Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Вариационных задач дифференциальные уравнения

Полученное из принципа минимума потенциальной энергии условие Ji = U—2А = т п является очень эффективным для приближенных решений задач статики стержней. Дифференциальные уравнения, получающиеся при исследовании вариационных задач (например, уравнение равновесия стержня), интегрируются в конечном виде лишь в частных случаях. Поэтому возникает необходимость в разработке методов приближенного решения вариационных задач с использованием исходных функционалов [например, (4.217)], не переходя к дифференциальным уравнениям. Такие методы решения вариационных задач принято называть прямыми методами.  [c.180]


Вариационное исчисление позволяет получить для рассматриваемой задачи дифференциальные уравнения вида (2-11) или (2-13). Заметим, что при дискретном времени уравнение Эйлера (2-11) идентично условию равенства нулю частных производных <32Я/Й2в.б1 по уровню водохранилища 2в.бг.  [c.36]

Задача разыскания равновесного состояния линейно-упругого тела сведена к вариационной задаче об определении вектора и, сообщающего минимум функционалу Ф над ним и принимающего заданные значения на 0. Известно, что задаче вариационного исчисления сопоставляется эквивалентная ей краевая задача. Дифференциальные уравнения и краевые условия последней получаются из рассмотрения вариации минимизируемого функционала—это уравнения Эйлера и натуральные краевые условия, соответствующие этому функционалу.  [c.151]

С единой точки зрения анализ различных задач оптимального проектирования конструкций был проведен Прагером и Тэйлором [4]. Используя соответствующие вариационные принципы, они вывели для слоистых конструкций условия оптимальности в виде дифференциальных уравнений для оптимальных полей перемещений, не содержащих параметров конструкций. В дальнейшем Прагером [5] был предложен общий метод установления достаточных условий глобальной оптимальности для более широкого класса задач оптимального проектирования конструкций ).  [c.5]

Исследование областей, в которых реализуются те или иные решения, удобнее всего производить в плоскости а, в. Ta oe исследование связано с трансцендентными системами уравнений, например, с системой (4.23)-(4.25) или (3.57), (3.58), (3.44), (3.45) и с решениями краевых задач для систем нелинейных дифференциальных уравнений, например, (1.20), (2.40)-(2,43). Анализ областей существования различных решений в общем виде здесь не представляется возможным. Некоторые необходимые результаты могут быть получены при помощи вычислений. Ряд заключений может быть получен на основании уже имеющихся сведений о решениях вариационных задач.  [c.124]

Для постановки вариационной задачи об отыскании тела с максимальным сопротивлением необходимо, помимо функционала (7.2) и условия (7.3), привлечь дифференциальные уравнения газовой динамики, соотнощения на допустимых разрывах и граничные условия задачи. Такая полная задача здесь не рассматривается.  [c.169]


В теории упругости большинство задач сводится к решению дифференциальных уравнений с заданными граничными условиями. Их решение часто связано с большими математическими трудностями. Обойти эти трудности позволяют прямые вариационные методы. Вместо того, чтобы решать основные дифференциальные уравнения теории упругости, ставится задача об определении искомых функций Ui, Zij, ац, удовлетворяющих граничным условиям и минимизирующих некоторый функционал Ф(щ, гц. оц). например полную потенциальную энергию П или дополнительную энергию П.  [c.127]

Возникает вопрос о непосредственном применении вариационных принципов механики для определения закона движения системы материальных точек без интегрирования соответствующей системы дифференциальных уравнений движения. Ответ на этот вопрос можно найти в прямых методах вариационного исчисления. Не рассматривая этот вопрос подробно, так как такое рассмотрение выходит за пределы содержания этой книги, остановимся на некоторых частных случаях непосредственного применения принципа Гамильтона — Остроградского к решению задач динамики.  [c.210]

Ко второй группе приближенных методов относятся методы, связанные с вариационными принципами и называемые вариационными методами. Эти методы дают возможность получать систему расчетных уравнений рассматриваемой задачи, а также приближенное решение дифференциальных уравнений, не имеющих точного решения.  [c.8]

Наряду с основными дифференциальными уравнениями механики деформируемого твердого тела в учебнике изложена вариационная формулировка задач, которая имеет особенно важное значение при построении приближенных методов, используемых как в теории упругости и пластичности, так и в строительной механике.  [c.3]

Второй характерный случай применения вариационного подхода — это получение дифференциальных уравнений и граничных условий рассматриваемой задачи как уравнений Эйлера соответствующего функционала. Такой путь оказывается оправданным для тел сложной формы и структуры (например, многослойные оболочки и др.), а также при переходе от одной системы координат к другой (от декартовой системы к полярной, криволинейной и другим системам).  [c.57]

