Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Коллектор кольцевой

Трубы поверхностей нагрева, а также необогреваемые соединительные трубы присоединяют к коллекторам электросваркой. Концы труб размещают в цилиндрических гнездах (рис. 5-5,в). Диаметр отверстий в корпусе коллектора, как и в барабане, равен внутреннему диаметру присоединяемых труб. Днища приваривают к цилиндрическому корпусу коллектора кольцевым швом.  [c.126]

В период изготовления котла ТП-85 на 420 г/ч, 140 кгс/см концы вертикальных змеевиков пароперегревателя приваривали не непосредственно к коллекторам, как в более позднее время, а к промежуточным коротким штуцерам, которые вместе с коллекторами подвергались на заводе термической обработке. После 5 лет работы котла на донецком каменном угле два из этих штуцеров оторвались от коллектора, а в 16 других штуцерах возникли глубокие поперечные трещины в непосредственной близости от соединявших их с коллекторами кольцевых сварных швов.  [c.198]


Если предмет имеет несколько одинаковых, равномерно расположенных элементов, то на изображении этого предмета полностью показывают один-два таких элемента, а остальные элементы показывают упрощенно или условно. В качестве примеров приведены изображения радиатора охлаждения (рис. 12.43, а), коллектора электронов мошного электронного прибора с развитой наружной поверхностью охлаждения в виде кольцевых ребер прямоугольного профиля (рис. 12.43, б). На  [c.178]

Увеличение влажности газа ОНГКМ обусловливает необходимость подбора и применения для скважин и шлейфов хорошо диспергируемых в воде или водорастворимых ингибиторов, обладающих повышенными летучестью и эффектом последействия. Необходимо также использовать защитное свойство углеводородного конденсата, выпадающего вместе с водой в процессе движения газа по трубопроводам и препятствующего контакту воды с металлом. Углеводородный конденсат в присутствии ингибитора образует на поверхности трубопровода гидрофобный слой, повышая защитное действие реагента. Повышается эффект защиты от коррозии насосно-компрессорных труб, шлейфов и коллекторов при поддержании в них скорости газоконденсатного потока не менее 3 м/с для создания кольцевого режима, при котором углеводородным конденсатом или ингибиторным раствором омывается вся внутренняя поверхность трубопровода.  [c.231]

На рис. 17.6 изображена горелка, широко используемая в крупных паровых котлах Таганрогского котельного завода. Из кольцевого газового коллектора I газ со скоростью более 100 м/с подается через ради-  [c.150]

Сырая вода от источника водоснабжения поступает в бак сырой воды 19. Из него сырая вода насосом 18 подается в фильтры для очистки от механических примесей. Очищенная вода идет в водоумягчительные установки 17 и через деаэратор 16 (удаление воздуха, и СО2) попадает в емкость питательной воды 15. Питательными насосами 14 вода перекачивается через водяной экономайзер 8, где она подогревается до 50—230° С (в зависимости от типа и марки котла), и поступает в барабан 4 (сепаратор). Из барабана более холодная вода по опускным трубам попадает в кольцевой коллектор 2, а из него — в экранные трубы. В экранных трубах происходит парообразование, пароводяная смесь поднимается в барабан 4, где пар отделяется от воды. Водяной пар по паропроводу под высоким давлением поступает в пароперегреватель 7, а из него — к потребителю.  [c.128]


Трубчато-кольцевая камера сгорания 7 представляет собой воздушный коллектор, в котором устанавливают по семь пламенных труб. Насадки на передней части пламенной трубы помогают разбить главный поток воздуха на отдельные струйки, что необходимо для полного окисления топлива. Такое смешение воздушных потоков позволяет обеспечить равномерное распределение температур по профилям лопаток турбины. Корпус заднего подшипника окружает вал турбины. Он прикреплен к выпускному патрубку компрессора и сопловому аппарату. Камера сгорания установлена вокруг этого патрубка и включает следующие элементы внутренний теплозащитный экран пламенные трубы наружный корпус воздушного коллектора сопловый аппарат.  [c.45]

На диффузоре имеются патрубки, к которым воздух подводится от трубопровода после компрессора и направляется через коллектор и отверстия в вертикальном фланце к обойме направляющих лопаток. По одному из отверстий через полый штифт воздух попадает в коллектор, выполненный на обойме. Из этого коллектора он по трем трубкам идет на охлаждение диска компрессорной турбины и по одной — на охлаждение диска силовой турбины. Воздух по этим трубкам попадает в кольцевые каналы, из которых через мелкие отверстия обдувает диски. По другим отверстиям он попадает в радиальный зазор между корпусом и обоймой, а затем по сверлениям проходит в кольцеобразную сборную камеру обоймы, оттуда по многочисленным осевым каналам, охлаждая обойму, уходит в проточную часть турбины.  [c.55]

