Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

силы рабочие - Работа подшипников

Наиболее ответственным узлом центробежного возбудителя является подшипник (или подшипники) вала значительная центробежная сила, высокие частота враш,е-ния и вибрации самого подшипникового узла. В таких случаях обычно применяют подшипники качения с большими коэффициентами работоспособности двухрядные роликовые сферические или однорядные роликовые с короткими цилиндрическими роликами. Учитывая условия работы подшипников, их выбирают прежде всего по допустимой частоте враш,ения, которая должна превышать частоту вынужденных колебаний (рабочую частоту), и затем производят проверку долговечности. Если срок службы подшипников оказывается неприемлемо малым (например, менее шести — восьми месяцев), следует увеличить число подшипников, но при этом обеспечить одинаковую нагрузку на каждый из них.  [c.144]


Исходные данные г2 - радиальная нагрузка (радиальная реакция) каждой опоры двухопорного вала, Н Fa - внешняя осевая сила, действующая на вал, Н - частота вращения кольца (как правило частота вращения вала), мин" d - диаметр посадочной поверхности вала, который берут из компоновочной схемы, мм i. , L sah - требуемый ресурс при необходимой вероятности безотказной работы подшипника соответственно в млн об. или в ч режим нагружения условия эксплуатации подшипникового узла (возможная перегрузка, рабочая температура и др.).  [c.228]

Величина удельного давления на рабочую поверхность шейки определяет условия работы подшипника и срок его службы. При работе подшипников стремятся не допускать выдавливания масляного слоя, разрушения антифрикционного материала и ускоренного износа шеек вала. Расчет шеек ведется от действия средних и максимальных результирующих всех сил, нагружающих шейки.  [c.248]

Причинами выхода из строя подшипников качения в большинстве случаев являются усталостное выкрашивание рабочих поверхностей контактирующих деталей, вызываемое возникновением в них переменных напряжений образование вмятин на беговых дорожках колец, возникающих под действием динамических нагрузок, а также больших статических нагрузок в тихоходных подшипниках износ колец и тел качения при работе подшипников в абразивной среде и недостаточности защиты их от абразивных частиц (транспортные, сельскохозяйственные, строительные, горные и т. п. машины) раскалывание колец и тел качения из-за ударных и вибрационных перегрузок подшипников, а также неправильного монтажа, вызывающего перекосы колец, заклинивание тел качения и т. п. разрушение сепараторов, вызываемое центробежными силами и силами, действующими на сепараторы со стороны тел качения.  [c.415]

Исключение осевой силы в насосе вследствие перехода на насос с двухсторонним входом основано на том, что в силу симметрии рабочего колеса насоса с двухсторонним входом относительно срединной плоскости его основного диска осевая сила теоретически равна нулю. Однако когда по условиям работы подшипников требуется иметь на насосе с двухсторонним входом определенное значение осевой силы, изменяют диаметр одного из внутренних уплотнений насоса. В зтом случае осевая сила на насосе  [c.274]

При работе подшипника с двумя рядами рабочих сегментов (рис. 11.36, в) масляные клинья возникают на сегментах обоих рядов. При этом осевые (рабочие) сегменты оказываются нагруженными не только осевым усилием К, приложенным к валопроводу, но и дополнительными силами, приложенными к гребню со стороны дополнительных (установочных) сегментов.  [c.304]


В 1906 г. Н. Е. Жуковский совместно с С. А. Чаплыгиным опубликовал работу О трении смазочного слоя между шипом и подшипником . В ней было дано точное математическое решение задачи Петрова. В этом же году Н. Е. Жуковский разработал теорию подъемной силы крыла. На основании этой теории стало возможно производить расчеты крыльев самолетов, а также лопастей рабочих колес гидравлических турбин, центробежных и пропеллерных насосов. Таким образом была решена важнейшая проблема аэродинамики и гидродинамики.  [c.8]

