Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Уравнения Навье — Коши

После установления Навье в 1821 г. основных уравнений и создания Коши теории напряжений и деформаций важнейшее значение для развития теории упругости имели исследования Сен-Венана. В его классических работах по теории кручения и изгиба на основе общих уравнений теории упругости дано решение задач кручения и изгиба призматических брусьев. В этих исследованиях Сен-Венан создал полуобратный метод решения задач теории упругости, сформулировал знаменитый принцип Сен-Венана , дающий возможность получить решение задач теории упругости. С тех пор было затрачено много усилий на развитие теории упругости и ее приложений, доказан ряд общих теорем, предложены общие методы интегрирования дифференциальных уравнений равновесия и движения, решено много частных задач, представляющих принципиальный интерес. Развитие новых областей техники требует более глубокого и широкого изучения теории упругости. Большие скорости вызывают необходимость постановки и решения сложных вибрационных проблем. Легкие металлические конструкции привлекают серьезное внимание к вопросу упругой устойчивости. Концентрация напряжений вызывает опасные последствия, поэтому пренебрегать ею рискованно.  [c.5]


Для решения задач теории упругости в перемещениях необходимо уравнения равновесия для точек внутри тела (уравнения Навье) представить в перемещениях. С этой целью выразим напряжения через деформации в форме Лямэ, а деформации представим через перемещения по уравнениям Коши.  [c.54]

Уравнения (1.4) и (1.6) обычно называют уравнениями движения Ламе. Они многократно выводились и использовались в работах по линейной теории упругости Навье (1821), Коши (1828, 1840), Пуассона (1829), Ламе и Клапейрона (1833), Стокса (1845, 1851), Ламе (1852). Приведенные ниже иные формы записи уравнений (1.6) и частные свойства их решений также установлены в отмеченных работах. Глубокий обзор исследований, выполненных на раннем этапе развития теории упругости, приведен в работе [186].  [c.17]

Главные полученные Пуассоном результаты содержатся в двух его мемуарах ), опубликованных в 1829 и 1831 гг., а также в его-курсе механики ). Начав свое исследование с рассмотрения системы частиц, между которыми действуют молекулярные силы, он получает три уравнения равновесия и три краевых условия. Они сходны с теми, которые были выведены до него Навье и Коши. Пуассон доказывает, что выраженные этими уравнениями условия не только необходимы, но также и достаточны, чтобы обеспечить равновесие некоторой области тела. Ему удается проинтегрировать уравнения движения, и он показывает, что возмущение в малой области тела влечет за собой возникновение волн двух типов ). В более быстро распространяющейся волне движение отдельных частиц нормально к фронту волны и сопровождается изменениями объема (объемным расширением) в другой же волне движение частиц касательно к фронту волны и при таком движении имеет место лишь угловая деформация (искажение формы элемента) без изменения объема.  [c.137]

Определяющим для последующего развития теории упругости и всей механики сплошной среды явился континуальный подход Коши, разработанный им в 20-х годах. Однако еще раньше толчок для развития теории упругости и гидродинамики вязкой жидкости дали два мемуара Навье, представленные им Парижской академии наук в 1821 и в 1822 гг. В них Навье, следуя П. С. Лапласу и используя феноменологическую молекулярную модель среды, впервые вывел уравнения теории упругости изотропного тела (в смещениях) и уравнения движения несжимаемой вязкой жидкости (так называемые уравнения Навье — Стокса).  [c.48]


Однако в пространственном случае даже для конечной полной энергии было доказано только существование — и то лишь для ограниченных интервалов времени ). Хотя предположение о конечности полной энергии, вероятно, может быть ослаблено,— пожалуй, достаточным может оказаться ограниченность скорости, — Е. Хопф 2) показал, что задача Коши для уравнений Навье—Стокса не является корректно поставленной, если допустить, что с увеличением расстояния от начала координат скорость возрастает линейно, а давление — квадратично.  [c.55]

