в зависимости от безразмерной скорости набегающего потока Щ. Флаттеру крыла соответствует критическая скорость в окрестности слияния двух ветвей частотной диаграммы, отвечающих чисто изгибным и чисто крутильным формам колебаний [9,92].  [c.197]

Флаттер крыльев тонких изгибно-крутильный 469, 477, 478 —— оболочек — Скорости критические минимальные 498 — Уравнения исходные 489, 490 —- оболочек цилиндрических круговых — Возникновение 497 — Скорости критические 494—497 — Скорости критические минимальные 498— 501 — Указания библиографические 501 — Уравнения и их решение 489—491  [c.567]

Ограничимся рассмотрением принципиальной картины этого явления. При флаттере крыло самолета совершает изгибно-крутильные колебания, поэтому для анализа этого явления необходимо учесть по крайней мере две степени свободы крыла. При практических расчетах достаточно учесть движения крыла по первым формам собственных изгибных и крутильных колебаний. В еще более простом варианте расчета рассмотрим жесткое  [c.177]

Существуют и другие подходы для определения критических параметров (в частности, скорости полета) на границе устойчивости. Для этого в уравнениях свободных колебаний (38) полагают Я, = ш и находят значения скорости, удовлетворяющие этим уравнениям. Критическую скорость флаттера можно также определить экспериментально в аэродинамической трубе на динамически подобной модели и в процессе летных испытаний летательного аппарата. В последнем случае прибегают к экстраполяции, чтобы по тенденции определяющих флаттер параметров с ростом скорости полета найти приближенно величину критической скорости флаттера. Возникновение флаттера связано с определенным тоном свободных упругих колебаний в потоке воздуха. Распределение деформаций по конструкции при потере устойчивости определяет комплексную форму колебаний флаттерного тона. В зависимости от преобладания амплитуд той или иной части ЛА и характера деформированного состояния различают виды флаттера. Например изгибно-крутильный флаттер крыла, изгибно-изгибный флаттер в системе стреловидное крыло — фюзеляж, изгибно-элеронный флаттер, рулевой флаттер и т. д. Для характеристик флаттера несущих поверхностей часто определяющее значение имеют различные грузы, размещенные иа них двигатели, подвесные баки с горючим, шасси. Существенными параметрами являются жесткости крепления этих тел на поверхности крыла. Вообще для флаттера принципиально важны параметры связаииости форм движения. Например, для совместных колебаний изгиба и кручения крыла такими параметрами являются координаты точек (линий) приложения сил аэродинамического давления, инерции и упругости. Смещение центра масс относительно оси жесткости вперед способствует стабилизации системы. Совмещение всех трех точек развязывает виды колебаний, и в этом случае флаттер невозможен. Это свойство обычно имеют в виду при динамической компоновке конструкции. Важными параметрами являются распределенные нли сосредоточенные жесткости. Последние характерны для органов управления  [c.490]

Рис. 8.17, Характер частотной диаграммы при моделираваиии изгибно-крутильного флаттера крыла Рис. 8.17, Характер <a href="/info/5869">частотной диаграммы</a> при моделираваиии <a href="/info/425068">изгибно-крутильного флаттера</a> крыла
В 1938 г. были проведены летные исследования изгибно-крутильного флаттера крыла самолета МБР-2. Самолет был оснащен механическим возбудителем колебаний, и впервые в нашей стране была построена в полете кривая A=f V). Позднее, в 1940 г., тем же методом была предпринята летная проверка элеронного флаттера на самолете СБ (М. Л. Галлай, Л. И. Ройзман).  [c.307]


К. к. возникают в разнообразных упругих системах в нек-рых случаях возможны совместные колебания с разл. видами деформации элементов системы, наир, изгибно-крутильные колебания. Так, при определ. условиях полёта под действием азродинамич. сил иногда возникают самовозбуждающиеся изгибно-крутильные колебания крыла самолёта (т, н, флаттер), к-рые могут вызывать разрушение крыла.  [c.531]

Для анализа подобия и моделирования изгибно-крутильного флаттера прямого консольно-защемленного крыла, колеблющегося в несжимаемом потоке, воспользуем ся расчетной моделью, описывающей возмущенное движение для системы с распределенными параметрами. В этом случае дифференциальные уравнения для определения критической скорости флаттера имеют вид  [c.194]

Динамическая неустойчивость обшивки несущих поверхностей летательных аппаратов в потоке газа, называемая также панельным флаттером, отличается от флаттера крыла двумя существенными признаками. Если классический изгибно-крутильный флаттер может наблюдаться как при дозвуковом, таки при сверхзвуковом обтекании крыла, то панельный флаттер является типичным лишь для сверхзвукового потока. Кроме того, в силу конструктивных особенностей панелей каркаса, амплитуда автоколебаний обшивки в режиме флаттера оказывается ограниченной. Поэтому повреждения конструкции при флаттере панели имеют усталостную природу, в отличие от взрывоподобного, спонтанного разрушения, наблюдаемого при расходящихся автоколебаниях типа флаттера крыла.  [c.198]