Идеи, -заложенные в указанном выше классическом сочинении профессора Н. П. Петрова, нашли свое дальнейшее отражение и в трудах Н. Е. Жуковского. В 1906 г. Н. Е. Жуковский совместно с С. А. Чаплыгиным опубликовал работу СЗ трении смазочного слоя между шипом и подшипником . В ней было дано точное математическое решение задачи Петрова. В том же году Н. Е. Жуковский разработал теорию подъемной силы крыла. На основании этой теории стало возможным производить расчеты крыльев самолетов, а также лопастей рабочих колес гидравлических турбин, центробежных и пропеллерных насосов. Таким образом, была решена важнейшая проблема аэродинамики и гидродинамики.  [c.9]

Для уменьшения потерь на преодоление сил трения, а также для уменьшения износа и нагревания все трущиеся поверхности деталей двигателя во время его работы непрерывно смазываются маслом. Для нормальной работы двигателя смазочное масло должно отвечать следующим требованиям сохранять смазочные свойства при высоких температурах, свойственных рабочему процессу двигателя, образовывать тонкую пленку между подшипником и шейкой вала, не иметь абразивных и других вредных примесей, не вызывать коррозии деталей.  [c.189]

Рабочие поверхности подшипников при затяжке болтов и при работе деформируются. Еще давно была рассмотрена контактная задача для модели в виде упруго деформируемых вала и подшипника, как проушины при предположении, что действие смазки сводится к снятию сил трения. Эта задача рассматривалась также как задача о внутреннем контакте цилиндров с близкими радиусами кривизны.  [c.70]

Когда рабочие скорости в шариковых подшипниках невелики, — сила трения мала, потери энергии на трение незначительны и при работе выделяется небольшое количество тепла. Поэтому такие подшипники не нуждаются в искусственном охлаждении (рис. 57). Масло в них закладывается на довольно длительное время. Например, при непрерывной работе в нормальных условиях подшипники металлорежущих станков набивают смазкой лишь через 360 смен работы.  [c.129]

Гидростатические осевые подшипники имеют меньшее распространение, чем гидродинамические. Принцип работы этих подшипников поясняет рис. 3.24. При сближении поверхностей пяты 4 и подпятника 1 изменяется гидравлическое сопротивление на входе и выходе рабочих камер. В результате давление в нижних камерах растет, а в верхних — падает. Появляется сила, стремящаяся удержать вал в исходном состоянии. Аналогичным образом работает гидростатическая пята и при перекосах вала. Например, при уменьшении зазора в зоне камеры 7 и соответствующем увеличении зазора в зоне камеры 5 из-за перераспределения давлений между ними возникает момент сил, стремящийся вернуть упорный диск в исходное положение.  [c.66]

Интересное решение представляет собой конструкция гидростатической пяты, примененная в английских натриевых насосах ЯЭУ PFR, выполненная в одном блоке с верхним радиальным подшипником и уплотнением вала по газу. Пята для насоса первого контура выполнена односторонней, так как действующие на рабочее колесо осевые гидравлические силы уравновешены. У насоса второго контура (рис. 3.25) пята двухсторонняя. Верхний подпятник является рабочим, нижний — пусковым. Подпятники имеют сферические поверхности 2 н 8 для обеспечения дополнительной самоустановки вала при работе.  [c.66]

При снятии кавитационных характеристик на натурном ГЦН необходимо, учитывая его конструкционные особенности, обеспечивать такие условия проведения испытаний, чтобы при достижении кавитационных режимов, приводящих к снижению напора, не допустить аварии испытываемого ГЦН. Например, если испытываемый насос имеет гидростатические подшипники, питаемые водой с нагнетания его рабочего колеса, следует учитывать тот факт, что при достижении развитой кавитации напор может снизиться настолько, что ГСП при этом окажется уже неработоспособным. Это усугубляется тем, что в режиме кавитации могут увеличиться радиальные гидродинамические силы, что также создает еще более неблагоприятный режим работы ГСП, который в ряде случаев можно исключить, если при кавитационных испытаниях организовать питание ГСП от постороннего источника.  [c.218]