Все эти экспериментальные исследования, несомненно, послужили мощным толчком к тому, чтобы предпринимать попытки к теоретическим исследованиям по вопросу о составлении дифференциальных уравнений движения жидкости с учётом не только давления", но и внутреннего трения. К этому времени стали открываться возможности для теоретических исследований такого рода в связи с развитием механика упруго деформируемого тела. Накопление исследований и решений конкретных задач по теории изгиба брусьев, по теории кручения стержней и по теории колебаний стержней и пластинок на основе использования закона Гука о пропорциональности напряжений деформациям создало все предпосылки не только к тому, чтобы установить общие уравнения равновесия и колебаний упругих тел, но и к тому, чтобы закон Гука в несколько изменённой форме распространить на жидкость и на основе этого создать дифференциальные уравнения движения жидкости с учётом внутреннего трения. Этим обстоятельством и объясняется тот факт, что создатели математической теории упругости—Навье, Пуассон, Коши, Сен-Венан и Стокс оказались одновременно и создателями математической теории движения вязкой жидкости.  [c.14]

После подстановки этих величин в два уравнения Навье (5.256) мы видим, что для упругого вещества прп плоской деформации последние соотношения эквивалентны уравнениям Коши — Ри-мана  [c.230]

После установления Навье в 1821 г. основных уравнений и создания Коши теории напряжений и теории деформаций важнейшее значение для развития теории упругости имели исследования Барре де Сен-Венана (1797—1886).  [c.5]

Следует далее подчеркнуть, что при применении решения Папковича и Нейбера уравнения Навье удовлетворяются гармоническими функциями, множество из которых известно. Однако трудности при этом также связаны с удовлетворением граничных условий. Кажущиеся вполне безобидными краевые условия для первой граничной задачи (формулы Коши) р,- = стг/П, принимают, согласно решению Папковича и Нейбера, вид  [c.113]

Эти уравнения в механике деформируемого тела известны как дифференциальные уравнения равновесия. Иногда их связывают с именем французского математика и механика Навье (1785—1836), современника Коши, и называют уравнениями Навье.  [c.35]

Лишь подчеркнутые члены отличают (5.2) от классического уравнения Навье—Коши. Старшие (четвертые) производные входят с множителем — неким характерным отношением и Д3 к и ( 2). Слагаемые с А существенны лишь для быстроменяющихся решений. Если же на длине порядка А решение не успевает измениться, то старшие производные можно отбросить (подробнее об этом — ниже, в главе  [c.103]

Обратимся к решениям /, = 1/ +Ф задачи Коши (2.2) для уравнения Навье -  [c.82]

Впервые уравнения равновесия упругого твердого тела в предположении дискретного молекулярного строения тела были получены Навье. В современной форме несколько позже эти уравнения вывел Коши, исходя из гипотезы о сплошном и однородном строении твердого тела. Он впервые ввел в уравнения теории упругости две упругие постоянные.  [c.10]

Рассмотренные в двух предыдущих главах статические и геометрические соотношения механики деформируемого твердого тела (уравнения равновесия Навье и соотношения Коши) не зависят от свойств материала и его поведения при деформировании (упругость, пластичность, ползучесть).  [c.106]


В этой книге излагается общая теория криволинейных координат и ее применения в механике, в учении о теплоте и теории упругости разъясняется преобразование уравнений теории упругости к криволинейной системе координат и в качестве примера исследуется деформация сферической оболочки. В заключительных главах Ламе подвергает критическому анализу принципы, на основе которых строится вывод основных уравнений теории упругости. Теперь он уже не одобряет вывод уравнений по способу Навье (с привлечением гипотезы молекулярных сил), а отдает предпочтение методу Коши (в котором используется лишь статика твердого тела). Затем он принимает гипотезу Коши, согласно которой компоненты напряжения должны быть линейными функциями компонент деформации. Для изотропных материалов принятие этой гипотезы приводит к сокращению кисла необходимых упругих постоянных до двух, находимых из испытаний на простое растяжение и простое кручение. Таким путем все не-  [c.144]

К. Представление о сплошности тела неявно используется во всех ранних исследованиях, начиная с работ Л. да Винчи и Г. Галилея. Лишь в 1812 г. С. Пуассон (1781-1840) предложил модель пластины как системы частиц, распределенных в ее срединной плоскости. Позже подобные модели рассматривали Л. Навье (1785-1836), О. Коши (1789-1857) и некоторые другие ученые. Однако и они используют вместо суммирования по системе частиц операцию интегрирования, неявно переходя таким образом от системы частиц к непрерывной среде. Впервые, по-видимому, уравнения упругого деформирования тела без использования каких-либо дискретных моделей, а на основе пред-  [c.11]