Уравнение (8.26) служит дифференциальным уравнением Эйлера вариационной задачи (8.28).  [c.248]

Уравнениям (8.37) данного метода можно дать вариационную трактовку, если задача, описываемая исходным дифференциальным уравнением (8.33), допускает вариационную формулировку. Пусть это будет задача изгиба пластины. Тогда L (w) в (8.34) можно написать в виде двух слагаемых  [c.250]

Если выбрать аппроксимирующие функции, зависящие от всех трех переменных х, у, г а в температурной задаче зависящие и от температуры), а в качестве неизвестных принять постоянные коэффициенты, то для их нахождения получим систему алгебраических уравнений. Приведение задач теории упругости к системе алгебраических уравнений носит название собственно вариационного метода, приведение к системе дифференциальных уравнений — смешанного вариационного метода [18], [19], [50].  [c.74]

Краткие сведения некоторых основных понятий вариационного исчисления приведены с целью напомнить, что решение вариационной задачи эквивалентно решению граничной задачи д.ля дифференциального уравнения, которое является уравнением Эйлера или уравнением Эйлера—Остроградского для данного функционала.  [c.97]

Обычно дифференциальные уравнения вариационных задач интегрируются в конечном виде лишь р исключительных случаях. Поэтому возникает необходимость решения вариационных задач непосредственными или прямыми методами, т. е. без решения соответствующих дифференциальных уравнений.  [c.97]

И. Г. Бубнов (1872—1919) впервые в 1913 г. изложил новый приближенный метод интегрирования дифференциальных уравнений теории упругости, который широко применялся затем Б. Г. Галеркиным (1871—1945) для решения ряда задач теории упругости. Метод Бубнова—Галеркина, как общий приближенный метод интегрирования дифференциальных уравнений, не связан, вообще говоря, с каким-либо вариационным принципом.  [c.109]


Если метод конечных разностей (см. гл. VII, 15) представляет собой приближенный метод, который аппроксимирует дифференциальные уравнения рассматриваемой задачи разностными уравнениями, то метод конечных элементов связан с приближенной минимизацией функционала той же задачи в вариационной постановке.  [c.328]

В то же время известны общие универсальные математические методы, позволяющие, в частности, находить решения некоторых классов задач теории упругости. Справедливость их применения в процессе получения решения базируется на существовании специальных неравенств. Естественно, что методически более оправданным является обстоятельное построение этих неравенств для упрощенных задач (обыкновенные дифференциальные уравнения, уравнения Лапласа), рассматриваемых (вместе с общей теорией) в математической главе. С учетом этого при изложении задач теории упругости оказалось целесообразным отметить лишь специфику построения соответствующих неравенств, ограничившись при этом простейшими областями (ввиду сложности построения оценок в общем случае). Такой подход реализован, например, при рассмотрении вариационных методов.  [c.7]

Например, при решении задач теории упругости вариационными методами осуществляется переход к задаче об определении в некотором классе функций минимума соответствующего функционала. Доказывается, что решение этой задачи всегда существует и соответствующее ему поле смещений удовлетворяет дифференциальным уравнениям, однако краевые условия выполняются уже в некотором обобщенном смысле. Аналогичная ситуация возникает и при решении задач теории упругости методом потенциалов. При определенных ограничениях на форму поверхности и краевые условия доказывается, что получаемое посредством соответствующих интегральных уравнений решение краевой задачи может и не удовлетворять условиям, требуемым классической постановкой. Лишь при более строгих ограничениях (в чем, по сути дела, нет необходимости) решение оказывается регулярным.  [c.243]

В гл. 5 рассматриваются некоторые общие свойства упругих и пластических стержневых систем. Существенно заметить, что вариационные принципы теории упругости, ассоциированный закон течения, свойство выпуклости поверхности нагружения для пластической системы доказываются здесь совершенно элементарно. Все эти теоремы будут сформулированы и доказаны впоследствии при более общих предположениях. Автору представляется по опыту его педагогической работы, что иллюстрация общих принципов на простейших примерах, где эти общие принципы совершенно очевидны, способствует лучшему их пониманию и усвоению. Гл. 6 посвящена теории колебаний, которая должна занять подобающее место как во втузовских, так и в университетских программах. Кроме собственно задач о колебаниях здесь излагается метод характеристик для решения задач о продольных волнах в стержнях. Этот метод настолько прост И ясен, что им можно пользоваться и его легко понять, не прослушав общего курса дифференциальных уравнений математи-  [c.12]