Традиционно под термином флаттер понимают аэроупру-гую неустойчивость, возникающую при совместных изгибно-крутильных колебаниях крыла. Применительно к вертолету флаттер относится к совместным маховому движению и крутильным колебаниям лопасти несущего винта. Часто этот термин распространяют на все случаи аэроупрУгой неустойчивости несущего винта, но в данном разделе будут рассмотрены только маховые и крутильные колебания. Классическая постановка задачи включает две степени свободы — взмах и поворот в ОШ жесткой лопасти шарнирного винта. Поскольку в системе управления лопастью наименьшую жесткость при кручении имеет проводка управления, указанная модель лопасти хорошо представляет ее динамику. Будем учитывать только основной тон махового движения с собственной частотой vp. Подробный анализ флаттера бесшарнирного винта обычно требует дополнительного учета движения лопасти в плоскости вращения. Вращение вызывает ряд явлений, которые делают флаттер лопасти сильно отличающимся от флаттера крыла. Центробежные силы связывают движение взмаха и кручение, если центр масс сечения не совпадает с осью ОШ. Повторное влияние вихревой системы винта на аэродинамические силы лопасти и их периодичность при полете вперед также имеет важное значение.  [c.585]

Физика явлений флаттера ИВ аналогична явлениям, наблюдаемым при изгибно-крутильном и изгибно-элеронном флаттере крыла.  [c.53]

Что такое изгибно-крутильный, изгибно-элеронный флаттер крыла и изгибно-рулевой флаттер оперения  [c.304]

В то время как для крыльев самолетов характерен изгибно-крутильный флаттер, у жестких и густых решеток турбомашин такой комбинированный флаттер встречается реже. Флаттер такого типа в турбомашннах описан в работах [8.73, 8.74].  [c.240]

Элеронные формы флаттера являются следствием изгибно-крутильных деформаций крыла и массовой неуравновешенности элерона и развиваются менее интенсивно, чем изгибно-крутильный флаттер. Возникновение флаттера возможно, если центр масс элерона расположен сзади оси вращения. Пусть под действием случайного возмущения крыло с элероном изгибается и переходит нз положения О в положение I (рис. 6.19). Для простоты будем считать, что крутильные деформации крыла отсутствуют, что имеет место при большой жесткости на кручение. Тогда сечение крыла будет стремиться под действием упругих сил Рупр вернуться в положение равновесия О, нри этом возникает инерционная сила Р нер, приложенная в центре масс элерона, которая вследствие упругости проводки управления отклоняет элерон на угол б. В результате возникает возбуждающая сила  [c.191]

Будучи упругим, крыло всегда слегка колеблется, так что шарнир поверхпости управления периодически двигается, даже если это пе видно невооруженным глазом. Это движение не является нежелательным, за исключением случая, когда частота новерхности управления становится равной частоте крыла. В этом случае возникает резонанс и как крыло, так и поверхность управления развивают значительные амплитуды колебаний. Читателю может быть интересно, что является источником относительно большой кинетической энергии этого сильного колебания. Это правда, что относительный воздушный ноток стремится ослабить изгибные колебания крыла, но колебания поверхности управления берут энергию из воздушного потока и возбуждают колебания крыла вместо того, чтобы гасить их. Этот пример отчасти унрош,еп, по он хорошо служит для демонстрации того, как прн определенной скорости или определенном диапазоне скоростей могут сугцествовать самовозбуждающиеся колебания. Реальные явления флаттера намного сложнее папример, резонансы возможны между любыми сочетаниями изгибпых и крутильных колебаний крыла и многими видами колебаний поверхпости управления. Флаттер является важной и трудной проблемой аэроупругости многие авиационные инженеры специализируются по ней. В каждой крупной авиакомпании есть подразделение, специально запимаюгцееся проблемой флаттера.  [c.164]

Для пластинок наибольшее (результирующ,ее, полное) аэродинамическое сопротивление будет при углах атаки а ф 90° (см. рис. 3.19), например, для плоской квадратной пластинки при угле а 38°. Характерно, что при дальнейшем увеличении угла атаки полное сопротивление пластинки резко падает, что приводит к неустойчивости, т. е. к изгибно-крутильным колебаниям. В строительстве такие колебания будут наблюдаться у плоских и криволинейных сплошностенчатых конструкций при косом ветре. Подобные колебания крыльев самолета называют срывным флаттером.  [c.106]


Таким образом возникают самовозбуждающпеся изгибно-крутильные колебания (автоколебания). Энергия для их возбуждения Лв поступает из набегающего потока воздуха. Она пропорциональна квадрату скорости и при некоторой скорости становится равной рассеивающейся энергии демпфирования крыла Лд (рис. 10.12). Эта скорость называется критической скоростью флаттера. Достижение ее приводит к незатухающим колебаниям, а превышение — к быстрому нарастанию амплитуды колебаний и разрушению конструкции крыла или других частей самолета, на которых возник флаттер.  [c.251]


Смотреть страницы где упоминается термин Изгибно-крутильный флаттер крыла : [c.516]    [c.477]    [c.477]    [c.107]   
Смотреть главы в:

Расчет самолета на прочность Издание 6  -> Изгибно-крутильный флаттер крыла



ПОИСК



Изгибно-крутильный флаттер тонких крыльев

Крылов

Флаттер

Флаттер крыла



© 2025 Mash-xxl.info Реклама на сайте