Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Проточная часть

Между тем металлы, которыми располагает современное машиностроение, позволяют перегревать пар до 550— 600 С. Это дает возможность уменьшить потери эксергии при передаче теплоты от продуктов сгорания к рабочему телу и тем самым существенно увеличить эффективность цикла. Кроме того, перегрев пара уменьшает потери на трение при его течении в проточной части турбины. Все без исключения тепловые электрические станции на органическом топливе работают сейчас на перегретом паре, а иногда пар на станции перегревают дважды и даже трижды. Перегрев пара все шире применяется и на атомных электростанциях, особенно в реакторах на быстрых нейтронах.  [c.63]


При расширении пара в многоступенчатых турбинах удельный объем его от ступени к ступени возрастает, вызывая увеличение общего объема пара, проходящего через проточную часть турбины. Например, пар, входя в турбину с давлением 2,85 МПа и температурой 400 °С, имеет удельный объем, равный 0,103 м /кг, а при выходе из турбины в конденсатор, где давление пара 4 кПа и влажность 12%, удельный объем составляет уже 31 м /кг, т. е. в 300 раз больше. Для пропуска возрастающего объема пара приходится увеличивать живое сечение сопл и лопаточных кана-  [c.172]

В связи с высокой температурой продуктов сгорания детали проточной части турбин (сопла, рабочие лопатки, диски, валы) изготавливают из легированных высококачественных сталей. Для надежной работы у большинства турбин предусмотрено интенсивное охлаждение наиболее нагруженных деталей корпуса и ротора.  [c.174]

Очистка дымовых газов при 850 °С производился двумя последовательно соединенными циклонами, так как зола, уносимая из псевдоожиженного слоя, обладает слабо выраженными эрозионными свойствами. Очищенные газы поступают в экспериментальный канал, имитирующий проточную часть газовой турбины. После проведения предварительных исследований будет смонтирована газовая турбина.  [c.20]

Расширение газа в проточной части турбины сопровождается потерями на трение о стенки сопел, лопаток и на завихрения потока, в результате чего часть кинетической энергии рабочего тела  [c.281]

Расчетом определены число и расположение лопаток (восемь лопаток, изогнутых по ходу вращения крыльчатки), профиль проточной части крыльчатки, сечения выходных улиток по углам Окружности. Задан срок службы Насоса (10 лег при двухсменной работе).  [c.87]

В отличие от прямоточной закрученная струя практически всегда трехмерна. Вектор скорости V имеет три компоненты радиальную аксиальную, или осевую и тангенциальную Кроме того в закрученных струях всегда имеются радиальный и осевой градиенты давления, а также достаточно сложный характер распределения полной и термодинамической температуры, во многом определяемый конструктивными особенностями устройства, по проточной части которого движется поток. Все многообразие закрученных потоков целесообразно разбить на две группы свободно затопленные,струи различной степени закрутки офаниченные закрученные потоки, протекающие по каналам различной конфигурации.  [c.20]


Инженеры и исследователи сталкиваются с задачами, связанными с движением двухфазных систем в проточной части низкого давления обычных конденсационных паровых турбин и в проточной части турбин атомных электростанций, работающих на насы-щенно.м паре, в парогенераторах и атомных реакторах, в различных теплообменных аппаратах.  [c.6]

Изменение положения клапана в этих устройствах приводит к изменению формы их проточной части.  [c.91]

Рис. 29. Местные сопротивления с переменной формой проточной части Рис. 29. <a href="/info/20768">Местные сопротивления</a> с переменной формой проточной части
С целью создания аппаратов, в которых применяются кавитационные струйные з ечения, были проведены экспериментальные исследования по определению конструкций проточных частей сопел, которые не разрушаются от действия кавитации и обладают наилучшими характеристиками по поддержанию кавитационного режима течения.  [c.202]

Проведенные эксперименты с эжекторами и соплами показали, что найденные формы проточных частей для реализации в них кавитационного режима течения являются общими как для сопел, так и для других аппаратов и устройств, в которых кавитационный режим течения применяется для выполнения и интенсификации технологических процессов.  [c.212]

Профилированием проточной части сопла достигается лишь различное распределение давлений внутри сопла, но расход при этом в выходном сечении всегда остается постоянным.  [c.137]

Высокая температура продуктов сгорания, представляющих собой газовую смесь, и значительное уменьшение ее около стенок приводит к резкому изменению состава и свойств газа в пределах теплового пограничного слоя. При сгорании некоторых топлив в газовом потоке появляется конденсированная фаза— большое количество мелких твердых или жидких частиц, которые также влияют на процессы взаимодействия потока со стенкой. Некоторое влияние на теплообмен оказывают также форма проточной части сопла и его абсолютные размеры. Поверхность сопла обменивается теплотой с газовым потоком путем соприкосновения и излучения.  [c.389]