Получив для испытываемого ГСП данные по распределению давления в рабочих камерах в зависимости от действующей нагрузки, можно впоследствии (при испытаниях насоса) путем измерения давлений в камерах ГСП экспериментально определить фактические усилия на опорах. Это позволит выявить возможное несоответствие фактических и расчетных усилий и, при необходимости, внести изменения в конструкцию ГЦН. Особенно важно проверить работоспособность ГСП в режимах пуска и на выбеге (при остановке ГЦН). Как правило, необходимый для работы ГСП перепад давления создается основным рабочим колесом ГЦН. Поэтому в период пуска и остановки насоса ГСП имеет переменную грузоподъемность (от нуля при стоящем ГЦН до максимума при достижении номинальной частоты вращения). В то же] время величина реакций на опорах определяется как силами, не зависящими от частоты вращения ГЦН (например, составляющие массы ротора), так и силами, зависящими от нее (например, гидродинамические силы, силы от дисбаланса ротора и др.). Вследствие этого в период пуска или остановки имеют место моменты, когда ГСП работают не во взвещенном состоянии, а как обычные подшипники скольжения. На продолжительность этих периодов влияют характеристики разгона и выбега (зависимость частоты вращения ротора от времени), с одной стороны, и характер изменения реакций на опорах в период разгона и выбега, с другой. Эти обстоятельства приводят к необходимости проверки работоспособности ГСП в режимах пуска и остановки только в составе натурного образца ГЦН путем проведения определенного числа пусков и остановок с последующей разборкой ГЦН и проверкой износа ГСП.  [c.233]

Однако удвоение рабочего дисбаланса вовсе не означает, что виброперегрузки увеличатся тоже в 2 раза. Они могут возрасти и значительно больше, если центробежная сила, вызванная рабочим дисбалансом, будет больше веса ротора. В этом случае возникает третий режим работы цапфы в подшипнике (3).  [c.242]

Все время дежурства, не отрываясь, машинист обязан слушать и слышать звук работы турбины. Умение слушать турбину в любой обстановке должен развивать в себе каждый машинист. Следует обратить внимание на то, что сила звука зависит не только от удаления от турбины, но и от того, как слушающий повернут к ней. Поэтому слушать турбину нужно с определенных мест, в определенном положении с рабочего места машиниста, за столом, лицом к турбине, при осмотре подшипников, стоя боком к фронту и т. "п.  [c.160]

Сущность предварительного натяга заключается в хом, что пару подшипников предварительно нагружают осевой силой, которая устраняет осевой зазор в комплекте, создавая начальную упругую деформацию в местах контакта рабочих поверхностей колец с телами качения. Если затем к подшипнику приложить рабочую осевую нагрузку, то относительное перемещение его колец вследствие дополнительной деформации рабочих поверхностей будет значительно меньше, чем до создания предварительного натяга. Предварительный натяг вызывает одинаковую деформацию в обоих подшипниках. Такие подшипники работают в более тяжелых условиях, так как повышаются нагрузки на тела качения, момент сопротивления вращению и износ, а также снижается ресурс подшипника.  [c.105]

Пример 2.6. Подобрать подшипники качения для опор выходного вала цилиндрического зубчатого редуктора (рис. 2.33, 2.34). Частота вращения вала и = 120 мин . Требуемый ресурс при вероятности безотказной работы 90% L oah= 25000 ч. Диаметр посадочных поверхностей вала й = 60 мм. Силы в зацеплении при передаче максимального из длительно действующих момента окружная F, = 9600 Н радиальная Fr = = 3680 Н осевая Fa = 2400 Н. Режим нагружения - II (средний равновероятный). Возможны кратковременные перегрузки до 150% номинальной нагрузки. Условия эксплуатации подшипников -обычные. Ожидаемая рабочая температура Граб = 50 °С, На выходном валу редуктора предполагается установка упругой муфты со стальными стержнями, номинальный вращающий момент по каталогу Г == 1720 Н м. Допустимое радиальное смещение соединяемых муфтой валов при монтаже А = 0,25 мм. Линейные размеры / = 120 мм / = 60 мм h = 48 мм d2 = 288 мм.  [c.236]