Элементарная теория, изложенная в гл. 3 и 4, основывалась на гипотезах, введенных ad ho и обоснованных лишь некоторыми соображениями качественного характера. Здесь мы получим те же уравнения, отправляясь от общих законов теории упругости. Наиболее надежный путь построения приближенных теорий, который будет использован в настоящей главе, состоит в том, что за основу принимаются вариационные уравнения теории упругости в одной из форм, приведенных в 8.7. После этого делаются некоторые предположения о характере распределения перемещений или напряжений (или того и другого независимо). Дифференциальные уравнения приближенной теории получаются как уравнения Эйлера вариационной задачи для функций от переменных, число которых меньше трех.  [c.386]

Большинство задач теории упругости сводится к интегрированию дифференциальных уравнений с заданными граничными условиями. Точного решення очень многих важных для практики задач до сих пор не получено, так как интегрирование дифференциальных уравнений, к которым они приводятся, представляет собой большие математические трудности. Поэтому важное значение приобрели вариационные методы, позволяющие эффективно получать приближенные решения дифференциальных уравнений с точностью, достаточной для инженерных расчетов.  [c.153]

Сущность вариационных методов решения задач по теории изгиба пластинок заключается в приведении основного дифференциального уравнения в частных производных к системе линейных алгебраических уравнений или к обыкновенному дифференциальному уравнению.  [c.153]

Решение задач теплопроводности может быть получено еще одним численным методом — метод ом конечных элементов. Математической основой метода конечных элементов является вариационное исчисление. В отличие от метода конечных разностей, в котором исходные дифференциальные уравнения непосредственно используются для построения разностной схемы, в методе конечных элементов дифференциальное уравнение теплопроводности и соответствующие граничные условия используются для постановки вариационной задачи, которая затем решается численно.  [c.246]

Все рассмотренные нами ранее разностные схемы для решения уравнений теплопроводности являются реализациями метода конечных разностей. Системы алгебраических уравнений для определения численного решения мы получали путем замены производных в дифференциальном уравнении и в граничных условиях или в уравнениях теплового баланса для элементарных ячеек конечными разностями. Таки.м образом, в методе конечных разностей отправной точкой для получения приближенного решения является дифференциальная краевая задача. Однако искомое поле можно находить и из решения соответствующей вариационной задачи. На ее численном решении основан получивший широкое распространение метод конечных элементов (МКЭ) [7, 27].  [c.128]


Для установления дифференциальных уравнений равновесия воспользуемся принципом возможных перемещений [207]. Вариационные принципы открывают естественный путь для сведения трехмерных задач механики сплошных сред к двумерным задачам теории пластин и оболочек. Их использование позволяет установить систему обобщенных внутренних усилий, соответствующую независимым обобщенным кинематическим параметрам конечносдвиговой слоистой оболочечной системы и получить корректные уравнения ее равновесия. Вместе с ними устанавливаются кинематические и естественные граничные условия задачи. Дифференциальные уравнения и краевые условия получаются из вариационного принципа путем применения формальной математической процедуры, что важно, поскольку корректное использование формального аналитического метода позволяет избежать ошибочных формулировок, которые могли бы возникнуть при составлении уравнений равновесия и краевых условий методами элементарной статики. Анализ публикаций, посвященных неклассическим моделям деформирования многослойных оболочек, выявляет многочистенные примеры таких формулировок [8, 9, 215, 250, 253 и др.]. Укажем также и на известный [301 ] классический пример такого рода — условие Пуассона на свободном крае.  [c.47]

В [28] при получении в рамках ОММЛ в вариационных задачах неравновесной и равновесной сверхзвуковой газовой динамики впервые были введены разрывы множителей Лагранжа (МЛ), вводящих в задачу уравнения течения. Было показано, что при непрерывных параметрах течения линиями разрыва МЛ могут быть и С -характеристики и линии тока, т.е. характеристики всех трех семейств уравнений течения. Кроме того, были получены конечные и дифференциальные условия для скачков МЛ на линиях их разрыва и выявлена одна из возможных причин их появления - изломы исследуемых на оптимальность контуров. Как и почему так получается, читатель узнает из Главы 4.15. Отметим, что в [28] разрывы МЛ были введены раньше, чем для вариационных задач, описываемых уравнениями гиперболического типа, это сделали математики - специалисты по  [c.365]