В том же томе своих Математических упражнений Коши пытался построить уравнения для анизотропного упругого тела, используя молекулярную модель. Путем более сложных, но не более строгих рассуждений, уступающих в ясности краткому мемуару Навье, он получил уравнения для анизотропного тела с девятью упругими постоянными (здесь же не вполне последовательно и без должного обоснования он получил из молекулярной модели и классические уравнения для изотропного тела с двумя упругими постоянными).  [c.50]

Таким образом, еще в конце 20-х годов были получены две системы уравнений теории упругости, характеризовавшие изотропное тело одной (Навье) и двумя (Коши) упругими постоянными. Впрочем, все французские авторы, включая и самого Коши, считали вначале, что реальное изотропное тело характеризуется одной константой. Обе системы были в конце 30-х годов обобщены на анизотропные тела с введением соответственно 15 (Пуассон) и 21 (Грин) константы.  [c.53]

Подобные уравнения были получены Навье, Коши и Пуассоном в начале прошлого столетия, но они базировались скорее на произвольных допущениях, чем на учете молекулярного взаимодействия. Нынешний способ вывода этих уравнений относится к средним годам прошлого столетия и оформлен Сен-Венаном и Стоксом. Свое наименование уравнения получили по имени первого (Навье) и последнего (Стокса) исследователей.  [c.197]

Одновременно с Навье и Пуассоном уравнениями равновесия упругого тела занимался и Коши. Но исследования Коши по своему методу существенно отличаются- от исследований Навье и Пуассона. В работах Коши последовательно используются понятия напряжения и относительных деформаций, представления о поверхности напряжений и поверхности деформаций, представления о главных напряжениях и главных относительных удлинениях и основная гипотеза  [c.18]

Важнейшие этапы развития теории упругости исторически отмечаются обнародованием Навье в 1821 г. общих уравнений равновесия для пространственных тел и предложенными в 1822— 1827 гг. Коши определениями напряженно-деформированного состояния посредством компонентов напряжений и деформаций.  [c.14]

Основы теории упругости были разработаны почти одновременно Навье (1821), Коши (1822), Пуассоном (1829). Независимо друг от друга они получили по существу все основные уравнения этой теории. Особо выделялись работы Коши. В отличие от Навье и Пуассона, привлекавших гипотезу молекулярных сил, Коши, опираясь на метод, в котором используется статика твердого тела, ввел понятия деформации и нагфяжения, установил дифференциальные уравнения равновесия, граничные условия, зависимости между деформациями и перемещениями, а также соотношения между напряжениями и деформациями для изотропного тела, первоначально содержавшие две упругие постоянные. В эти же годы появились исследования М. В. Остроградского о распространении волн в упругом теле при возмущении в его малой области. На эти исследования ссылается в своих работах Пуассон, впервые (1830) доказавший существование в однородной изотропной среде двух типов волн (волны расширения и искажения).  [c.5]

Развитие технической механики жидкости (гидравлики) в XIX в. за рубежом. Зародившееся во Франции техническое (гидравлическое) направление механики жидкости быстро начало развиваться как в самой Франции, так и в других странах. В этот период в той или другой мере были разработаны или решены следующие проблемы основы теории плавно изменяющегося неравномерного движения жидкости в открытых руслах (Беланже, Кориолис, Сен-Венан, Дюпюи, Буден, Бресс, Буссинеск) вопрос о гидравлическом прыжке (Бидоне, Беланже, Бресс, Буссинеск) экспериментальное определение параметров, входящих в формулу Шези (Базен, Маннинг, Гангилье, Куттер) составление эмпирических и полуэмпирических формул для оаределения гидравлических сопротивлений в различных случаях (Кулон, Хаген, Сен-Венан, Пуазейль, Дарси, Вейсбах, Буссинеск) открытие двух режимов движения жидкости (Хаген, Рейнольдс) получение так называемых уравнений Навье — Стокса, а также уравнений Рейнольдса на основе использования модели осредненного турбулентного потока (Сен-Венан, Рейнольдс, Буссинеск) установление принципов гидродинамического подобия, а также критериев подобия (Коши, Риич, Фруд, Гельмгольц, Рейнольдс) основы учения о движении грунтовых вод (Дарси, Дюпюи, Буссинеск) теория волн (Герстнер, Сен-Венан, Риич, Фруд,  [c.28]