Для разгрузки осевых сил. действующих на упорные подшипники 6, под их упорные поверхности по осевым отверстиям (пунктирные линии) подводится жидкость под давлением нагнетания. При подаче рабочей жидкости под давленийм в камеру всасывания винтовая гидромашина работает как винтовой гидродвигатель.  [c.352]

Очень важно правильно назначить марку смазочного материала, так как от этого в значительной мере зависит величина сил трения и долговечность работы подшипника. Если использовать масло, обладающее малой вязкостью, то оно будет легко растекаться и не создаст пленку достаточной подъемной силы. Нужно также учитывать, что рабочая температура в подшипниках двигателя обычно велика и может понизить вязкость смажи. В таких случаях в подшипник подается под давлением в 3—4 атмосферы охлажденное масло. Омывая рабочую поверхность подшипника, циркулирующее масло не только создает условия для жидкостного трения, но и будет охлаждать вкладыш, уносить частички металла с трущихся поверхностей в фильтры и отстойники.  [c.126]

Основная часть информации по уплотнению свободнопоршневых двигателей является собственностью организаций, занимающихся их изготовлением и испытаниями, однако в работе [33] имеется несколько глав, посвященных конструкции свободнопоршневых двигателей, написанных разработчиками и изготовителями таких двигателей, что помогает составить более полную картину методов уплотнения, применяющихся в этих двигателях. В свободнопоршневых двигателях нет многих трудностей, связанных с уплотнениями, которые встречаются в двигателях с кривошипно-шатунным приводом. Так, например, нет проблемы уплотнения штоков, поскольку весь агрегат можно заключить в герметичный корпус, как это делается в линейных генераторах переменного тока и инерционных компрессорах. Однако остается проблема уплотнения поршня, хотя она и упрощается благодаря отсутствию значительных боковых сил и нагрузок на подшипники, поскольку нет механического привода, что позволяет применять в таких двигателях газовые подшипники. Применение газовых подшипников делает невозможным установку обычных эластичных колец, даже изготовленных из тефлона, поскольку микрочастицы, отделяющиеся при работе таких колец, выводят из строя эти подшипники. Поэтому в свободнопоршиевых двигателях для уплотнения в цилиндре рабочего поршня и вытеснителя, а также уплотнения штока вытеснителя в рабочем поршне используют уплотнения за счет жестких допусков. Это требует полировки всех скользящих поверхностей, и эти поверхности часто покрывают анодированным алюминием или окисью хрома [85]. Без сомнения, секрет успешной работы свободнопоршневых двигателей Стирлинга заключен в высоком качестве механической обработки.  [c.169]


Прп высоких скоростях внутренние инерционные силы, возникающие в тяжелом подшипнике, нередко создают в рабочих деталях (телах качения п наружных кольцах) напряжения, превосходящие те, которые вызываются на внутренн1гх кольцах приложенной внешней нагрузкой. Не только в узлах высокоскоростных шпинделей, газотурбинных двигателей и авиаагрегатов, но даже в буксах железнодорожного транспорта более легкие подшипники работоспособнее и надежнее, чем тяжелые. Однако нельзя исходить только из опытных данных, которые отражают специфику работы конкретных узлов, но необходим прежде всего расчетный анализ, сводящийся к  [c.252]