Значение коэффициента в общем случае зависит от конфигурации проточной части местного сопротивления п числа Рейнольдса  [c.85]

Наиболее распространенным в настоящее время является клапан ЭКП, предназначенный для работы на эмульсии (рис. 12.9, в). В проточной части корпуса 8 помещено подвижное седло 5, проходное отверстие в котором закрыто запорным элементом 6, поджимаемым давлением жидкости и пружиной 7. По мере увеличения давления жидкости седло 5 вместе с запорным элементом перемещается вверх, сжимая тарельчатую пружину /. При этом увеличивается контактное давление в паре седло — запорный. элемент. После перемещения этой пары на величину 6 движение запорного элемента 6 прекращается, а седло, продолжая двигаться, откроет доступ жидкости под тарельчатый запорный элемент 2. При этом произойдет четкое открывание клапана, так как сила, действующая на запорный элемент 2, будет значительной  [c.193]

Реальная величина Q будет меньше, а больше определяемых уравнениями (14.8) и (14.9) из-за утечек в проточной части гидропередачи [см. (10.3)].  [c.229]

Динамическое подобие выражается постоянством отношений сил одинаковой природы, действующих в сходственных точках кинематически подобных машин. В гидродинамических передачах основными являются силы инерции, давления и трения. Как известно, критериями подобия в это случае будут числа Эйлера и Рейнольдса [3, 111. Если течение жидкости в проточной части машин находится в области автомодельности (см. 5.5.4), то для соблюдения подобия достаточно сохранения постоянным числа Эйлера.  [c.230]

В проточной части, уменьшается (3, увеличивается скольжение и уменьшается передаваемый гидромуфтой момент примерно так, как при уменьшении заполнения рабочей полости (см. рис. 14.7, а).  [c.237]


Удаление рабочей полости от оси вращения необходимо для уменьшения разности между входным и выходным радиусами R и / 2- И в этом случае сглаживание моментных характеристик менее эффективно, чем у муфт с порогом. Однако потери напора в проточной части значительно меньше, поэтому такие гидромуфты находят некоторое применение. На рис. 14.11, б, приведена гидромуфта с отнесенной рабочей полостью. Как видно, активный диаметр таких гидромуфт больше, чем обычных.  [c.240]

Принцип работы га.1овой и паровой турбин одинаков, но конструкция проточной части газовых турбин значитель-  [c.174]

К f ( ) чан ,о А, = А, = / (г) и К А /А == / (t), а также зависимость 1 / (t) (рис. 2.80, б). Для гидромуфт характеристика состоит из двух кривых А, = / (/) и т) = / (j) (рис. 2.81, 6). Такие характеристики называют обоб1цепиими. Они действительны дл г любой гидропередачи, имеющей проточную часть, выиолиеиную по  [c.249]

Чем лучше выполнена проточная часть турбины, чем меньше в ней потери от трения и завихрений, тем выше т].,урб- У современных турбин Лтурб 0,8- 0,9.  [c.282]

В теплоэнергетике, использующей как ядерное, так и обычное углеводородное топливо, одной из важнейших является проблема отвода огромного количества тепла с теплоотдающих поверхностей. Наиболее распространенным и используемым для этих целей теплоносителей являются парожидкостные смеси. Поэтому исследователями большое внимание уделяется течению парожидкостных смесей при наличии фазовых переходов в каналах с обогреваемыми и необогреваемыми стенками. Видимо на эту тему появляется наибольшее число публикаций в области неоднофазных течений. Здесь особый интерес представляют исследования структуры потока при различных режимах, кризисов теплообмена, обусловленных нарушением контакта жидкой фазы с теплоотдающей поверхностью, гидравлического сопротивления и т. д. Проблемы безопасности реакторного узла или устройств аналогичного типа привели к необходимости изучения истечений наро-жидкостных смесей из сосудов высокого давления, распространения возмущений и ударных волн в двухфазных парожидкостных потоках. Здесь же отметим течение влажного пара (смесь пара с каплями воды) в проточных частях турбомашин.  [c.10]

На эффективность работы вихревой трубы влияют не только форма проточной части сопла, формирующего закрученный поток на входе в камеру энергоразделения, но и относительная площадь его проходного сечения. Это отмечают практически все исследователи начиная с Хильша. Рост приводит к повышению расхода газа через вихревую трубу. На определенном этапе это связано с повышением уровня скоростей и давления в камере энергоразделения, сопровождаемого ростом эффектов охлаж-  [c.69]