Каждый стержень обмотки статора представляет собой либо набор полых элементов проводников, либо перемежающиеся полые и сплошные проводники, либо сочетание сплошных медных проводников с охлаждающими трубками из нержавеющей стали. После прохождения через обмотку дистиллят собирается в кольцевой сливной коллектор 5 и оттуда, пройдя реле, контролирующее наличие слива, возвращается в бак I. Скорость циркуляции охлаждающей воды выбирается максимально допустимой из соображений возможной коррозии охлаждающих каналов и не превышает обычно 1,5 м/с для меди и 3—5 м/с для нержавеющей стали.  [c.207]

Большое плечо рычага заканчивается контактом 5, соприкасающимся с кольцом 6, торцовая поверхность которого выполнена с равномерным подъемом по винтовой линии. На одном валу с кольцом 6 установлен скользяш,ий контакт 7, перемеш,ающийся по кольцевому коллектору 8, количество контактных пластин которого соответствует количеству групп сортировки. Вращение вала со сколь-162  [c.162]

Выемная часть содержит проточную часть с рабочим колесом 5, канальным направляющим аппаратом 6 открытого типа со сборно-кольцевым отводом и всасывающим колоколом 4. Натрий от сборного коллектора отводится четырьмя трубами 3 диаметром 100 мм, объединяющимися в напорный патрубок по оси насоса. Всасывание осуществляется непосредственно из бака, причем перед самым входом на рабочее колесо установлен профилированный коллектор, дающий равномерное распределение скоростей, несмотря на боковой вход потока в бак. Протечки из подшипника  [c.164]

Площадь меридионального сечения кольцевого коллектора должна быть больше площади входа в каналы направляющего аппарата не менее чем в 1,7 раза.  [c.196]

Фиг. 299. Вертикальный и горизонтальный разрезы вагранки Мура /—подвод дутья от вентилятора 2 — патрубок к нагревательной ка-мере J— нагревательная камера 4 — патрубок к кольцевому коллектору 5 — коллектор 6—фурмы. Фиг. 299. Вертикальный и <a href="/info/1153">горизонтальный разрезы</a> вагранки Мура /—<a href="/info/432630">подвод дутья</a> от вентилятора 2 — патрубок к нагревательной ка-мере J— нагревательная камера 4 — патрубок к кольцевому коллектору 5 — коллектор 6—фурмы.
Затем опорным и прижимным роликом 6 пруток подается в моечную камеру, внутри которой смонтирован моечный коллектор, где циркулирует моющий горячий раствор ОП-7 или ОП-10. После этого пруток поступает в кольцевой воздухонагреватель с температурой сушки 80—100° С. На приемном рольганге установлен переставляемый концевой упор И.  [c.38]


В некоторых конструкциях комбинированных горелок, изготовленных заводом, коксовый газ подавался ио периферии через кольцевой коллектор с раздающими трубками со скоростью 20—30 м/с. Скорость воздуха в комбинированных горелках принималась равной 30—40 м/с.  [c.88]

В отдельных случаях при малой толщине (15—20 мм) стенки барабана или коллектора кольцевые канавки приме-йяются и в котлах среднего давления с той же целью — повысить прочность соединения.  [c.171]

Оригинальная схема конденсационной системы подготовки сжатого воздуха промышленных пневмосистем производительностью 1 — 10 кг/с и более предложена в МГТУ им. Н.Э. Баумана (рис. 5.25). Сжатый воздух поступает во входной коллектор трех-поточного теплообменного аппарата и, проходя по кольцевым пространствам, образованным наружным и внутренними трубами, поступает в дополнительный коллектор. При этом он охлаждается атмосферным воздухом, обдувающим наружные трубы и осушенным сжатым воздухом, который обратным потоком течет по внутренним трубам. Понижение температуры сжатого воздуха приводит к конденсации влаги, которая сепарируется во влагоот-делителе. Подогрев осушенного обратного потока снижает его относительную влажность и тем самым повышается эксплуатационная надежность системы за счет снижения опасности выпадения влаги.  [c.260]

На верхней части распределителя имеются две кольцевые выточки. Эти выточки соединяются с отверстиями 08ОАз в коллектора, подводящими в гидромотор жидкость. Нижняя часть распределителя 0160 мм с овальными распределительными окнами располага-  [c.74]