С увеличением скорости скольжения коэффициент трения быстро уменьшается (участок 1—2), при этом трение переходит в полужид-костное, характеризующееся тем, что поверхности скольжения еще не полностью разде /ены слоем смазки, так что выступы неровностей соприкасаются. В точке 2 начинается участок 2—3 жидкостного трения толщина смазочного слоя возрастает от минимальной, достаточной лишь для покрытия всех выступов, до избыточной, перекрывающей все неровности с запасом. При жидкостном трении рабочие поверхности полностью отделены друг от друга, и сопротивление относительному движению их обусловлено не внешним трением контактирующих элементов, а внутренними силами вязкой жидкости. Теоретически наилучшие условия работы подшипника обеспечиваются в точке 2 — здесь сопротивление движению и соответствующее тепловьще-ление наименьшие, но нет запаса толщины слоя поэтому практически оптимальные условия будут в зоне справа от точки 2. Расчет подшипника, работающего в режиме жидкостного трения, выполняется на основе гидродинамической теории смазки. Однако такой режим может быть осуществлен лишь при достаточно большом значении характеристики режима к > Якр, где — значение характеристики режима в точке 2. Для опор тихоходных валов это условие в большинстве случаев не выполняется, а для быстроходных оно нарушается в периоды пуска и останова, когда частота вращения вала мала.  [c.244]

Цилиндрические опоры — подшипники — имеют цилиндрическую рабочую поверхность большой площади, значительный лго-мент трения, надежно работают при больших нагрузках. Однако эти опоры из-за невозможности регулировать зазор между цапфой и подшипником не обеспечивают высокой точности центрирования вала. Конструкции цилиндрических опор скольжения показаны на рис. 27.17. В малонагружеииых конструкциях применяют неразъемные подшипники в виде втулок, запрессованных в корпусе (а, б), или фланцев, прикрепленных к корпусу винтами (а). При действии радиальных сил и небольших осевых сил Q используют шипы со сферической поверхностью, упирающейся в шарик или в стальную пластину (г). При действии зна-  [c.327]

Необходимо, например, рассчитать на прочность коленчатый вал двигателя внутреннего сгорания. Не надо быть специалистом, чтобы представить себе объем необходимой работы. Вал установлен на нескольких подшипниках. В определенном порядке, известно каком, в цилиндрах двигателя происходит воспламенение рабочей смеси и через шатун на вал передается усилие. По индикаторной диаграмме может быть вычислен закон изменения усилия в зависимости от угла поворота вала. Несмотря,на то, что длины участков вала всего в два три раза больше характерных размеров поперечных сечений, можно с определенной натяжкой рассматривать коленчатый вал как пространственный брус, нагруженный достаточно сложной системой сил. С поворотом вала эти силы, естественно, меняются. Меняются их плечн и потому для выявления общей картины действующих сил необходимо произвести анализ изгибающих и крутящих моментов при различных угловых положениях вала. Скажем, через каждые 10° поворота вала. Это — достаточно длительная и кропотливая подготовительная работа.  [c.93]

На рис. 9.41 представлен герметичный ценпробежный насос ЦЭН-138. Напор, развиваемый насосом, составляет 70 м вод. ст. при давлении на входе около 10 МПа, подаче 4000 мVч и КПД 52%. Потребляемая мощность около 1400 кВт при частоте вращения 1460 об/мин. В насосе применено рабочее колесо двустороннего всасывания, литое из аустенитной нержавеющей стали. Рабочее колесо 10 и специальная разгрузочная каме ра, расположенная над рабочим колесом, обеспечивают работу насоса при гидродинамически взвешенном роторе. С целью разгрузки опорных подшипников от неуравновешенных гидродинамических сил выход воды из рабочего колеса осуществляется через двухзвходную спиральную камеру (улитку) 8.  [c.294]

Установка с камерой прямолинейной формы периодического действия (рис. 82, а) смонтирована на сварной раме 1, которая через резиновые амортизаторы 2 установлена на деревянной платформе 3. Резервуар 13 U-образной формы изготовлен из нержавеющей стали и закреплен на виброплатформе, которая на цилиндрических пружинах 7 и С-образных рессррах 8 подвешена на основной раме. Иногда подвеску платформы осуществляют на пневмобаллонах, что позволяет уменьшить шум при работе установки. Внутри виброплатформы на двухрядных роликовых подшипниках установлен вал 9 вибратора, через муфту 12 и вал 4 он соединен передачей 5 с электродвигателем 6. На валу установлены дебалансные диски 10 и 11. Взаимное положение дисков можно изменять, вследствие чего изменяется возмущающая сила и амплитуда вибраций. Внутренняя поверхность резервуара 13 обычно облицована листоврй изопреновой эластичной резиной, которая снижает шум и уменьшает дробление рабочих тел . Резервуар на /з объема заполняют деталями рабочими телами (соотношение их 1 3). Насосом 15 по шлангу 17 в резервуар непрерывно подается  [c.138]

