Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Максвелла уравнения вывод

Это уравнение выводится аналогично тому, как получено уравнение (6.3.9). Величины Ji , как обычно, определяю ся из соотношений Стефана—Максвелла, а Jis , ные потоки компонентов конденсированной фазы и выше определяются по формулам  [c.264]

Рассматриваются общие методы преобразования переменных в термодинамических уравнениях. Выводятся соотношения Максвелла и термодинамические уравнения состояния. Рассматривается вопрос  [c.85]


Из уравнений Максвелла следует, что электрические и магнитные поля могут распространяться. Существуют электромагнитные волны. Оказалось, что скорость распространения этих волн совпадает со скоростью света. Именно из этого Максвелл сделал вывод о том, что свет имеет электромагнитную природу.  [c.40]

Вывод выражений (1.29) из уравнений Максвелла проводится в курсах электродинамики. Учитывая большое значение этих выражений для понимания процесса возникновения бегущей электромагнитной волны, приведем их элементарный вывод, основанный на простой модели явления.  [c.56]

Из электромагнитной теории света вытекает непосредственно, что световые волны поперечны. Действительно, вся совокупность законов электромагнетизма и электромагнитной индукции, краткое математическое выражение которой заключено в уравнениях теории Максвелла, приводит к выводу, что изменение во времени электрической напряженности Е сопровождается появлением переменного магнитного поля Н, направленного перпендикулярно к вектору Е, и обратно. Такое переменное электромагнитное поле не остается неподвижным в пространстве, а распространяется со скоростью света вдоль линии, перпендикулярной к векторам и //, образуя электромагнитные, в частности световые, волны. Таким образом, три вектора Е, Н ц скорость распространения волнового фронта о взаимно перпендикулярны и составляют правовинтовую систему т. е. электромагнитная волна поперечна ).  [c.370]

Два параметра их являются константами, характеризующими оптические свойства металла. Выводя волновое уравнение из уравнений Максвелла для металла, мы получим соотношения  [c.491]

Важнейшим выводом теории Максвелла явилось положение, согласно которому скорость распространения электромагнитного поля в вакууме равняется отношению электромагнитных и электростатических единиц силы тока второй, не менее важный вывод гласил, что показатель преломления электромагнитных волн равняется У ер, где е — диэлектрическая, ар — магнитная проницаемости среды. Таким образом, скорость распространения электромагнитной волны, в частности света, оказалась связанной с константами вещества, в котором распространяется свет. Эти константы первоначально вводились в уравнения Максвелла формально и имели чисто феноменологический характер. Напомним, что в механической (упругой) теории никакой связи между оптическими характеристиками среды (скорость света) и ее механическими свойствами (упругость, плотность) установлено не было. Известно, что для целого ряда газообразных и жидких диэлектриков соотношение Максвелла п = Уе х е (ибо р. близко к 1) выполняется достаточно хорошо  [c.539]


Рис. 13.7. Система координат (к выводу уравнений Максвелла) Рис. 13.7. <a href="/info/9040">Система координат</a> (к <a href="/info/519083">выводу уравнений</a> Максвелла)
Точное решение задачи об электромагнитных колебаниях в электрических линиях возможно лишь на основе уравнений Максвелла, из которых можно получить волновое уравнение вида (10.1.1). Однако обычно волновое уравнение для электрических систем типа длинной линии выводится из телеграфных уравнений, связывающих токи и напряжения в линии. Телеграфные уравнения не универсальны, и поэтому необходимо определить те условия, при которых можно ими пользоваться.  [c.320]

Уравнения Максвелла являются обобщением опытных факторов и представляют фундаментальные постулаты электродинамики. Правильность этих постулатов проверена тем, что все выводы, следующие из них, согласуются с известными экспериментальными данными.  [c.391]

Для вывода коэффициентов R и Т однослойных конструкций используют уравнения Максвелла, связывающие составляющие напряженности электрического Е и магнитного Н векторов с параметрами среды.  [c.139]

