Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Твердые тела и их строение

Жидкости по молекулярному строению занимают промежуточное положение между кристаллическими твердыми телами и газами. Сведения о молекулярном строении жидкостей менее полны, чем о строении твердых тел и газов. Считают, что молекулы жидкостей расположены так же плотно, как и молекулы твердых тел. Об этом свидетельствует равенство плотностей твердых тел и их расплавов. Поэтому нужно считать, что межмолекулярные силы и потенциальная энергия молекул жидкости имеют тот же порядок, что и для твердых тел. Жидкости, как и 10  [c.10]


В предыдущих главах мы обсуждали строение и физические характеристики твердых тел, рассматривая их явно или неявно как ансамбль сильно взаимодействующих частиц и полагая, что эта система частиц достаточно однородна (на расстояниях, существенно превышающих межатомные) и частицы системы распределены в пространстве одна относительно другой примерно одинаковым образом. Такой подход позволил выявить основные черты атомного и электронного строения твердых тел и связать их с физическими свойствами. В то же время и из физических представлений и из экспериментальных данных следует, что в зависимости от различных условий, например температуры, давления, тела могут находиться в различных состояниях. Более того, нет оснований утверждать, что при данных условиях в тепловом равновесии рассматриваемое тело обязательно должно быть однородным, а не состоять из нескольких соприкасающихся однородных частей, находящихся в различных состояниях. Такие состояния вещества, которые могут, соприкасаясь, существовать одновременно в равновесии друг с другом, называют различными фазами вещества. Очевидно, что различным фазам отвечают и различные физические свойства. Кроме того, свойства самих фаз меняются при из-  [c.248]

Взаимодействие внутренней поверхности канала неплотности с проходящими через них газообразными и жидкими средами происходит в результате их адсорбции на твердой поверхности. Поверхности каналов неплотностей состоят из участков, имеющих различные адсорбционные свойства. В результате дефектов строения твердых тел и вследствие двумерной миграции молекул адсорбция распространяется на устья микротрещин.  [c.47]

В посвященной вопросам радиационного материаловедения монографии С. Т. Конобеевского Действие облучения на материалы (1965 г.) рассматриваются атомные столкновения при воздействии различных видов облучения, возникающие при этом дефекты строения кристаллических тел и их связь со свойствами реакторных материалов. Однако графиту уделено в ней всего несколько страниц. В изданной позднее на русском языке книге Б. Келли Радиационное повреждение твердых тел (1970 г.) подробно изложена теория каскада смещений и рассмотрены результаты прямого наблюдения дефектов облучения. Однако вопросы, касающиеся влияния облучения на материалы, рассматриваются лишь в отношении связи радиационных дефектов с изменением различных свойств этих материалов.  [c.7]

Пластичные смазки по свойствам занимают промежуточное положение между маслами и твердыми смазками. Они сочетают свойства твердого тела и жидкости, что связано с их строением. Грубой моделью смазки может служить кусок ваты, пропитанный маслом. Волокна ваты соответствуют частицам дисперсной фазы, а масло, удерживаемое в вате,— дисперсионной среде смазки. Наличие структурного каркаса придает смазке свойства твердого тела. Под действием собственного веса он не разрушается, однако достаточно приложить нагрузку, как каркас разрушается и смазка деформируется как пластичное тело. После снятия нагрузки течение смазки прекращается, и каркас практически мгновенно восстанавливается.  [c.62]


Величина ЭЭЭ зависит от структурных дефектов приповерхностного слоя материала. Считают, что при механической обработке поверхности твердого тела, в том числе различных керамических и огнеупорных материалов, образуются дефекты, создаются энергетические уровни, запятые электронами (ионами). При нагревании или других видах возбуждения электроны (ионы) забрасываются на образовавшиеся локальные уровни. Освобождение их с этих уровней требует гораздо меньшей энергии, чем с нормальных уровней. Подобные уровни известны из зонной теории строения твердого тела и носят название уровней захвата. ЭЭЭ протекает до тех пор, пока не исчезнут дефекты кристаллов, влияющие на образование локальных уровней.  [c.47]