Традиционно неадиабатные вихревые трубы рассматривались лишь как охлаждаемые. Развитие областей внедрения вихревых энергоразделителей в системы охлаждения, термостатирования теплонапряженных деталей и узлов агрегатов энергетической, авиационной и некоторых других отраслей [7, 8, 38, 39, 73, 145, 194] потребовало постановки опытов по исследованию характеристик вихревых труб при подводе тепла к подогреваемему периферийному потоку через стенки камеры энергоразделения от внешнего источника. Экспериментальные исследования [73, 145, 194] по определению влияния внешнего теплового потока, подводимого от внешнего источника тепла через стенки камеры энергоразделения, были проведены на двух вихревых трубах с цилиндрической проточной частью и геометрией по своим параметрам близкой к оптимальной, по рекомендациям А.П. Меркулова [116]. Снижение эффектов охлаждения обохреваемой от внешнего источника вихревой трубы по сравнению с адиабатными условиями можно оценить относительной величиной  [c.281]

Характерные особенности закрученного потока наиболее полно подходят для создания эффективной схемы конвективных и конвективно-пленочных систем охлаждения лопаток проточной части ГТД. В турбинных двигателях IV—VI поколений прослеживается тенденция использования больших степеней понижения давления газа в ступени (я > 2), что обусловливает возможность применения вихревых энергоразделителей (ВЭ) в охлаждаемых лопатках. По прогнозу к 2000 г. будут вводиться в эксплуатацию перспективные двухконтурные турбореактивные двигатели со степенью повышения давления в компрессоре до л = 60, с последней центробежной ступенью компрессора и противоточной камерой сгорания в этом случае на охлаждение соплового аппарата второй ступени удобно подвести воздух высокого давления из внутреннего кожуха камеры сгорания, и использование ВЭ становится перспективным.  [c.367]

Установка была снабжена эжекционным аппараз ом, содержап ем семь консои-дальных сопел, каждое из которых имело диаметр 5 мм. Эжектор имел проточную часть, конфигурация которой представлена на рис. 9.5. Диаметр его цилиндрической камеры смешения был равен 83 мм, длина последней составляла 415 мм, горловина имела диаметр 30 мм и длину 480 мм. Конфузор был выполнен с углом сужения 2°, а диффузор - углом расширения 6°. Данный аппарат был рассчитан на эжектирование газа турбулентными струями жидкости, каждая из которой имеет угол расширения  [c.199]

Найденные формы проточных частей сопел, работающих в режиме кавитации и не разрушающихся от действия последней, позволили распространить указанные формы на проточные части эжекторов, работающих в таком же режиме (см. рис. 8.26, 8.27). Работа эжекторов в кавитационном режиме показала, что их проточные части также не разрушаютея от действия кавитации.  [c.209]

Внутреннее турбулентное движение - основной режим движения рабочего тела в проточной части машин и установок. Авиационные двигатели и МГД-насосы, гидроэлектростанции и аэродинамические трубы, магистральные нефте- и гаэоироводы, водопровод]. - вот лишь малая выборка из широкого круга технических устройств, для которых типичным является турбулентное движение.  [c.6]


Для проектирования проточных частей машин, установок, трубопроводов и обеспечения надежности и эффективности их работы необходимы научно обоснованные единые инженерные методы гидравлического расчета проточных частей. Несомненно, такие методы расчета могут быть разработаны только на основе теоретических и экспериментальных исследований движения жидкости и газа в гидрогазодинамических трубах и каналах с единой точки зрения.  [c.6]


Смотреть страницы где упоминается термин Проточная часть : [c.65]    [c.169]    [c.155]    [c.205]    [c.231]    [c.235]    [c.235]    [c.238]    [c.239]    [c.251]    [c.254]    [c.263]    [c.366]    [c.378]    [c.6]    [c.15]    [c.19]    [c.91]    [c.97]    [c.190]   
Смотреть главы в:

Конструкция и расчет на прочность деталей паровых и газовых турбин Изд.3  -> Проточная часть


Главные циркуляционные насосы АЭС (1984) -- [ c.9 , c.15 , c.18 , c.33 , c.101 , c.138 , c.153 , c.156 , c.166 , c.167 , c.175 , c.189 , c.213 , c.214 , c.260 , c.291 ]

Теплофикационные паровые турбины и турбоустановки (2002) -- [ c.51 ]

Машиностроение Энциклопедический справочник Раздел 4 Том 13 (1949) -- [ c.187 ]



ПОИСК





© 2025 Mash-xxl.info Реклама на сайте