Питательная вода поступает в парогенератор через патрубок 13 в кольцевой коллектор 10, находящийся у центробежных сепара-252  [c.252]

Конструкция вертикальной шестисопловой турбины Татевской ГЭС (см. табл. 1.6), разработанная ЛМЗ в 1960-х годах [9], показана на рис. П.22. В ней был учтен опыт, накопленный к этому времени в гидротурбостроении. Кольцевой распределитель 14 этой турбины забетонирован и его отростки, подводящие воду к соплам, укреплены болтами в забетонированной шестигранной раме 13. Отдельные элементы распределителя (тройники, промежуточные дуговые патрубки) соединены электросваркой. К отросткам коллектора присоединены болтами корпуса 12 сопел прямоточного типа, в которых помещен сервомотор вместе с перемещаемой им иглой. При такой конструкции внутри распределителя штоков нет, благодаря чему возмущения в потоке значительно уменьшаются. Масло к сервомоторам игл подводится через ребра, на которых сервомоторы удерживаются в корпусе сопла. Через эти ребра выведена также и обратная связь 5 к регулятору. К фланцам корпуса болтами крепятся насадки // сопел, которые имеют сменные выходные запрессованные в них изнутри кольца 15, заменяемые при износе. На поверхности насадков сделаны приливы, в которых установлены втулки подшипников для приводных валиков отсека-телей 6. Привод 4 отсекателей расположен на кожухе и состоит из тяг и угловых рычагов, управляемых специальным сервомотором, действующим синхронно с сервомоторами игл в соплах. Для повышения износостойкости насадки, сменные вставки, иглы сопел, скобы отсекателей выполнены из нержавеющей стали [291.  [c.55]

Очистка проточной части ГТД и меры против обледенения. В случае заноса проточной части солями морской воды эффективным способом очистки является промывка пресной водой или паром. Если отложения имеют более сложный состав (результат попадания паров масла, топлива, дымовых газов), производят промывку вначале смесью воды с керосином или с дизельным топливом, потом пресной водой или паром, несколько раз до восстановления характеристик ГТД. Более эф фективным является водный раствор синтетических моющих средств (например, синвала). Растворы впрыскивают во входное устройство компрессора специальными соплами из общего кольцевого коллектора. В отдельных случаях загрязнения бывают настолько стойкими, что приходится прибегать к использованию твердого очистителя — карбобласта, который представляет собой зернистый порошок из скорлупы грецких орехов и косточек абрикосов, слив, алычи. Карбобласт не должен содержать других твердых примесей) например, частиц мель-  [c.341]

Установка для испытания на усталость в условиях одновременного воздействия теплосмен и механического нагружения состоит из рамы I (рис. 151), на которой размещены поворотный стол 2 для закрепления образцов 3, камера сгорания 4 для нагружения тепло-сменами, сопла 5 и б нагревательного н охлаждающего устройств, перемещающиеся относительна стола 2, и нагружающие устройства, выполненные в виде цилнндро-поршневой пары, жестко соединенной со столом. Цилиндры 7 этих устройств подсоединены к общей магистрали с помощью золотниковых кранов 8, а поршни 9 соединены с рычагами 10, воздействующими на образец. Продукты сгорания, выходя из сопла 5, нагревают четыре образца. Далее в кольцевой коллектор 1 попадает сжатый воздух, который при выходе через сопла 6 охлаждает четыре других образца С/2 —пневматическое устройство для поворота стола).  [c.268]

Его стальной герметический корпус, окруженный защитными слоями воды и бетона, заполнен графитовой кладкой со 128 вертикальными технологическими каналами для 512 тепловыделяющих элементов — тонкостенных трубок из нержавеющей стали, покрытых снаружи на длине 1,7 м кольцевым слоем уранового сплава, обогащенного до 5% по содержанию ураном-235 и защищенного внешней стальной оболочкой. Вода, отводящая тепло, циркуляционным насосом подается к верхней части технологических каналов под. давлением около 100 атм из распределительного коллектора первичного контура, затем по центральным трубкам этих каналов поступает в нижнюю-часть реактора, проходит вверх по трубкам тепловыделяющих элементов, сгруппированных по четыре в каждом канале, далее через сборочный коллектор поступает в теплообменник и по выходе из него вновь направляется к распределительному коллектору. Максимальный удельный теплосъем в интенсивно работающих каналах достигает при этом 1,5 млн. ккал1м -час. По мере выгорания урана-235 каналы с тепловыделяющими элементами извлекаются из реактора специальным мостовым подъемным краном, оборудованным аппаратурой дистанционного управления, и заменяются новыми. Основная техническая характеристика Обнинской АЭС приведена в табл. 5.  [c.175]