Таким образом, в действительности для движущейся молекулы принимается модель цилиндров, основания которых перпендикулярны скорости и отстоят от центра тяжести на расстоянии а. Кроме того, в этой модели не учитывается вращение молекул до и после удара, отклонение формы молекул от сферической, влияние соударений со стенками, ограничивающими рассматриваемый объем газа, силы Ван-дер-Ваальса, отклонение распределения скоростей молекул от распределения Максвелла для газа конечного объема, а при выводе уравнения коэффициента теплопроводности (5-7) предполагается, что градиенты температуры в слое газа невелики. На последние три неявных допущения указывают Голубев и Тимирязев [Л, 19, 107].  [c.169]

Довольно неожиданным итогом исследований последних лет оказалось то, что уравнение Ван-дер-Ваальса, которое традиционно считалось результатом предположения о короткодействующем характере межмолекулярных сил, может быть на самом деле выведено из диаметрально противоположного допущения о том, что радиус действия этих сил бесконечно велик. Строго этот результат получил М. Кац [27] на примере одномерного газа, сопроводив его довольно убедительными, хотя и не вполне строгими, аргументами, показывающими, что, по-видимому, этот результат должен иметь место и в трехмерном случае. Сам результат заключается в выводе уравнения Ван-дер-Ваальса с тем немаловажным преимуществом, что область горбов и впадин изотермы Ван-дер-Ваальса автоматически заменяется в теории Каца прямолинейным изобарическим участком, удовлетворяющим правилу Максвелла.  [c.415]

В аннотации к обзору Дуга [1] подчеркивается, что многочисленные модификации уравнения Рэлея — Максвелла и попытки распространить его действие на системы, не соответствующие тем основным положениям, на которые опирается вывод этого уравнения (разбавленные дисперсии, в которых свойства обоих компонентов мало отличаются друг от друга, а дисперсные частицы не взаимодействуют друг с другом), делают получаемые выражения полуэмпирическими корреляционными уравнениями, для которых необходимо экспериментально определять примерные значения функции распределения. При теоретическом анализе явлений проводимости в композиционных твердых средах общим и неизбежным является допущение полного геометрического порядка в распределении фаз. Предполагается, что волокна распределены в матрице равномерно, на одинаковом расстоянии и параллельно друг другу. Одиако реальные композиционные материалы, получаемые в результате выполнения целого комплекса технологических операций, имеют структуру, значительно отличающуюся от наших представлений об идеальной модели. Микроскопические исследования реальных композиционных материалов достаточно убедительно показывают неравномерное распределение волокон, отклонение от взаимной параллельности волокон и наличие пористости. Кроме того, недостаточные знания свойств самих волокнистых наполнителей и матриц в свою очередь накладывают дополнительные ограничения на возможности применения теоретических уравнений для прогнозирования теплофизических свойств композиционных материалов.  [c.294]


М. Муни [25] использует для вывода уравнений, описывающих распределение сдвиговых и нормальных напряжений при конечном простом сдвиге, теорию высокоэластичности, которую распространяет на упруго-вязкие материалы с помощью гипотезы Максвелла о релаксации напряжений. Уравнения М. Муни содержат две материальные константы модуль сдвига G и модуль высоко-  [c.29]

В 1865 г. Максвелл опубликовал свою знаменитую систему уравнений, описывающую распространение электромагнитных волн. Когда излучение рассматривается как электромагнитная волна, его распространение можно описать решением уравнений Максвелла. Вывод этих уравнений приведен в книгах по электромагнитной теории [5, 7] ниже даны уравнения Максвелла в дифференциальной форме для изотропной однородной среды  [c.10]

Уравнение Клаузиуса — Клапейрона представляет собой полезное соотношение между температурой и давлением некоторого вещества, находящегося в состоянии насыщения. Мы приведем его строгий вывод с помощью одного из соотношений Максвелла.  [c.323]

Решения уравнений Максвелла можно получить в областях пространства, в которых е и IX непрерывны. В оптике же нередко приходится решать задачи, когда физические свойства среды (характеризуемые величинами е и fx) резко изменяются при пересечении одной или нескольких гладких поверхностей. Векторы Е, Н, D и В в некоторой точке по одну сторону от гладкой поверхности, разделяющей две среды, связаны с векторами Е, Н, D и В в соседней точке на противоположной стороне от границы раздела граничными условиями, которые выводятся непосредственно из уравнений Максвелла.  [c.11]

