Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Задача плоская Решение — Методы вариационные

Наряду с классическими вариационными методами решения задач плоской теории упругости широко используют численный метод конечных разностей и метод конечных элементов, реализуемые с помощью ЭВМ.  [c.328]

Сформулирована задача построения оптимальных (по интегральному критерию качества) законов движения манипуляторов при выполнении ими транспортных и технологических операций и показано, что ее можно свести к известным задачам вариационного исчисления. Применительно к плоскому манипулятору с тремя степенями свободы оптимальные движения построены в явном виде. Приводится сравнительный анализ оптимальных решений для транспортной и технологической операций и сопоставление этих результатов с приближенным решением, полученным методом локальной оптимизации.  [c.181]


Точное решение задачи об определении оптимальной формы тела, при обтекании которого потоком газа с большой сверхзвуковой скоростью полный тепловой поток будет минимальным, связано как с вычислительными, так и с принципиальными трудностями. Поэтому в настоящее время широко используется обратный метод, основанный на сравнении тепловых потоков для разных тел заданной формы [1, 2]. Результаты таких расчетов не могут заменить решение вариационной задачи. Поэтому представляется целесообразным рассмотреть вариационную задачу об определении формы тела с минимальным тепловым потоком, используя приближенную формулу Ньютона для нахождения газодинамических параметров на границе пограничного слоя. Такой подход использовался для нахождения формы тела минимального сопротивления в идеальном газе [3-5] и с учетом силы трения [6], а также для определения формы тонкого плоского профиля с минимальным тепловым потоком при заданных аэродинамических характеристиках [7].  [c.520]

Осесимметричное нагружение дисков рассмотрим как наиболее типичное при оценке статической прочности. В качестве расчетного метода использован метод конечных элементов (МКЭ). Это не единственный возможный метод расчета известно применение и других методов дискретизации пространственной задачи к расчету дисков (метод конечных разностей, вариационно-разностный [2, 43, 100]). МКЭ наиболее широко применяют в прикладных задачах 47]. Можно отметить простоту формулировок основных принципов, ясность физической интерпретации, свободу размещения узловых точек, симметрию матриц жесткости элементов и системы уравнений, облегчающую контроль расчетов. При выборе в качестве неизвестных узловых перемещений матрица разрешающей системы будет симметричной, положительно определенной (при исключении перемещения диска как жесткого целого) и иметь ленточную структуру. Это способствует быстрому решению системы разрешающих уравнений прямыми или итерационными методами. Методу конечных элементов посвящено большое число работ [3, 46, 53, 114, 119]. Приведенные в гл, 4 результаты получены ДЛЯ простейшего кольцевого элемента треугольного сечения, однако основные соображения, использованные в решении, имеют достаточно общий характер и применимы как для плоской задачи, так и при более сложных элементах в осесимметричном случае.  [c.153]


Наряду с такими способами решения задач, как вариационный метод, МКЭ, метод конечных разностей, применялись и другие подходы. В работах Е. Р. Мирошниченко [13.3] и Е. С. Кононенко [78] решены задачи о сжатии между жесткими плитами без скольжения цилиндра и параллелепипеда. Решение осуществлялось методом Филоненко — Бородича в функциях напряжений. Вид решения при и — 0,5 и для низких элементов не исследовался. Б. Головня [222] методом динамических релаксаций для уравнений упругости численно определил зависимость эффективного модуля сжатия от фактора формы плоского элемента при разных отношениях С/К. Расчеты показали, что внутри слоя развивается состояние, близкое к гидростатическому, причем чем тоньше слой, тем меньше вклад краевого эф-  [c.15]

В разделе II (главы 6—8) рассматриваются общие вопросы классической теории упругости обобщенный закон Гука, постановка и методы решения задач теории упругости, вариационные принципы и методы, плоская задача теории упругости в декартовых и полярных координатах, кручение стержней.  [c.4]