Метод конечных элементов для описания сплошных сред впервые был применен в середине 50-х годов XX столетия и с тех пор завоевал известность исключительно полезного инженерного метода. Он широко применяется в гидродинамике, теории поля, при расчете сложных напряженных состояний и в других областях. О распространенности метода конечных элементов можно судить, например, по работе Норри и де Ври [9], в которой приведено более 7 тыс. ссылок, содержащих указания на его применение в различных областях науки и техники. Хотя метод конечных элементов применяется для решения тех же задач, что и метод конечных разностей, основаны они на разных идеях. В методе конечных разностей проводится разностная аппроксимация производных, входящих в дифференциальные уравнения. Математическая основа метода конечных элементов — вариационное исчисление. Дифференциальное уравнение, описывающее задачу, и соответствующие граничные условия используются для постановки вариационной задачи, которая затем решается непосредственно. С этой точки зрения метод конечных элементов представляет собой неявное применение метода Ритца на отдельных отрезках. В методе конечных элементов физическая задача заменяется кусочно-гладкой моделью. В этом смысле метод конечных элементов позволяет инженеру использовать свое интуитивное понимание задачи. Чтобы изложить метод конечных элементов во всех подробностях, пришлось бы написать специальный учебник. Здесь мы ограничимся изложением лишь основ этого метода, практическое значение которого трудно переоценить. Более подробное описание метода конечных элементов можно найти в работах Кука [21 и Зенкевича и Чен-  [c.125]

Законы сохранения (дивергентные формы уравнений) широко применяются в методе интегральных соотношений, при построении консервативных разностных схем и при постановке вариационных задач газовой динамики. Примерами являются публикации [1-4]. Теорема Нетер и ее обобшение [5] позволяют находить законы сохранения для систем дифференциальных уравнений второго порядка. Для применения этих теорем необходимо изучить групповые свойства исходных уравнений [6] и использовать вариационный принцип, из которого эти уравнения следуют. Для вырожденных функционалов, порождающих уравнения первого порядка, теряется взаимно однозначное соответствие между группами, допускаемыми уравнениями, и законами сохранения некоторым группам могут соответствовать дивергентные уравнения, состоящие из нулей [5]. Теорема Нётер использована, например, Ибрагимовым [7] для получения полной системы законов сохранения безвихревых течений газа, описываемых уравнением второго порядка для потенциала скоростей.  [c.17]

Гудерлей и Хантш в работе [3] изучали вариационную задачу об оптимальном сопле Лаваля в плоском и осесимметричном случаях для равновесных изэнтропических течений реального газа. Решение бьшо сведено к краевой задаче для дифференциальных уравнений, аналогичных уравнениям (2.15), (2.28)-(2.30) при С = 0-  [c.74]

Как известно, постановка задачи в перемещениях не является единственно возможной. В ряде случаев более целесообразным является использование постановки задачи в напряжениях. Краевая задача для соответствующей системы дифференциальных уравнений здесь использована не будет, а будет произведен переход сразу к вариационной постановке — минимизации (максимизации) соответствующего функционала с помощью применения преобразования Фридрихса [17] к получепным ранее проблемам минимизации функционалов вида  [c.202]

Вариационная формулировка задачи теории упругости используется главным образом в двух с.пучаях. В первом на основе уравнения бЭ = О строятся численные методы решения этой задачи (метод Ритца, метод конечных элементов и т. п.). Все эти методы относят к классу прямых методов решения задач теории упругости, не требующих в явной форме использования дифференциальных уравнений.  [c.57]

В гл. 3 было показано, что задачи теории упругости допускают как дифференциальную формулировку, так и вариационную об отыскании таких функций, которые сообщают некоторому функционалу Э стационарное значение, когда вариация ЬЭ = 0. В связи с применением ЭВМ в решении сложных задач прикладной теории упругости в последние два-три десятилетия было установлено, что конечно-разностные аппроксимации во многих случаях предпочтительнее сочетать именно с вариационной постановкой задачи. Это позволяет удобно алгоритмизировать все этапы расчета, избежать вывода дифференциальных уравнений в сложных случаях, упрощает формула ровку граничных условий [1,5].  [c.247]

Большую популярность за последнее время приобрел в а р и а ц и о н н ы й мет о д В. 3. Власова. В этом методе искомая функция зависит от двух переменных и удовлетворяет дифференциальному уравнению в частных производных (например, прогиб в задаче об изгибе упругой пластинки). Эта функция выражена в виде произведения двух функций, из которых одна представляет заданную функцию от одного переменного, д другая — искомую функцию от другого. Вместо искомых постоянных коэффициентов, рассматриваемых в методе Бубнова — Галеркина (а также в методе Ритца — Тимошенко) и определяемых линейными алгебраическими уравнениями, в вариационном методе Власова, построенном на прямом применении принципа возможных перемещений, рассматривается система искомых функций.  [c.65]