Скорость переноса энергии и групповая скорость. При выводе равенства (4.4.14) мы предполагали, что Е и Н являются вещественными. На самом деле уравнения Максвелла  [c.125]

В гл. 2 развит математический аппарат, необходимый для теоретического понимания нелинейных явлений в волоконных световодах. Начинается теоретическое описание уравнениями Максвелла далее при обсуждении мод световода и получении основного уравнения для распространения амплитуды огибающей импульса используется волновое уравнение в нелинейной среде с дисперсией. При выводе уравнения отмечаются производимые приближения. Затем обсуждаются численные методы, используемые при решении основного уравнения распространения особенно выделяется фурье-метод с разделением по физическим факторам.  [c.28]

Этот фокус главным или вторичным. Пределы применимости принципа Гюйгенса и соотношений, получаемых с помощью преобразования Фурье, при рассмотрении образования изображения станут совершенно очевидными, если при выводе этих соотношений исходить из уравнений Максвелла [4, 5].  [c.18]

С помощью уравнений Максвелла выводятся основные свойства электромагнитных волн.  [c.17]

В предыдущих главах мы рассмотрели некоторые свойства отдельных элементов, которые составляют лазер. К ним относятся лазерная среда (взаимодействие которой с электромагнитным излучением мы рассматривали в гл. 2), система накачки (гл. 3) и пассивный оптический резонатор (гл. 4). В данной главе мы воспользуемся результатами, полученными в предыдущих главах, для построения теоретических основ, необходимых для описания как непрерывного, так и нестационарного режимов работы лазера. Развитая здесь теория основывается на так называемом приближении скоростных уравнений. В рамках этого приближения соответствующие уравнения выводятся из условия баланса между скоростями изменения полного числа частиц и полного числа фотонов лазерного излучения. Достоинство данной теории состоит в том, что она дает простое и наглядное описание работы лазера. Кроме того, она позволяет получить достаточно точные результаты для большого числа практических приложений. При более строгом рассмотрении следует применять либо полуклассическое приближение (в этом приближении среда рассматривается квантовомеханически, а электромагнитное поле считается классическим, т. е. описывается уравнениями Максвелла), либо полностью квантовый подход (когда среда и поля являются квантованными). Читатель, желающий познакомиться с этими более точными теоретическими рассмотрениями, может обратиться к работе [1].  [c.237]

Напомним, что основы классической кинетической теории были заложены Максвеллом [123] и Больцманом [60] более 100 лет назад. Нри выводе своего знаменитого кинетического уравнения для разреженного газа Больцман выделил два механизма изменения одночастичной функции распределения со временем динамический процесс инерционного движения молекул и стохастический процесс парных столкновений. Больцман привлек гипотезу молекулярного хаоса (Stofizahlansatz), согласно которой перед каждым столкновением между молекулами, участвующими в столкновении, отсутствуют корреляции. Если плотность газа мала, то это интуитивное допущение Больцмана кажется вполне разумным, но оно явно не выполняется для более плотных систем, когда необходимо учитывать многочастичные столкновения. Более общий метод вывода кинетических уравнений был разработан Боголюбовым в его монографии [7], существенно повлиявшей на все последующее развитие кинетической теории. В методе Боголюбова кинетическое уравнение выводится из уравнения Лиу-вилля с граничным условием ослабления начальных корреляций между частицами. Это условие, налагаемое лишь один раз в отдаленном прошлом, заменяет больцманов-ский Stofizahlansatz. Главным достоинством метода Боголюбова является то, что он указал путь к выводу более общих кинетических уравнений, чем уравнение Больцмана или его простейшие модификации.  [c.163]