Для получения на поверхности трепия температур выше температуры масла вал нагревается изнутри с помощью нагревательного элемента 11. Потери тепла через вал и камеру компенсируются дополнительными на-гревате.льными элементами 12 и 1S. Для охлаждения опорных подшипников рабочего вала последний сделан нолым и со второго конца и охлаждается циркулирующей водой. Регулировка температуры на поверхности трения осуществляется за счет подачи масла и изменения силы тока в нагревательном элементе 11. Газовая среда, в которой работает трущаяся пара, дозируется через трубку.  [c.36]

Рабочее колесо, гидравлически разгруженное от осевых сил, имеет удлиненную втулку, которая служит шейкой ГСП. Гидро статический подшипник 16 с четырьмя рабочими камерами питается из напорного кольцевого коллектора через сверления. Слив протечек натрия из ГСП происходит через отверстия в рабочем колесе на всасывание насоса. ГСП имеет достаточную несущук> способность, чтобы обеспечить работу насоса на номинальной частоте вращения, а наличие всего четырех камер создает благоприятные условия для образования жидкостной пленки и при минимальной частоте вращения, когда напор насоса мал. Для увеличения износостойкости рабочих поверхностей ГСП они наплавлены колмоноем. Основная часть насоса, соприкасающаяся с натрием, выполнена из стали 304. Вал 14 насоса соединяется с ротором электродвигателя посредством жесткой муфты и вращается на трех опорах. В электродвигателе размещены два подшипника качения. Верхний (шариковый) подшипник 3 является радиально-осевым, нижний 6 (роликовый)—радиальным.  [c.182]


Схема насоса с опорами вала, работающими на перекачиваемом теплоносителе, и механическим уплотнением вала с чистой запирающей водой представлена на рис. 8.11. Вертикальный вал направляется двумя радиальными дроссельными гидростатическими подшипниками 2 и 8. Нижний подшипник питается горячей водой с напора осевого рабочего колеса 1 при помощи винтового насоса 3 с многозаходными резьбовыми втулками, а слив из подшипника организован на всасывание рабочего колеса по каналам, выполненным в его ступице. Верхний радиальный ГСП питается охлажденной контурной водой от импеллера, выполненного заодно с пятой 7. В подшипниках применима пара трения сталь по стали. Осевая сила воспринимается двухсторонним гидростатическим осевым подшипником, работающим на охлажденном теплоносителе. Элементы, образующие пары трения, изготовлены из силицированного графита. Сегментные самоустанавли-вающиеся колодки снабжены ребрами качания и опираются на рессоры. Для снятия тепла, выделяющегося в осевом и верхнем радиальном ГСП, в корпусе насоса встроен трубчатый холодильник 6. Поток воды из пяты-импеллера сначала попадает на осевой подшипник, затем в верхний рад1 альный ГСП, после чего, проходя через трубчатый холодильник, охлаждается, поступает в зазор между валом и корпусом насоса, снимает тепло с вала и вновь попадает в пяту-импеллер. Такая система циркуляции позволяет поддерживать постоянной температуру (примерно 70°С) в полости пяты, предохраняя тем самым уплотнение вала от воздействия высокой температуры со стороны проточной части ГЦН. Между полостью пяты и проточной частью расположен тепловой барьер, представляющий собой каналы, засверленные в корпусе насоса. Через трубчатый холодильник 6 теплового барьера циркулирует вода промежуточного контура, имеющая на входе температуру примерно 45 °С. В верхней части ГЦН размещено уплотнение вала, представляющее собой блок из трех пар торцовых уплотнений, работающих на холодной запирающей воде. Первая ступень предотвращает протечки запирающей воды в контур с перепадом давления на нем около 2 МПа, вторая ступень предотвращает протечки в атмосферу и работает под полным давлением запирающей воды, а третья ступень является резервной и автоматически включается в работу в случае выхода из строя второй ступени уплотнения.  [c.280]