Изложены основы теории упругости после ознакомления с основополагающими понятиями приводятся анализ напряженного и деформированного состояния, вывод основных уравнений, плоская и температурная задачи, элементы теории пластин и оболочек. Особое внимание уделено численным методам решения прикладных задач теории упругости помимо достаточно распространенных вариационных и разностных методов подробно освещается сравнительно новый структурный метод, хорошо зарекомендовавший себя при исследовав НИИ объектов сложной формы. Для понимания затронутых вопросов достаточно знаний обычного курса математики технического вуза.  [c.40]

В книге дано систематическое изложение теории упругости, начиная с вывода основных соотношений и кончая некоторыми решениями, полученными в недавние годы. Подробно рассмотрены плоская задача, задачи кручения и концентрации напряжений, некоторые пространственные задачи, вариационные принципы и методы решения задач. Излагаются также задачи распространения волн в упругой среде. В авторском приложении к книге, которого не было в прежних изданиях, описан метод конечных разностей для решения плоской задачи, а в приложении, написанном переводчиком к русскому изданию, изложен метод ко. нечных элементов.  [c.2]

Основные этапы применения метода конечных элементов для приближенного решения сформулированной вариационной задачи следующие. Вначале область решения разбивается на конечное число подобластей, называемых конечными элементами. Разбиение на элементы может быть выполнено множеством разных способов, так как выбор размеров и форм элементов в общем случае произволен. Элементы для плоского тела обычно -имеют треугольную или четырехугольную форму. Разбиение области решения на конечные элементы и условия непрерывности, накладываемые на пробные функции, позволяют записать функционал (23.25) в виде суммы  [c.247]

В учебнике излагаются теория напряжений в деформаций, основные соотношения, принципы и теоремы теории упругости, постановка и методы решения задач теории упругости, плоская задача теории упругости в декартовых и полярных координатах, теория изгиба и устойчивости тонких пластин (прямоугольных и круглых в плане), приближенные методы решения задач теории упругости (вариационные методы, метод сеток, метод конечных элементов), основы теории тонких упругих (безмоментных и пологих) оболочек, основы теории пластичности. Большое внимание уделено приложениям, ра-вобрано большое количество задач. В конце каждой главы приведены вопросы для самопроверки в задачи для тренировки, к части из которых даны решения.  [c.2]


В статье показано, что при некоторых допущениях отыскание оптимальных управлений сводится к решению известных задач вариационного исчисления, Трудности чис.ленного решения этих задач делают актуальной проблему разработки методов управления, более простых для вычисления и в то же время близких (по значениям функционала качества) к оптимальным. Этот вопрос подробно исследуется в статье на примере так называемого идеального манипулятора — простейшего плоского трехзвенного механизма с избыточностью. Для такой системы получены точные решения, что позволило сравнить эффективность оптимальных п приближенных управлений для различных двигательных задач.  [c.27]

Для расчета напряженного состояния рассмотрим плоскую модель соединения в декартовой системе координат. Основные размеры соединения и сеточная разметка хвостовика при решении задачи вариационно-разностным методом показаны на рис. 9.10, а. Сеточная разметка паза производилась аналогично.  [c.169]

Позже бьши разработаны другие эффективные методы расчета складчатых систем. Отметим метод перемеш,ений, основанный на решениях М. Леви (изгиб) и Л. Файлона (плоская задача) для прямоугольных пластин [4] и различные модификации метода перемещений и смешанного метода [186, 344]. Метод перемещений устраняет многие недостатки метода В.З. Власова в части реализации алгоритма расчета на ЭВМ. Однако, он привносит в методику расчета недостатки, связанные с природой метода перемещений. В частности, формирование матрицы реакций требует привлечения матричных операций. Обязательное формирование основной системы привносит недостатки, связанные с ее использованием. Необходимы промежуточные вычисления для перехода от перемещений узлов к напряженно-деформированному состоянию во внутренних точках элементов системы. Метод разработан только для шарнирного опирания торцов конструкции. Сходные недостатки можно обнаружить и в смешанном методе. Следует отметить, что последний недостаток метода перемещений устраним, поскольку решения М. Леви и Л. Файлона являются частными случаями вариационного метода В.З. Власова. Поэтому можно разработать метод перемещений для произвольного опирания торцов складчатой системы. Если пренебречь влиянием побочных коэффициентов системы дифференциальных уравнений В.З. Власова, то алгоритм формирования матриц реакций и нагрузки останется прежним, а изменяется лишь фундаментальные функции. Можно дальше модифицировать метод перемещений. В I разделе отмечалось, что на базе соотношений МГЭ  [c.479]