ЛОНДОНОВ Ф. и г. УРАВНЕНИЕ — ур-пие для описания поведения сверхпроводников в слабых магнитных полях. Предложено Ф. и Г. Лондонами (F. и Н. London) в 1935 г. Для получения полной системы ур-ний, описывающих магнитные свойства сверхпроводников, необходимо добавить к Максвелла уравнениям ур-ние, связывающее плотность тока в сверхпроводнике i с векторным потенциалом А. Основное предположение при выводе Л. у. состоит в том, что эта связь является локальной, т. е., что ток в пек-рой точке определяется значением вектор-потенциала в той же точке. Поскольку, кроме того, в слабых полях эта связь должна быть линейной, ур-ние должно иметь вид  [c.16]

Предварительные замечания. В 3 рассматривалась только плоская электромагнитная волна. Здесь будет дано описание электромагнитных волн, излучаемых простейшим точечным источником—жсточншаом, размеры которого малы по сравнению с длиной волны. Мы не будем выво дить излагаемую картину из уравнений Максвелла такой вывод потре бовал бы применения математического аппарата, незнакомого еш е тем, для кого предназначена эта книга он дается в курсах электродинамики (теории электромагнитного поля) ). Мы ограничимся тем, что напишем формулы, описывающие волну, и раскроем их физический смысл. Заметим, что мы поступили аналогичным образом при рассмотрении излучения точечного источника акустических волн (гл. VI, 5).  [c.264]

В 3 дано описание ДГС-лазера как диэлектрического волновода, а в 4 рассматривается распространение волны в симметричном трехслойиом плоском диэлектрическом волноводе. Центральный слой — это область в ДГС-лазере, в которой происходит генерация света и которая называется активным слоем. Трехмерное волновое уравнение для электрического поля оптической частоты выводится из уравнений Максвелла. Далее выводится дифференциальное уравнение, описывающее распространение электрического поля, поляризованного перпендикулярно направлению распространения, — поперечного электрического поля (ТЕ). Аналогичные уравнения описывают поперечные магнитные поля (ТМ), в которых магнитное поле поляризовано перпендикулярно направлению распространения. Эти поля зависят от двух пространственных переменных и времени, и решение волнового уравнения для них получается методом разделения переменных. Как следует из решений волновых уравнений, показатель преломления активного слоя должен быть больше показателей преломления прилегающих слоев, чтобы в трехслойной структуре происходило волноводное распространение излучения. Граничные условия для электрического и магнитного полей также выводятся из уравнений Максвелла. Применение этих граничных условий на границах раздела диэлектриков (гетеропереходах) приводит к дисперсионному уравнению, являющемуся уравнением на собственные значения, которое дает набор дискретных значений постоянной распространения. Получающиеся для этих дискретных значений конфигурации электрического и магнитного полей называются модами.  [c.33]

Систему уравнений для вывода критериальных зависимостей исследуемого класса дисперсных теплоносителей получим, используя предложенную выше модель гетерогенной элементарной ячейки. Этот подход, по-види-мому, связан с минимальными физическими погрешностями, что существенно для теории подобия. Возникающая при этом математическая некорректность вывода соответствующих дифференциальных уравнений связана с тем, что к рассматриваемому молю гетерогенной системы в силу конечности его размеров и дискретности его 1компонентов неприменимы точные математические методы. Мож но полагать, что для дисперсных систем в принципе невозможно получить полностью корректную (одновременно с физической и формально-математической точек зрения) систему дифференциальных уравнений пока не будут предложены соответствующие функции распределения, аналогичные функциям Максвелла и Больцмана для газа. Поэтому в дальнейшем воспользуемся приближенным методом конечных разностей, дополнительно учитывая следующее  [c.33]

Уравнения Максвелла имеют громадное значение в связи с тем, что они дают возможность теоретическим путем получать очень важные результаты. Они и по сей день сохранили свое значение как основы для расчета электродинамических явлений. Приведем в качестве иллюстрации один пример, принадлежащий самому автору уравнений. Физически неочевидный коэффициент с сначала был введен Максвеллом чисто формально для сохранения размерностей правой и левой частей уравнений. Применяя свои уравнения к ре1пению конкретных задач, Максвелл теоретически вычислил значение с с = 310 м/с, т. е. оно совпало со значением скорости света. Ученый сделал из этого принципиальный физический вывод свет является электромагнитной волной. Время показало правоту этого блестящего теоретического предвидения великого физика.  [c.97]