При действии постоянной радиальной силы вращающийся вал подвергается циркуляционному нагружению, а подшипники — местному. При любой эпюре давлений рабочая поверхность вала будет изнашиваться равномерно по окружности, а износ подшипника будет односторонним (рис. 17.1, а). При граничной смазке и трении без смазочного материала зона износа подшипника смещена от приложенной силы в направлении, противоположном движению, а при жидкостной или полу-жидкостной смазке — в сторону движения. Если сила, сохраняя посгоянство направления, изменяется по величине на различных установившихся режимах работы машины, то в связи с перемещениями по окружности нагруженной области подшипника зона его одностороннего износа расширится. Еще шире будет она при вращении вала попеременно в обоих направлениях. Эффект вращения вала с различной установившейся скоростью аналогичен изменению величины силы.  [c.258]

Узлы тренйя текстильных машин. Текстильные машины имеют сотни точек смазывания подшипников качения, что при эксплуатации требует больших затрат рабочей силы на обслуживание машин, а также расхода смазочных материалов. Достаточно отметить, что на текстильных предприятиях обслуживающий персонал составляет 20. .. 30 % основного состава, непосредственно работающего на выпуске продукции. Это побудило Н. Е. Денисову, Г. И. Свищев-скую и М. И. Худых разработать металлоплакирующий смазочный материал СМП-5 для узлов трения текстильных машин. Испытания на 50 предприятиях текстильной промышленности дали положительные результаты. При работе машин на металлоплакирующих смазочных материалах необходимость смазывания узлов трения сократилась в 5. .. 6 раз, снизился обрыв нитей, повысилась производительность труда, снизился шум и вибрация машин, уменьшилась интенсивность изнашивания подшипников. Экономический эффект от применения 1 кг металлоплакирующего смазочного материала составил более 100 р.  [c.300]

Нагрузки па вал обычно передаются через сопряженные с ним детали (зубчатые колеса, шкивы, муфты, подшипники). Передающиеся на вал нагрузки в зависимости от ряда условий (жесткости сопря>кенных элементов, специфики их работы, точности изготовления и сборки узла) фактически распределяются вдоль рабочих элементов по различным закономерностям, определяя тем самым характер распределения усилий но валу. Расчетные нагрузки, распределенные по длине зубьев зубчатых колос, пальцев упругих муфт, вкладышей подшипников скольжения, вдоль шпонок, зубьев шлицевых валов, при составлении расчетной схемы вала обычно принимают за сосредоточенные силы, приложенные по середине длины элементов, передающих силы или моменты. Поскольку вал и ступицы работают совместно, можно точнее вести расчет вала на действие двух сосредоточенных сил, приложенных на расстоянии (0,25ч-0,35) I от кромок ступицы, где I — длина ступицы (рис. 3). Меньшие зпачеиия смещения точек приложения сил соответствуют жестким ступицам и неподвижным посадкам, большие — податливым ступицам и подвижным посадкам.  [c.102]

Пример 2,7. Подобрать подшипники для опор вала редуктора привода цепного конвейера (рис. 2.35). Частота вращения вала п = 200 мин . Требуемый ресурс при вероятности безотказной работы 90 % Х юал = 20000 ч. Диаметр посадочных поверхностей вала й =45мм. Максимальные длительно действующие силы Fornax = 9820 Н, Fr2max = 8040 Н, F max = 3210 Н. Режим нагружения - III (средний нормальный). Возможны кратковременные перегрузки до 150 % номинальной нагрузки. Условия эксплуатации подшипников - обычные. Ожидаемая рабочая температура tp e = 45 °С.  [c.239]