Вместо галилеевского принципа расчета по предельному, разрушающему состоянию стал утверждаться новый принцип рабочего состояния. Напряжения в рабочем состоянии каждого элемента предполагалось ограничить допустимыми, т. е. такими, чтобы возипкающие в нем изменения не возрастали со временем . Определение же напряженного состояния кан дого кусочка вещества внутри конструкции стало возможно с помощью выведенных Навье и Коши уравнений равновесия. Оказалось, что полная картина напряжений во внутренней точке тела описывается девятью величинами тремя напряженнями растяжения — сжатия и шестью сдвиговыми напряжениями, по они связаны шестью уравнениями равновесия, и независимых среди них, самое большее, три. Имя Пуассона обессмертили не только полученные им уравнения равновесия и колебания стержней, но н известный каждому инженеру коэффициент Пуассона, входящий наряду с модулем Юнга в наснорт любого упругого материала.  [c.22]

В 1822 и 1823 гг. великими Навье и Коши были представлены в Парижскую академию научные трактаты, или, как их тогда называли, мемуары, положившие начало двум подходам к рассмотрению механических свойств твердых тел. Первый, основанный на рассмотрении тела как системы взаимодействующих между собой молекул, привел к довольно строгим физическим теориям механических свойств кристаллов различного строения. Второй же, так называемый континуальный подход, заключался в замене реального тела воображаемой сплошной средой, непрерывно заполняющей пространство. Уравнения равновесия ее были получены Коши с помощью предложенного Эйлером метода выделения элементарного объема и рассмотрения действующих на него сил. Для описания поведения сплошной среды постулируются определяющие уравнения. Полученная модель такой среды считается пригодной для расчета процессов в некоторых реальных телах, если результаты этого расчета с достаточной точностью соответствуют результатал макроскопического эксперимента, в ходе которого измеряются механические величины, входящие в уравнения. Такие модели называются феноменологическими, они составляют основу механики сплошных сред.  [c.34]

Выводом уравнений изгиба пластинок, на основании молекулярной модели и обпщх уравнений теории упругости, занимались Пуассон, Навье и Коши. У Навье мы находим вполне строгое уравнение для статического изгиба пластинки как для случая нормальной нагрузки, так и для случая выпучивания пластинки под действием сил на контуре, лежащих в плоскости пластинки В случае свободно опертой прямоугольной пластинки Навье получил правильное решение, использовав двойные тригонометрические ряды. Общим анализом условий на контуре пластинки занимался Пуассон , однако он сформулировал одно лишнее условие на контуре в случае задания на нем внеш-58 них сил. Правильное число условий было указано позже Г. Кирхгофом и ясно интерпретировано физически В. Томсоном . Кирхгофу принадлежит общая теория изгиба стержней, а также теория пластинок, основанная на четких гипотезах, близких к гипотезе плоских сечений в элементарной теории изгиба, и вполне строгий вывод известных уже уравнений малых прогибов пластинок при помощи принципа виртуальных перемещений. Позже Кирхгоф и Клебш развили теорию для не слишком малых прогибов пластинок.  [c.58]