В 4 говорилось о создании Дж. Максвеллом теории электромагнитных явлений. Впервые работа, в которой она была изложена достаточно полпо, появилась в 1864 г. Одна из частей ее называлась кратко и емко Электромагнитная теория света . Этот вывод был сделан им на основании результатов совпадения числсзвого значения входящего в уравнения (б9) — (70) коэффициента с со значением скорости света. Максвелл уверенно пшиет о том, что свет и магнетизм являются проявлениями одной и той же субстанции и что свет является электромагнитны [ возмущением, распространяющимся через поле в соответствии с законами электромагнетизма [18].  [c.116]

Неприменимость принципа относительности Галилея к электромагнитным явлениям Д0Л1 ое время являлась загадкой физики. Для ее решения предлагались различные, но недолговечные теории. Можно было попытаться ограничить применение принципа — он пригоден для механики и непригоден для электродинамики. Физика разделялась как бы на две области, в каждой из которых действуют свои законы. Это означало бы, что мь смирились с существованием внутренних противоречий в науке о явлениях природы, что не согласовывалось с представлениями о ее единстве. Была и другая точка зрения на разрешеше возникших противоречий. Поскольку уравнения Максвелла (б9)—(72) не инвариантны по отношению к преобразованиям Г алилея, естественным казался вывод о том, что в найденной Максвеллом форме они не являются окончательными, что следует искать такую их запись, которая будет инвариантна по отношению к преобразованиям (82). Но эти попытки были безуспешны. Г. Лоренц показал, что уравнения Максвелла (69)—(72) инвариа-  [c.133]

Уравнение Эйлера (26а) определяет движение идеальной жидкости. Для получения уравнений гидродинамики реальной (вязкой) жидкости или газа надо искать решение уравнения Больцмана, отличное от локального распределения Максвелла. Мы получим тогда уравнения Навье—Стокса, Барнетта и т. д., в которых коэффициенты вязкости, теплопроводности и диффузии выражаются через молекулярные характеристики. Эти уравнения представляют собой замкнутую систему уравнений термодинамики необратимых процессов. Такой вывод этих уравнений в общем случае выходит за рамки нашего курса. Мы ограничимся здесь только характеристикой методов решения кинетического уравнения Больцмана и рассмотрим ряд частных задач статистической теории неравновесных систем.  [c.142]


Продолжая классическую традицию английской физики У. Томсона, Фарадея Мак-Куллоха, Максвелла, которые шли по пути построения физических (механических) моделей на основе аналогии, Лармор ) в конце XIX в. также ставит перед собой задачу сведения всего многообразия явлений к динамическим принципам. Он считает центральной задачей разработку идеи о каком-либо определенном характере связи между эфиром и веществом. Для этой цели он воспользовался принципом наименьшего действия, который, по его мнению, позволяет свести к динамике такие физические теории, внутренний динамический механизм которых скрыт от непосредственного наблюдения. Аналогичную точку зрения на проблемы электродинамики развивал ранее Гельмгольц. Лармор находит классический вид лагранжиана и, воспользовавшись определением величин Е и Н и тем, что полная энергия системы связана с L, выводит уравнения Максвелла. Легко доказать, идя несколько иным путем, что уравнения  [c.856]

Равенство единице коэффициента ЛГ1 определяет электростатическую единицу количества электричества и, следовательно, электростатическую единицу силы тока. Таким образом, в уравнении (7.14) имеются единицы для всех входяищх в него величин. Поэтому значение коэффициента до должно быть определено либо экспериментально, либо теоретически. Развитая Максвеллом электромагнитная теория света показала, что коэффициент До должен равняться 1/с , где с - скорость света в вакууме. Эксперимент блестяще подтвердил этот вывод.  [c.233]

Оценивая теорию Максвелла-= йкена—Бургера и сопоставляя расчетные данные, полученные на основании этой теории, с результатами многочисленных экспериментов, де Вриз [Л, 5-46] пришел к выводу, что эта теория дает хорошие результаты, если проводимость частиц меньше проводимости среды. Если же имеет место обратное явление, то чем больше отношение этих проводимостей, тем больше экспериментальные данные совпадают с теорией Бруггмдна, Уравнения типа уравнений Максвелла дают результаты, которые обычно хорошо согласуются с экспериментальными данными для ячеистых материалов и эмульсий.  [c.350]