Особенностью строения газов и высокой подвижностью их молекул можно объяснить многие встречающиеся на практике явления (например, быстрое заполнение газом пустых сосудов, быстрое распространение газовых молекул, высокую сжимаемость газов, быстрое окисление твердых тел и др.).  [c.72]

Применительно к внешнему трению твердых тел и к процессу их контактирования То и Р - фрикционные константы, зависящие от физико-химического состояния поверхностей контактирующих тел. Теоретическое определение этих характеристик связано со значительными трудностями учета состава и строения пленок, покрывающих поверхности этих тел. Поэтому в настоящее время их определяют экспериментально по специальным методикам, разработанным под руководством И.В. Крагельского [10, 11, 13, 14, 18, 19].  [c.94]

Знание инфракрасных спектров газов представляет большой интерес для определения моментов инерции молекул, а следовательно и их строения. Спектры поглощения в жидких и твердых телах более сложны и теоретически менее изучены они служат однако важным эмпирич. средством для изучения строения молекул. Па фиг. 4 представлена пропускаемость (в %) слоя воды толщиной в 0,5 мм.  [c.134]

По своему строению термодинамические системы могут быть гомогенными, т. е. однородными, если нет границ раздела между отдельными их частями (газовые смеси, растворы), или гетерогенными, в которых существуют границы раздела между отдельными частями системы — фазами, отличающимися друг от друга или химическим составом, или физическими свойствами, обусловленными строением (твердое тело — жидкость — пар и т. д.).  [c.251]

В классической механике принято считать все физические тела сплошными, т. е. отвлекаться от их молекулярного и атомного строения. Подобно твердому телу, жидкости и газы можно рассматривать как совокупность весьма малых элементарных объемов — частиц. Размеры их, с одной стороны, должны быть столь малыми, чтобы внешние силы, действующие на них, в пределах каждой частицы можно было считать постоянными. С другой стороны, частицы должны быть достаточно велики по сравнению с объемом, занимаемым молекулами и межмолекулярными пространствами, т. е.  [c.6]

Первоначально Коши и Навье рассматривали твердое тело как систему материальных частиц. При этом каждую пару материальных частиц полагали связанной между собой силами взаимодействия, направленными по прямой, соединяющей их и линейно зависящими от расстояния между частицами. При том уровне, на котором находилась физика в начале XIX столетия, описать таким способом упругие свойства реальных тел не удалось. В настоящее время существуют строгие физические теории, позволяющие определить упругие свойства кристаллов различного строения, отправляясь от рассмотрения сил взаимодействия между атомами в кристаллической решетке. Более простой путь, по которому следует современная теория упругости, состоит в том, чтобы рассматривать распределение вещества тела непрерывно по всему его объему это позволяет перемещения материальных точек принимать за непрерывные функции координат.  [c.31]

Физика твердого тела включает в себя учение о природе и механизме образования твердых тел, их строении, микроскопическом устройстве, свойствах, факторах, обуславливающих и объясняющих поведение и свойства всех типов твердых тел, а также учение о методах исследования и использования твердых тел.  [c.8]


В вопросах, связанных с объяснением процессов деформирования и процессов нарушения структурного строения, приводящих к микроразрушениям и разрушению тел на части (собственно разрушению), механика деформируемого твердого тела опирается на достижения физики твердого тела. Это прежде всего использование представлений о различных видах межатомного взаимодействия, о нарушениях регулярной структуры кристаллических тел в виде дислокаций, вакансий, внедрений и законах их движения под действием приложенных сил.  [c.6]

В механике деформируемого твердого тела при сравнительно большой точности определения напряженно-деформированного состояния в конструкциях степень точности определения момента разрушения остается низкой. Это несоответствие в первую очередь объясняется тем, что гипотеза сплошности, которая кладется в основу задач определения напряжений и деформаций, дает возможность определить лишь осредненные значения напряжений, не учитывая реально существующей микроструктуры, которая существенно влияет на характеристики прочности и разрушения. Многообразие возможных и реально существуюш,их микроструктур не дает возможности построить единую теорию разрушения, которая могла бы учитывать влияние строения материалов на его прочность с той же степенью точности, как определяются напряжения и деформации на базе гипотезы сплошности, игнорирующей микроструктуру материалов. Описанные в 8.10 критерии кратковременной прочности базируются на представлении о разрушении как о мгновенном акте.  [c.181]