Очевидно, что эта величина связана с расходом. Расчеты вариационным методом проводились для плоского слоя [54] и цилиндра [105] в предположении параболического профиля (т. е. решения, аналогичного решению задачи для сплошной среды).  [c.408]

Рассмотрим применение вариационных методов к решению задачи осадки полосы шириной 26, толщиной 2й и длиной I между шероховатыми плитами в условиях плоской деформации. Эта задача решена выше методами совместного решения приближенных уравнений равновесия и уравнения пластичности и методом работ.  [c.259]

Это известная плоская постановка задачи о целиках в однородных пластах [см. также вьппе соотношения (2.9), (2Л0)], эффективно решаемая методами теории струй. Поскольку в соответствующей вариационной формулировке сужен класс допустимых функций h(x,y), то получающиеся решения дают оценки снизу для функционала J на истинном решении  [c.71]

Указанное несоответствие с физикой сверхзвукового течения требует новой постановки вариационной задачи с дополнительным требованием, чтобы давление на контуре тела было везде неотрицательное. Ниже дается обш ий метод решения этой задачи для плоского и осесимметричного течения газа.  [c.373]

В данной работе предлагается принципиально новый метод расчета цилиндрических складчатых систем, основанный на алгоритме МГЭ для стержневых систем. Теоретической основой метода является вариационный метод Канторовича-Власова. Решение задачи Коши изгиба прямоугольной пластины представлено в 6.2. Его можно использовать для расчета пластинчатых систем в случаях, когда плоским напряженно-деформированным состояниям элементов можно пренебречь. Алгоритм МГЭ устраняет практически все отмеченные выше недостатки существующих методов. Так, для формирования системы разрешающих уравнений типа (1.38) не используются матричные операции, не рассматривается основная система, снимаются ограничения на условия опирания пластин по торцам (граничные условия могут быть любыми, а каждая пластина может иметь смешанные граничные условия и включать как прямоугольные, так и круглые элементы), матрица коэффициентов А сильно разрежена, хорошо обусловлена и может приметаться в задачах статики, динамики и устойчивости, возможен учет ортотропии, ребер жесткости, упругого основания, переменной толщины и т.д. Таким образом, алгоритм МГЭ охватывает практически наиболее общий случай расчета. Перечисленные преимущества сопровождаются, как это бывает всегда, и недостатками. В частности, порядок матрицы А существенно больше порядка матрицы реакций метода перемещений. Однако этот недостаток  [c.232]

Определение критических чисел из трансцендентных уравнений (6.14), (6.15) требует громоздких вычислений, поэтому в первых исследованиях устойчивости равновесия слоя с твердыми границами использовались приближенные методы решения краевой задачи для нейтральных возмущений. Впервые значения минимального критического числа Рэлея были найдены Джефрисом с помощью метода конечных разностей [ ], а затем, более точно, — методом Фурье Р]. Исследование границы устойчивости на основе точных характеристических уравнений было проведено Лоу [ ] и особенно обстоятельно — в известной работе Пеллью и Саутвелла [ ] ). В последней работе был также предложен вариационный метод нахождения критических чисел Рэлея для плоского слоя. Дальнейшее развитие вариационный метод получил в работах Чандрасекара (см. [ 2]). Весьма эффективным оказался также метод Галеркина (см. 7 и 8).  [c.43]


Применительно к задачам оптимального профилирования сопел для воздушно-космических систем (ВКС) интересны не только плоские симметричные, но и плоские несимметричные сопла, которые кроме тяги создают подъемную силу и момент. В ЛАБОРАТОРИИ решение вариационных задач, включающих эти характеристики или их комбинации в качестве оптимизируемого или фиксируемого функционала ( изопериметрического условия ), с помощью МНК выполнила Г.Ю. Миско [42]. Прямыми методами вариационного исчисления оптимальное профилирование несимметричных сопел ВКС успешно осуществили М. К. Аукин и Р. К. Тагиров [43, 44]. Прямые методы позволили учесть трение и вытесняющий эффект пограничного слоя (последний для сопел ВКС увеличивает тягу) и осуществить оптимальный выбор наклона короткой (нижней) стенки несимметричного сопла.  [c.367]