Для эксплуатации ГПА в условиях низких температур заводом-изготовителем предусмотрен подогрев горячим воздухом входного направляющего аппарата (ВНА) после ОК и циклового воздуха на всасывании ОК через смеситель. Эксплуатация агрегата при температуре ниже 303 К показала, что собственное сопротивление задвижки на линии подогрева В1ЧА велико, и подогрев воздуха становится недостаточным. Это фиксировалось отсутствием нагрева кольцевого прилива на корпусе ОК в районе коллектора лопаток ВНА. Задвижка была заменена фланцами, а отключение подогрева проводили установкой заглушки.  [c.21]

Кольцевая камера сгорания размещена между радиальным диффузором компрессора и обоймой турбины высокого давления в общем корпусе турбоагрегата. Она дискового типа, состоит из двух полукольцевых частей с горизонтальным разъемом. Горелочное устройство камеры состоит из цилиндрических регистров, равномерно расположенных по окружности с установленными в них горелками типа, ,грибок . Горелки присоединены к кольцевому трубчатому коллектору изогнутыми трубками со штуцерными разъемами. Коллектор топливного газа выполнен разъемным и оснащен одним газопроводящим патрубком и двадцатью отводами с установленными в них дроссельными шайбами диаметром 7 мм.  [c.34]

Горелочное устройство состоит из шести основных и одной дежурной горелок, двух воспламенителей. Основные горелки расположены по окружности и соединены общим кольцевым коллектором, подводящим газ. Дежурная горелка расположена в центре и конструктивно объединена с двумя воспламенителями. Основная горелка состоит из головной части, топливопроводящей трубы и фланца для крепления горелки к крышке камеры сгорания. Фронтовое устройство предназначено для подачи первичного воздуха в зону горения, смешения его с газовым топливом и стабилизации факела на всех режимах работы. Вихревой смеситель предназначен для смешения продуктов сгорания с вторичным воздухом и получения достаточно равномерного поля температур на выходе из камеры сгорания. Корпус камеры и крышка образуют прочный каркас, воспринимающий внутреннее давление воздуха. Корпус представляет собой цилиндрический барабан с двумя врезанными в него овальными, переходящими в круглые патрубками, заканчивающимися фланцами. По этим патрубкам в камеру подводится воздух. Крышка является днищем корпуса и состоит из штампованной овальной части и фланца для соединения с корпусом камеры. На крышке располагают наварыши для крепления горелок и кольцевой коллектор основного газа с двумя входными патруб- ками.  [c.42]

На рис. 3.13 изображен гидродинамический осевой подшипник Митчеля насосов реактора БН-350. Пята представляет собой диск 3, изготовленный из стали 40Х, нижний торец которого является рабочей поверхностью. Пята установлена на вал 6 на шпонке и крепится в осевом направлении двумя закладными полукольцами 5. Пята вместе с валом опирается на подпятник, состоящий из семи колодок 8, изготовленных из углеродистой стали с заливкой рабочей поверхности баббитом Б-83. Колодки, самоустанавливающиеся на опорных винтах 9, выверяются по высоте при помощи контрольной плиты. Пята и подпятник заключены в масляную ванну с повышенным давлением, которое поддерживается за счет щелевого уплотнения В (зазор 0,5—1 мм) между верхним торцом пяты и кольцом 4. Масло поступает в каждую колодку через кольцевой коллектор 2 и три отверстия 1 в корпусе 11 радиального подшипника. Циркуляция масла осуществляется насосами системы смазки [6].  [c.53]

Насосы реактора Experimental Breeder Rea tor (EBR II) (США). Два насоса первого контура (рис. 5.35) расположены на крышке реактора с холодной стороны контура циркуляции [15]. Натрий всасывается рабочим колесом 19 через специальный кон-фузор из общего коллектора. За рабочим колесом расположен направляющий аппарат и далее кольцевой коллектор, откуда натрий по четырем трубам поступает в напорный патрубок 20. Патрубок соединен с напорным трубопроводом специальным устройством (рис, 5.36), которое автоматически соединяет при монтаже и разъединяет при демонтаже насос с напорной трубой. Это устройство также компенсирует за счет сильфона несоосность насоса и напорного трубопровода при установке. Соединительное устройство имеет протечку натрия не более 0,2 % подачи насоса.  [c.182]