Пусть имеется двумерное плоское движение жидкостей Максвелла (У2 = 0) и Олдройда (7,)<2 0) с реологическим уравнением состояния (1.6), в котором применяется оператор субстанциональной производной по времени (1.7), /и = О, / = О. Несовершенство этой модели в том, что для нее не выпо н1яется принцип материальной объективности (подробное обсуждение этого вопроса имеется в обзоре [88]). Вместе с тем вариант т О является предельным для моделей Максвелла и Олдройда и содержит все основные гиперболические черты общей модели, когда т О. Подробный сравнительный анализ этих операторов дифференцирования показал [89]. что существует диапазон гидродинамических параметров, где простая конвективная производная дает результаты, которые качественно и количественно близки к производной Олдройда. Этот вывод подтверждается и нашими расчетами, см. п. 1.5.2, рис. 1.21. Отметим также, что оператор конвективной производной успешно применяется при описании релаксационных свойств ту рбулентных сдвиговых течений в пограничном слое [15],  [c.40]

Вариационный способ вывода плотностей вероятности для стационарных случайных процессов в нелинейных колебательных системах может быть распространен на уравнения более высокого порядка. Для рдномассовой системы таким образом получается распределение Максвелла—Больцмана  [c.46]

Саусвелл первоначально дал вывод уравнений неразрывности, основанный на применении общих решений Максвелла и Морера, т. е. фактически использовал тензор функций напряжений ф. По-видимому, появление нового длинного и запутанного доказательства объясняется тем, что этот вывод его не удовлетворил по следующей причине.  [c.61]

Рэлей получил простое решение для рассеямя излучения сферическими частицами, размеры которых малы по сравнению с длиной волны излучения. За этой работой последовала сформулированная Ми [26 более общая теория поглощения и рассеяния излучения малыми однородными частицами, имеющими простую геометрическую форму, такую, как сфера или круговой цилиндр. В теории Ми, основанной на решении уравнений Максвелла, рассматривается идеализированная ситуация, а именно простая сферическая частица из однородного, изотропного материала, помещенная в однородную, изотропную, диэлектрическую, безграничную среду и облучаемая плоскими волнами, распространяющимися в определенном направлении. Диэлектрическая сферическая частица не поглощает излучение, электропроводная сферическая частица частично поглощает, частично рассеивает и частично пропускает падающее излучение. Вывод решения Ми, а также математические и физические аспекты его теории, кроме оригинальной работы, содержатся в книгах [27—  [c.89]

В этой вводной главе дается обзор и вывод некоторых основных соотношений для классических электромагнитных полей. Исходя из у ивнений Максвелла и материальных уравнений, мы получим выражения для плотности и потока энергии электромагнитного поля. Будет доказана теорема Пойнтинга, а также выведены законы сохранения и волновые уравнения. Мы подробно рассмотрим распространение монохроматических плоских волн и некоторые их важные свойства, а также обсудим понятия фазовой скорости и групповой скорости волнового пакета, распространяющегося в среде с дисперсией.  [c.9]

Телеграфные уравнения обобщенной регулярной МСПЛ могут быть получены разными путями (краткая историческая справка по данному вопросу приведена в работе М. X. Захар-Иткина [27]). Они выводятся из уравнений Максвелла [28— 30, 107], записываются как следствие теоремы взаимности электротехнических цепей [27] или получаются из законов Кирхгофа предельным переходом от уравнений цепи с сосредоточенными параметрами к уравнениям для структуры с распределенными параметрами. Подробный вывод телеграфных уравнений для двухпроводных СПЛ без учета потерь дан в работах [2, 75].  [c.14]