В первых пяти главах учебника рассматриваются общие вопросы теории упругости (теория напряжений и деформаций, основные соотношения и теоремы, постановка и лгетоды решения задач теории упругости, плоская задача в декартовых координатах, плоская задача в полярных координатах). В шестой и седьмой главах излагаются основные уравнения теории тонких пластин (гибких и жестких) и некоторые задачи изгиба и устойчивости пластин. Восьмая глава учебника посвящена рассмотрению приближенных методов решения задач прикладной теории упругости (вариационных, конечных разностей, конечных элементов). В девятой главе рассматриваются основы расчета тонких упругих оболочек, причем основное внимание уделено вопросам расчета безмоментных и пологих оболочек. В десятой главе изучаются основы теории пластичности. Здесь рассмотрена и теория расчета конструкций по предельнол1у состоянию.  [c.6]

К основным методам решения квазистати-ческих трехмерных задач теории упругих температурных напряжений относят методы, основанные на использовании термоупругого потенциала перемещений, вариационных принципов, а также методы возмущений, Майзеля и др. [43, 54, 57, 68, 73]. Для решения плоских задач могут быть ис-  [c.213]

Метод Жуковского — Мичелла предоставил принципиальную возможность решать задачи о струйном обтекании несжимаемой жидкостью полигональных 284 препятствий. Однако случай криволинейных препятствий требовал развития новых методов. Общая задача о плоском струйном обтекании заданного-криволинейного препятствия была сведена к интегро-дифферекциальному уравнению Т. Леви-Чивитой А. Билля и А. И. Некрасовым Некрасов построил методом последовательных приближений решение задачи об обтекании дуги круга, доказал единственность решения и сходимость использованного им метода для достаточно малых дуг и вычислил первое приближение. Ряд общих теорем существования и единственности для плоских задач о струйном обтекании препятствий был доказан Ж. Лерэ с использованием методов функционального анализа и М. А. Лаврентьевым на основе развитых им вариационных методов. Некоторые инфинитезимальные доказательства отдельных теорем были получены также А. Вайнштейном.  [c.284]

Те же методы применялись и к задаче теплопереноса между плоскими пластинами в линейном приближении [15, 5, 53, 30, 97—99]. На рис. 44 приводится сравнение теплового потока, соответствующего точному численному решению по БГК-модели [53], с экспериментальными данными Тигена и Спрингера [100]. Численные результаты лежат всюду ниже, чем экспериментальные. То же самое имеет место и для вариационных решений, основанных на различных моделях (твердые сферы, максвелловские молекулы) [99], и это, по-видимому, исключает возможность того, что расхождение обусловлено использованием БГК-модели. Как указал в частном сообщении Спрингер, это расхождение, возможно, объясняется разницей между давлением в камере и давлением между пластинами, в то время как экспериментальные данные получаются в предположении, что эти давления одинаковы. Расхождение такого же типа обнаружено в работе [30], в которой течение Куэтта двухатомного газа исследуется методом дискретных ординат на основе модели Хол-вея [101].  [c.406]

В заклю-чение отметим, что для исследования концентрации напряжений в элементах конструкций на практике широко используют теоретические и экспериментальные методы. Среди теоретических методов в настоящее время наиболее распространены численные методы решения на ЭВМ задач теории упругости, пластичности и ползучести (среди них вариационно-разностный метод и метод конечных элементов, см. гл. 26). Они позволяют достаточно точно исследовать коицентрацию аврдаений в телах произвольной формы (плоских, осесимметричных и пространственных) при простом и. сложном нагружении.  [c.564]