Первый мемуар Пуассона зб) по рассматриваемому вопросу был прочитан Парижской академии в апреле 1828 г. Этот мемуар интересен заключающимися в нем многочисленными приложениями общей теории к частным задачам. При рассмотрении вопроса об общих уравнениях Пуассон так же, как и Коши, начинает с вывода уравнений равновесия, выраженных в компонентах напряжения, и вычисляет усилие на какой-либо площадке, происходящее от интрамолекулярных сил. Формулу, выражающие напряжения через деформации, содержат суммы, которые берутся по всем молекулам , находящимся в области действия данной молекулы . Пуассон не находит возможным заменить все суммы интегралами и считает, что это может быть сделано лишь при суммировании по телесному углу вокруг данной молекулы , ро не при суммировании по величине,, расстояния, отсчитываемого от нее. Уравнения равновесия и движения, изотропного упругого твердого тела, которые получаются таким образом, не отличаются от уравнений Навье. Принцип, по которому суммирования могут быть заменены интегрированием, разъяснен Коши зз) следующим образом для, объема, содержащего очень много молекул и имеющего малые размеры по сравнению с радиусом той сферы, в которой проявляется заметное молекулярное действие, число молекул можно считать пропорциональным объему если теперь мы оставим в стороне молёкулы находящиеся в непосредственной близости к рассматриваемой молекуле, то действие всех молекул, заключенных в одном из малых объемов, о которых была речь, эквивалентно силе, ухиния действия которой проходит через центр тжкести объема, а величина пропорциональна этому объему и некоторой функции от расстояния между центром тяжести объема и данной рассматриваемой молекулой. Действие более удаленных молекул именуется регулярным , а действие более близких— нерегулярным . Пуассон считал, что нерегулярным действием более  [c.23]

Задача о движении нескольких вихрей имеет ряд существенных достоинств. Во-первых, она допускает простое численное интегрирование в рамках современных вычислительных подходов. Во-вторых, в ряде случаев симметрии движения относительно прямой или точки удается построить аналитические выражения для зависимости координат от времени или установить относительные траектории движения. Наличие точных решений позволяет оценивать эффективность вычислительных алгоритмов решения задачи Коши применительно к нелинейным вихревым движениям. И, наконец, если задача трех вихрей в целом интегрируема, то четыре и более вихрей обеспечивают простейший (если можно употреблять такое слово) прид1ер хаотического поведения. Отметим, что хаотическое движение нельзя рассматривать как пример турбулентных течений, поскольку турбулентность в обычном понимании означает стохастическое поле скорости, описываемое детерминированными уравнениями Навье — Стокса. Скорее вдесь речь должна идти о новом режиме течения, не укладывающемся в традиционное деление на ламинарное и турбулентное движение. Стохастическое движение системы нескольких вихрей представляет собой ламинарный поток со стохастическими свойствами. Когерентные вихревые структуры в турбулентных ( например сдвиговых ) течениях, наоборот, представляют собой регулярные картины потока в стохастическом поле скорости.  [c.73]

В струйных течениях и течениях в каналах используются так называемые параболизованные уравнения Навье — Стокса, которые получаются в результате отбрасывания вторых и смешанных производных по X, что позволяет свести краевую задачу к задаче Коши. Если провести такую процедуру первоначально с уравнениями (1.28, 1.29), записанными в декартовых координатах, а затем в  [c.31]

Fi, Li определяются, как н выше. Уравпепия, содержащие старшие производные, в главных членах совпадают с аналогичными уравнениями Навье — Стокса работы [54]. Уравпепия для частиц, как уже отмечалось, приводимы к симметрическому виду. Если проделать симметризацию и к полученной системе добавить уравнение неразрывпости для газа, то система по-прежнему остается симметрической. Тогда будут выполнены условия I — ITI работы [54J, следовательно, задача Коши при достаточно гладких начальных данных для системы дифференциальных уравнений  [c.57]


Лемма I. Если у стоксова решения ldeg У)/ = ш 2, то у добавка ф(х, у) к в аналитическом решении задачи Коши (2.1) для уравнения Навье - Стокса (1.1) ldeg ф 2 г.  [c.80]

Далее, поскольку в тейлоровском разложении решения )/(дг, у) задачи Коши (2.1) с v/ , определяемым (4.1), для уравнения Навье - Стокса (1.1) все одночлены содержат степени х заведомо не меньше 2, функция и(х, у) = х Щх, у) также является аналитической функцией в окрестности точки (0,0). В силу леммы 1 ldeg( j/ - xi/ ) > 2 п + 1).  [c.87]