Используя некоторые существенные приближения, можно, как правило, показать, что гюйгенсовское решение в оптике (как, например, ее строгая векторная форма в формулировке преобразования Фурье) выводится из уравнений Максвелла. Одно из главных приближений состоит в том, что принцип Гюйгенса применим только вблизи центра квазисферического волнового фронта, образующего изображение. При рассмотрении проблем дифракции и образования изображений необходимо отдавать себе отчет в приближенном характере принципа Гюйгенса. И во всяком случае кажущаяся простота принципа Гюйгенса даже в той его приемлемой форме, которая получена эвристически на базе принципа суперпозиции и спектрального разложения по плоским волнам, не должна слул<ить оправданием для его использования в качестве основы строгого решения, получаемого путем добавления к первоначальному приближению членов более высоких порядков. Однако, если правильно использовать принцип Гюйгенса, выраженный с помощью преобразования Фурье, то он становится достаточно универсальным средством для рассмотрения проблем образования изображений. В частности, его применяют для отыскания распределения интенсивности в пределах дифракционной картины, образуемой волновым фронтом конечного размера при отражении, преломлении и дифракции света в оптических элементах (зеркалах, линзах, призмах, решетках).  [c.38]

В 1850 г. в Эдинбургском королевском обществе Максвеллом был прочитан доклад О равновесии упругих тел ( Оп the equilibrium of elasti solids ). Автор начинает в нем с критики теории малого числа упругих постоянных, ссылаясь при этом на работу Стокса ), и выводит уравнения равновесия изотропных тел, применяя две упругие постоянные. Он использует затем уравнения для рассмотрения некоторых частных задач. Большая часть их была уже решена раньше другими авторами, но никто из них до сих пор еще не уделял такого внимания опытной проверке теоретических результатов. Он останавливается на случае полого цилиндра, наружная поверхность которого неподвижна, внутренняя же поверхность приводится во вращательное движение на малый угол ой парой, момент которой равен р. . Используя уравнения равновесия в полярных координатах, он без труда показывает, что в этих условиях возникают касательные напряжения и что их величина обратно пропорциональна квадрату расстояния рассматриваемой точки от оси цилиндра.  [c.323]

К. Формула (4.7.20) впервые была получена в 1864 г. Д. Максвеллом, который широко известен как создатель уравнений электромагнитного поля. Она была получена из геометрических соображений. Работа Д. Максвелла, в которой был сформулирован метод расчета ферм, была написана в абстрактной форме без чертежей и примеров и, видимо, по этой причине, осталась незамеченной инженерами. Десять лет спустя эту формулу заново открыл О. Мор. В основу своих рассуждений О. Мор положил принцип возможных перемещении и на его основе пришел к равенству (4.7.24). Приведенный нами вывод формулы (4.7.20) близок к данному О. Мором. В нем также использовано понятие потенциальной энергии деформации фермы, которое стало широко применяться после работ Л. Менабреа и А. Касти-лиано. Последний в 1879 г. получил формулу (4.7.20) из условия минимума потенциальной энергии деформаций. Подробнее этот подход будет рассмотрен в гл. 9.  [c.106]


Важным выводом из этой концепции явилось обоснование возникновения в деформируемом твердом теле вихревого механического поля. Компонентами тензора напряженности поля являются изменения во времени плотности дислокаций (трансляционная мода) и плотности дисклинаций (ротационная мода). Эти две моды связаны между собой системой уравнений механического поля, подобных уравнениям Максвелла для электромагнитного поля. Микровихре-вой характер пластической деформации связывают с ротационной составляющей механического поля. Кооперативное взаимодействие ротационных и трансляционных мод пластической деформации обеспечивает при подводе к металлу энергии ее диссипацию с реализацией различных структур-  [c.383]


Смотреть страницы где упоминается термин Максвелла уравнения вывод : [c.92]    [c.15]    [c.24]    [c.166]    [c.251]    [c.103]   
Механика электромагнитных сплошных сред (1991) -- [ c.165 ]



ПОИСК



Вывод

Вывод уравнений

Вывод уравнений Максвелла из микроскопических уравнений

Вывод-вывод

Максвелл

Математическое приложение. Вывод уравнения 4-эйконала из уравнений Максвелла

Уравнение Максвелла



© 2025 Mash-xxl.info Реклама на сайте