Первая часть монографии посвящена теории расчета напряженного и деформированного состояния, а также теории разрушения. Изложение начинается обзором работ по разрушению и перечислены основные уравнения теории пластичности. Затем рассмотрена плоская задача по определению напряженно-деформированного состояния методом линий скольжения. Для решения более сложных задач рекомендован вариационный метод. До сих пор в литературе по теории обработки металлов давлением, главным образом в трудах уральской школы проф. докт. техн. наук И. Я. Тарновского, был описан лишь один принцип — принцип возможных изменений деформированного состояния. В монографии применен для расчета напряжений принцип возможных изменений напряженного состояния. Сформулирован также третий обобщающий принцип — принцип одновременного возможного изменения напряжений и деформаций.  [c.7]

Для анализа задач трехмерного течения наиболее приемлемыми являются вариационные методы. Не исключено, конечно, применение вариационных методов и для решения плоских задач. Как было указано в гл. 1 теория пластичности дает два вариационных принципа для расчета деформаций и напряжений [59, 72, 74]. Эти вариационные принципы (возможных изменений деформированного состояния и возможных изменений напряженного состояния) позволяют получить при помощи прямых методов, например метода Ритца, приближенные решения определенного круга технологических задач.  [c.84]

В. М. Александровым, Ю. Н. Пошовкиным [24] и Н. В. Генераловой, Е. В. Коваленко [32] решены соответственно плоская и пространственная контактные задачи о вдавливании без трения полосового в плане штампа в поверхность линейно-деформируемого основания, армированную тонким упругим покрытием переменной толщины, жесткость которого соизмерима или меньше жесткости основного упругого тела. Обе задачи сведены к исследованию интегрального уравнения Фредгольма второго рода с коэффициентом при старшем члене, являющимся достаточно произвольной функцией поперечной координаты. Для его решения в первом случае использовался метод сплайн-функций в сочетании с методом ортогональных многочленов, когда толщина покрытия постоянна. Во втором варианте применялся проекционный метод Бубнова-Г алеркина с выбором в качестве координатных элементов систем ортогональных полиномов или дельтаобразных функций (вариационно-разностный метод), а также алгоритм сращиваемых асимптотических разложений, когда упомянутый выше коэффициент мал. Доказано, что неравномерность толщины покрытия существенно влияет на закон распределения контактных давлений.  [c.463]


Вариационный метод Кастильяно дал возможность получить решение задачи Ламе для призмы в других, более сложных случаях нагрузок. В. П. Не-требко ) рассмотрел задачи о кручении прямоугольной призмы при заданном распределении касательных напряжений на основаниях ее, а также случаи так называемого стесненного кручения, когда одно или оба основания не могут искривляться (как это следует из теории Сен-Венана) и должны оставаться плоскими. Е. С. Ко-ноненко ) нашел решение задачи о сжатии призмы между двумя абсолютно твердыми плитами при наличии полного сцепления на поверхностях контакта задача решена во втором полном приближении (с 24-мя коэффициен-  [c.357]

Другим важным методом является вариационный метод. Он был разработан Швингером и другими и оказался весьма полезным для приближенного, но довольно точного решения многих задач. Припцип этого метода в применении к скалярной проблеме дифракции на отверстии в плоском экране состоит в следующем.  [c.386]

Задача дифракции плоской волны на незамкнутой цилиндрической оболочке, по-видимому, впервые была рассмотрена Зомерфельдом в работе [122] для случая условий Дирихле на ее поверхности. В дальнейшем этой задаче уделялось некоторое внимание в работе [182]. Наиболее полный анализ звука, рассеянного незамкнутой цилиндрической оболочкой, можно найти в работе [162], где решение выполнено на основе вариационного метода. Впоследствии ряд исследователей возвращались к указанной задаче (например, в работе [179], где использован метод задачи Римана — Гильберта).  [c.81]


Смотреть страницы где упоминается термин Задача плоская Решение — Методы вариационные : [c.467]    [c.2]    [c.153]    [c.12]    [c.244]    [c.199]    [c.204]    [c.396]    [c.202]   
Прочность, устойчивость, колебания Том 1 (1968) -- [ c.30 , c.32 ]



ПОИСК



Вариационное решение

Задача вариационная (задача

Задача и метод

Задачи и методы их решения

М тох решения плоской задачи

Метод вариационный

Методы плоское

Методы решения плоских задач

Плоская задача

Решения метод

Решения плоские

Ряд вариационный



© 2025 Mash-xxl.info Реклама на сайте