Решение прямой задачи как в перемещениях, так и в напряжениях требует интегрирования довольно сложной системы дифференциальных уравнений в частных производных и, как правило, сопряжено со значительными математическими трудностями. Поэтому при решении прямой задачи часто используют приближенные методы,например метод сеток, прямые методы вариационных задач (методы Ритца, Бубнова—Галеркина, Канторовича и др.), а также получивший за последнее время широкое применение метод конечных элементов. В некоторых же случаях решение можно эффективно получить с помощью так называемого полуобратного метода Сен-Венана.  [c.81]

Прямой метод решения вариационных задач, предложенный Л. В. Канторовичем (1933) и названный методом приведения к обыкновенным дифференциальным уравнениям, представляет собой развитие метода Ритца, когда функционал зависит от функций нескольких переменных.  [c.111]

Таким образом, метод Ритца—Тимошенко позволяет заменить задачу о нахождении решения дифференциального уравнения (7.17) задачей о нахождении минимума потенциальной энергии. Такая замена возможна в связи с тем, что как дифференциальное уравнение изгиба пластинки (7.17), так и вариационное уравнение (з) являются уравнениями равновесия упругого тела. Покажем, что вариационное уравнение (з) включает в себя дифференциальные уравнения равновесия и условия на поверхности. Рассматривая вариационное уравнение (з) в форме  [c.157]

Вариациопные принципы и основанные на них вариационные методы играют важную роль в механике деформируемого твердого тела как в части получения дифференциальных уравнений задач, так и в части построения приближенных решений. К методам получения прнближеш1ых решений относятся методы Ритца — Тимошенко, Канторовича — Крылова, Бубнова — Галеркина и др. В основе всех этих методов лежат излагаемые ниже вариационные принципы в той или иной их комбинации. Хотя получение приближенных решений на основе этих методов при наличии мощных ЭВМ постепенно отходят на второй план, они все еще находят применение. В процессе применения ЭВМ на подготовительном этапе есть необходимость задачу интегрирования систем дифференциальных уравнений свести к задаче решения систем алгебраических уравнений. В этой части вариационные методы завоевывают все более и  [c.186]

Во многих случаях в книге применяется также энергетический метод решения задач теории упругости. При этом интегрирование дифференциальных уравнений заменяется исследованием условия минимума некоторых интегралов. При помощи метода Ритца эта задача вариационного исчисления сводится к простой задаче отыскания минимума функции. Таким способом удается получить приближенные решения во многих практически важных случаях.  [c.17]

В конце XVIII в. главное внимание и усилия учёных-теоретиков были направлены на псследование и преодоление указанных математических трудностей (задачи небесной механики, развитие общей теории дифференциальных уравнений, вариационные принципы и т. д.). Исходные уравнения движения рассматривались в общем виде в связи с этим была распространена точка зрения о сводимости физических явлений к механическим движениям и о законченности механики как науки. Основная трудность усматривалась в интегрировании дифференциальных уравнений механики. Известное положение Лапласа гласило дайте начальные условия, и этого достаточно, чтобы предсказать всё будущее и восстановить всё прошедшее. Однако нужно заметить, что даже в рамках классической механики теоретическую проблему о составлении дифференциальных уравнений движения нельзя считать простой и уже принципиально разрешённой. Как раз задача о составлении уравнений движения, задача о действующих силах, т. е. о правых частях дифференциальных уравнений движения, является основной задачей физических исследований, причём даже в условиях возможных применений классической механики эта задача не разрешена в очень многих случаях. В тех же случаях, когда для простейших приложений существует необходимое приближённое решение, оно нуждается в постоянных уточнениях.  [c.27]

Существуют два основных численных. метода решения уравнений в частных производных метод конечных разностей и метод конечных элементов. Они отличаются сп н обами получения системы уравнений для значений искомых функций в узловых точках. Метод конечных разностей базируется непосредственно на дифференциальном уравнении и граничных условиях, а метод конечных элементов — на эквивалентной вариационной постановке задачи.  [c.69]


Смотреть страницы где упоминается термин Вариационных задач дифференциальные уравнения : [c.856]    [c.64]    [c.46]    [c.272]    [c.254]    [c.97]    [c.159]    [c.200]   
Аналитическая динамика (1999) -- [ c.350 ]



ПОИСК



Вариационная формулировка краевых задач для линейных дифференциальных уравнений

Вариационное дифференциальное

Вариационное уравнение задачи

Вариационные методы решения задач по теории изгиба пластинок Сущность вариационных методов решения дифференциальных уравнений

Задача вариационная (задача

Ряд вариационный



© 2025 Mash-xxl.info Реклама на сайте