Рабочее колесо, гидравлически разгруженное от осевых сил, имеет удлиненную втулку, которая служит шейкой ГСП. Гидро статический подшипник 16 с четырьмя рабочими камерами питается из напорного кольцевого коллектора через сверления. Слив протечек натрия из ГСП происходит через отверстия в рабочем колесе на всасывание насоса. ГСП имеет достаточную несущук> способность, чтобы обеспечить работу насоса на номинальной частоте вращения, а наличие всего четырех камер создает благоприятные условия для образования жидкостной пленки и при минимальной частоте вращения, когда напор насоса мал. Для увеличения износостойкости рабочих поверхностей ГСП они наплавлены колмоноем. Основная часть насоса, соприкасающаяся с натрием, выполнена из стали 304. Вал 14 насоса соединяется с ротором электродвигателя посредством жесткой муфты и вращается на трех опорах. В электродвигателе размещены два подшипника качения. Верхний (шариковый) подшипник 3 является радиально-осевым, нижний 6 (роликовый)—радиальным.  [c.182]

Экранные котлы высокого давления (фиг. 35) состоят из отдельных труб, обычно плавниковых. Трубки ввальцовы-ваются в верхние и нижние кольцевые коллекторы, соединённые циркуляционными трубами с выносным паросборником.  [c.419]

Коллектор. Коллектор собирается из клиновидных медных пластин с мнканитовыми прокладками между ними. Пластины зажимаются между коробкой 12 и шайбой 15 коллектора (см. фиг. 23), стянутыми болтами или кольцевой гайкой. Миканитовые конусы (фиг. 26) изолируют медь коллектора от шайбы и коробки.  [c.470]

Существенным шагом вперед в истории развития электродвигателя была разработка кольцевого якоря с равномерно расположенными секциями обмотки и коллектором с большим числом пластин, обусловившего практически постоянный вращающий момент. Электродвигатель с кольцевым якорем был предложен итальянским ученым А. Пачинотти в 1860 г. Но ЭТО изобретение прошло незамеченным, так как еще не су-ществова.чо генератора, который смог был обеспечить экономичное питание.  [c.52]

На рис. 14 представлена принципиальная схема пневмодинамической камеры. Принцип работы камеры основан на образовании направленного воздушного потока, выходящего из сопел, расположенных по окружности, который подхватывает рабочие тела — стальные шарики — и направляет их на поверхность обрабатываемой детали. Сжатый воздух через штуцер 8 подается в кольцевой коллектор 7 и сопло 2, подхватывает стальные шарики 3 и направляет на обрабатываемую поверхность детали 1. Стравливание воздуха из полости камеры происходит через сетку 6 в наружном корпусе  [c.147]

Местные дополнительные механические напряжения в металле возникают из-за конструктивных недостатков или дефектов монтажа котлов, а также при их неудовлетворительной эксплуатации. Так, при зажатии концов нижних барабанов котлов в обмуровке возникают значительные механические напряжения в кипятильных трубах вследствие невозможности их расширения при нагревании. Это зачастую приводит к кольцевым трещинам в завальцованных концах труб. В вертикально-водотрубных котлах наиболее часто наблюдаются кольцевые трещины в ирубах второго пучка, как наименее изогнутых и, следовательно, менее эластичных. Свободному смещению коллекторов экранов часто препятствуют имеющиеся у них мертвые опоры, вследствие чего возникают чрезмерно высокие напряжения в экранных трубах. Точно так же зажатие экранных труб в кладке или в местах прохода их через обшивку котла вызывает значительные напряжения в металле барабана или коллектора.  [c.145]


Принцип действия ЦТА заключается в следующем. Поступая в теплообменный элемент, жидкость под действием центробежных сил прижимается к внутренней поверхности круговой газонаправляющей решетки и стекает по ней в виде кольцевого вращающегося слоя в сливную камеру, поддон или коллектор. Газовый поток, закрученный в ту же сторону с помощью направляющих  [c.13]


Смотреть страницы где упоминается термин Коллектор кольцевой : [c.82]    [c.372]    [c.173]    [c.22]    [c.293]    [c.35]    [c.36]    [c.87]    [c.253]    [c.253]    [c.274]    [c.280]    [c.116]    [c.54]    [c.164]    [c.557]   
Аэрогидродинамика технологических аппаратов (1983) -- [ c.29 , c.346 ]



ПОИСК



Коллектор



© 2025 Mash-xxl.info Реклама на сайте