В последующем задаче об изгибе балки уделяли много внимания крупные ученые, в числе которых были Мариотт, Лейбниц, Варньон, Яков Бернулли, Кулон и др.. Пишь в 1826 г. с выходом в свет лекций по строительной механике Навье был завершен сложный путь исканий решения задачи об изгибе балки, затянувшийся во времени почти на двести лет. Навье дал правильное решение этой задачи, им впервые введено понятие напряжения. Им же сделан существенный шаг в направлении упрощения составления уравнений равновесия, состоявший в том, что Навье отметил малость перемещений и возможность относить уравнения равновесия к начальному недеформированному состоянию. Это очень широко используемое положение иногда называют принципом неиз жнности начальных размеров. В истории развития механики деформируемого твердого тела важную роль сыграли такие крупные ученые, как Лагранж, Коши, Пуассон, Сен-Венан. Особо следует отметить заслуги Эйлера, впервые определившего критическое значение сжимающей продольной силы, приложенной к прямолинейному стержню (1744). Решение этой задачи во всей полноте тоже заняло по времени почти двести лет Дело в том, что решение Эйлера было ограничено предположением о линейно-упругом поведении материала, что накладывает ограничение на область применимости полученной Эйлером формулы. Применение эюй формулы за границами ее достоверности и естественное в этом случае несоответствие ее экспериментальным данным на долгое время отвлекло интерес инженеров от этой формулы и лишь в 1889 г. Энгессером была предпринята попытка получить теоретическое решение задачи об устойчивости за пределом пропорциональности. Он предложил 1аменить в формуле Эйлера модуль упругости касательным модулем i = da/di. Однако обоснования этому своему предложению не дал. В 1894 г. природу потери устойчивости при неизменной продольной силе правильно объяснил русский ученый Ясинский и лишь в 1910 г. к аналогичному выводу пришел Карман. Поэтому исторически более справедливо назвать его решением Ясинского —Кармана, предполагая, что Карман выполнил это исследование независимо от Ясинского.  [c.7]

В главе I мы, как первую задачу, теоретически рассмотренную в сопротивлении материалов, отметили задачу о балке, один конец которой заделан, а другой нагружен силой. Это была задача о баяке, подверженной действию постоянной перерезывающей силы. До Сен-Венана упомянутая задача привлекала внимание многих математикоз. В частности, ею занимались Кулон и Коши. В то же вреяя были предложены также решения задачи кручения, но все они были получены с помощью методов, основанных на сомнительных предположениях. Полученные решения, в свете современных знаний справедливы при некоторых ограничениях, но последние тогда не были ясно сформулированы ). Сен-Венан ) первым ввел задачи об изгибе и кручении в область общей теории (которая приобрела свой законченный вид после того, как Навье вывел общие уравнения теории упругости )).  [c.417]

Навье, как мы видели в предыдущем параграфе, при выводе основных уравнений исходил из рассмотрения сил, действующих между отдельными молекулами деформированного упругого тела. Коши ) вместо этого пользуется понятием давления на плоскость (концепцией, знакомой ему из гидродинамики) и вводит гипотезу, согласно которой в упругом теле это давление уже не является нормальным к плоскости, на которую оно действует. Таким путем в теорию упругости было введено понятие напряжения. Полное давление на бесконечно малый элемент плоскости, взятой внутри деформированного упругого тела, определяется как результирую-1цая всех воздействий, оказываемых молекулами, лежащими lio одну сторону плоскости, на молекулы, лежащие по другую ее сторону,—воздействий, пересекающих рассматриваемый элемент плоскости ). Деля полное давление на площадь элемента, Коши получает величину напряжения.  [c.133]

В своём выводе основных уравнений теории упругости Навье (см. стр. 129) исходил из предположения, что идеально упругое тело состоит из молекул, между которыми при его деформировании возникают силы взаимодействия. При этом принималось, что силы эти пропорциональны изменениям расстояний между молекулами и действуют по направлениям соединяющих их прямых линий. Таким путем Навье удалось установить соотношения между деформациями и упругими силами для изотропных тел с введением лишь одной упругой константы. Коши (см. стр. 135) первоначально ввел две константы в зависимости между напряжением и деформацией в случае изотропии. В самом же общем случае анизотропного тела Пуассон и Коши допускали, что каждая из шести компонент напряжения может быть представлена однородной линейной функцией шести компонент деформации (обобщенный закон Гука). В эти функции входило 36 постоянных. Положив в основу физического истолкования явления упомянутую выше молекулярнуро теорию, они снизили число постоянных для общего случая до 15. Они показали, что изотропия допускает дальнейшее снижение этого числа, так что окончательно для записи соотношений между компонентами напряжения и деформации необходима лишь одна постоянная, которую и ввел Навье.  [c.262]