Иа 4ГПЗ работают автоматические линии для шлифоваль- ой обработки колец радиальных подшипников 204 и 207. Коллектив этого завода своими силами спроектировал, изготовил и ввел в эксплуатацию четыре комплексные автоматические линии для механической обработки наружных и внутренних колец указанных подшипников. Каждая из этих линий выпускает 5— 5,5 млн. колец. За счет высвобождения более чем 50 рабочих, занятых прежде на обслуживании станков, производительность труда возросла более чем в два раза.  [c.400]

Как правило, проектирование подшипникового узла начинают с его эскизной компоновки, Затем определяют направление и значение действующих нафузок. Для скоростных узлов при необходимости следует учитьшать центробежные силы и гироскопический момент. По действующим нафузкам и необходимой долговечности находят динамическую фузоподъемность предварительно выбранного типа подшипника и его габаритные размеры, по требованиям к точности и частоте вращения устанавливают класс точности. В зависимости от требований к рабочим скоростям и условий работы выбирают тип смазочного материала, способы и средства защиты его от зафязнения и вытекания из подшипника.  [c.449]

Ресурс работы газовых опор практически неограничен. При работе подшипниковых узлов на газовой смазке отсутствует взаимное касание рабочих поверхностей в установившемся режиме, но в кратковременные периоды пуска и останова в газодинамическом подшипнике скольжения имеет место сухое трение и касание поверхностей шипа и втулки при трогании с места и при снижении подъемной силы при выбеге, когда вращающаяся часть садится на неподвижную часть опоры. Однако благодаря высокому качеству геометрии поверхностей, образующих пару скольжения, наличию микроканавок, которые выполняются практически во всех конструкциях газодинамической опоры в целях повышения устойчивости, сухое трение составляет незначительную часть пускового периода и периода останова. Поэтому опору с газовой смазкой считают практически лишенной износа. Ресурс работы опор с газовой смазкой оценивают не числом часов работы, а количеством пусков-остановов. Известны конструкции приборов на газодинамических опорах, которые после 250 ООО таких циклов не показали заметного изменения напряжения трогания приводного электродвигателя.  [c.560]

Фитильные материалы, применяемые в узлах подпитки подшипников маслом, служат для удержания резервного запаса жидкого приборного масла в негерметичном объеме подпиточного узла. Масло удерживается в подпиточном узле при любом расположении его в пространстве за счет капиллярных сил, превышающих силу тяжести масла. При выборе материала фитиля учитывают условия эксплуатации изделий диапазон рабочих температур, атмосферное давление, внешние механические воздействия (ускорения, удары, вибрацию) и устойчивость к воздействию специальных факторов. В этих условиях эксплуатации фитиль1рлп материал должен сохранять свои капиллярные и механические свойства на протяжении заданного ресурса работы изделий. В качестве фитильных материалов используют капиллярно-пористые материалы различного назначения (например, тепло- и звукоза-щитные, электроизоляционные, фильтровальные и др.), не изменяющие своих размеров, формы, механических и капилярных свойств при эксплуатации в заданных условиях (табл. 14.12, 14.13). Удерживающая,способность фитильных материалов масла (нли их маслоемкость) в подпиточных узлах зависит как от конструкции подпиточного узла, так и от воздействия климатических и механических факторов. Из климатических факторов наиболее существенное влияние оказывает температура, из механических линейное ускорение. Дозирование масла для каждого конкретного конструктивного варианта подпиточного узла необходимо производить, основываясь на результатах его испы-  [c.761]



Смотреть страницы где упоминается термин силы рабочие - Работа подшипников : [c.106]    [c.109]    [c.225]    [c.85]    [c.174]    [c.163]    [c.139]    [c.248]    [c.63]    [c.186]    [c.188]   
Машиностроение энциклопедия ТомIV-5 Машины и агрегаты металлургического производства РазделIV Расчет и конструирование машин Изд2 (2004) -- [ c.467 ]



ПОИСК



Работа силы



© 2025 Mash-xxl.info Реклама на сайте