Собственные научные исследования в области теории упругости были начаты Нейманном, когда Навье, Коши, Пуассон еще яродолжали активно работать в этой области и когда большое применение эта теория находила в оптике. В своей работе по двойному лучепреломлению ) Нейманн рассматривает твердое упругое тело, структура которого определяет три взаимно-перпендикулярные плоскости симметрии, и, следуя методу Навье (стр. 129), выводит для него уравнения равновесия, содержащие шесть упругих постоянных, и исследует распространение волн в этой упругой среде. В дальнейшем он заинтересовался непосредственно упругими свойствами кристаллов, имеющих три взаимно-перпеи-дикулярные плоскости симметрии ), и указал, каким образом нужно ставить опыты, чтобы получать непосредственным испыта-пием значения этнх шести постоянных. Он впервые вывел формулу для вычисления модуля упругости при растяжении для вырезанной из кристалла призмы, с произвольной ориентировкой оси. В этих ранних работах Нейманн кладет в основу своих исследований теорию молекулярного строения упругих тел и в соответствии с этим использует уменьшенное число упругих постоянных, как это делали до него Пуассон, а позднее Сен-Венан.  [c.300]

Вывод общих уравнений математической теории упругости в трудах Навье, Коши, Пуассона в 20-е годы XIX в. имел большое значение для даль-лейшего развития теории колебаний и волн. Раньше для каждого типа упругих систем уравнения движения приходилось выводить отдельно, пользуясь специальными допущениями, отныне стала возможной единообразная трактовка таких вопросов, В частности, была поставлена в общем виде и матема-  [c.272]

В статье, опубликованной в 1843 г., Сен-Венан ссылается на цитированные выше работы Навье, Пуассона и Коши и показывает возможность вывода уравнений движения вязкой жидкости с помощью видоизменения положений теории упругости о пропорциональности касательных напряжений деформациям сдвига без применения гипотез о притяжении и отталкивании отдельных частиц. Он вводит в рассмотрение направления главных скоростей скошения и главных тангенциальных напряжений, принимает гипотезу о совпадении этих направлений при движении жидкости и в конце концов получает два вида соотношений 1) соотношения пропорциональности разностей нормальных напряжений разностям соответственных скоростей удлинений и про-цррциональности касательных напряжений соответственным скоростям сдвига с общим коэффициентом пропорциональности, представляющим собой коэффициент вязкости жидкости, и 2) соотношение, связывающее линейной неоднородной зависимостью среднее арифметическое от нормальных напряжений со скоростью объёмного расширения. Из этих соотношений Сен-Венан получает соотношения Пуассона и Коши для отдельных компонент напряжения. В другой статье, в том же томе Докладов Парижской Академии наук (стр. 1108—1115) Сен-Венан применяет уравнения движения вязкой жидкости к случаю течения  [c.19]

Разработку новых методов интегрирования дифференциальных уравнений динамики мы находим главным образом в трудах Гамильтона, французского ученого Пуассона (1781—1840) и выдающегося немецкого математика Якоби (1804—1851). В связи с прогрессом машиностроения, железнодорожной и строительной техники, с необходимостью исследования -движения тел в сопротивляющейся среде в XIX в. и в особенности в текущем столетии весьма быстро и успешно развивается механика сплошной среды — гидро- и аэромеханика и теория упругости. Развитие этих разделов теоретической механики, представляющих собой в настоящее время обширные самостоятельные дисциплины, связано с именами таких крупнейших ученых, как Пуассон, Ляме, Навье, Коши, Сен-Венан (во Франции), Гельмгольц, Кирхгоф, Клебш, Мор, Прандтль (в Германии), Стокс, Грин, Томсон, Рэлей (в Англии) и многих других.  [c.22]



Смотреть страницы где упоминается термин Уравнения Навье — Коши : [c.141]    [c.50]    [c.206]    [c.21]    [c.206]    [c.22]    [c.23]    [c.31]    [c.21]    [c.656]   
Теория и задачи механики сплошных сред (1974) -- [ c.206 ]



ПОИСК



Коши уравнения

Коши)

Навой 97, XIV

Навье

Навье уравнение



© 2025 Mash-xxl.info Реклама на сайте