До сих пор, говоря об испытании образца на растяжение, мы касались только внешней стороны явления, не затрагивая внутренних процессов, происходящих на уровне молекулярного строения. И это естественно, поскольку в основу подхода была положена схема сплошной среды, лишенной каких бы то ни было структурных особенностей. Между тем процессы, происходящие в материале при деформации и разрушении, определяются структурой вещества и принципиально не могут быть объяснены средствами механики сплошной среды. Поэтому их изучение выпадает из класса задач, рассматриваемых в курсе сопротивления материалов. Это - уже вопросы физики твердого тела, построенной на совершенно отличной от сопротивления материалов основе. Тем не менее, изучая сопротивление материалов, необходимо иметь хотя бы самое общее представление о том, что происходит в материале при нагружении и от чего зависят упругость и пластичность.  [c.72]

Определенное таким образом тело есть, конечно, идеализация. Прежде всего, физика учит нас, что твердые тела состоят из молекул, которые сами имеют весьма сложное строение и могут находиться в самых разнообразных скрытых движениях. Именно о молекулах, взятых в их средних положениях, можно сказать, что они остается с большо(1 степенью приближения на одних и тех  [c.230]

Несовершенства (дефекты) строения реальных кристаллов металла. Описанная в предыдущем разделе кристаллическая решетка является идеальной. На основе физики твердого тела теоретически найдены механические характеристики, которые должны быть у кристаллов строго идеальной структуры. Сопоставление этих характеристик с обнаруживаемыми в опыте показывает значительное (в десятки и даже в сотни раз) превышение теоретическими значениями опытных. Последнее расхождение объясняется тем, что в реальных кристаллах всегда имеются отклонения от идеального характера атомной решетки, называемые несовершенствами или дефектами строения кристаллов ). Известны различные типы дефектов классификация их дана в табл. 4.3.  [c.233]

Неорганическое стекло, получаемое при застывании минерального расплава в результате непрерывного увеличения его вязкости, в отличие от других материалов имеет макроскопически изотропное аморфное строение, в той или иной мере прозрачно и обладает механическими свойствами твердого хрупкого тела. Тонкое исследование строения стекол свидетельствует, однако, о их микронеоднородной структуре.  [c.437]

Рассеяние и поглощение света наночастицами по сравнению с макроскопическим твердым телом имеет ряд особенностей [370]. Экспериментально наиболее отчетливо они проявляются при изучении большого числа частиц. Так, коллоидные растворы и гранулированные пленки могут быть интенсивно окрашены вследствие специфических оптических свойств наночастиц. Классическим объектом изучения оптических свойств дисперсных сред является золото. Еще Фарадей обратил внимание на подобие цвета коллоидного раствора и пленки золота и высказал предположение о ее дисперсном строении. При поглощении света тонкозернистыми пленками металлов в видимой части спектра появляются пики поглощения, отсутствующие у массивных металлов, в которых оптическое поглощение электронами проводимости происходит в широком диапазоне длин волн X. Например, гранулированные пленки из частиц Аи диаметром 4 нм в области X 560—600 нм имеют отчетливо выраженный максимум поглощения [371, 372]. Спектры поглощения наночастиц Ag, Си, Mg, In, Li, Na, К также имеют максимумы в оптическом диапазоне [10, 373]. Еще одной особенностью гранулированных пленок является уменьшение их поглощения при переходе из видимой в инфракрасную область спектра в отличие от сплошных металлических пленок, у которых оно растет с увеличением длины волны [10, 372, 374—378].  [c.109]

Известно, что металл с кристаллической структурой представляет собой систему положительных ионов (ядра, окруженные электронами внутренних орбиталей), 1югруженную в отрицательный электронный газ обобществленных внешних электронов. Электроны, обладающие достаточным запасом кинетической энергии, вырываются из металла и образуют над его поверхностью отрицательно заряженное облако. Электроны, находящиеся внутри металла и вблизи его поверхности, отталкиваются от этого облака, смещаясь внутрь металла. В результате уменьшается поверхностная плотность электронов и индуцируется положительный заряд, равный по абсолютной величине отрицательному заряду электронного облака. Сила взаимодействия между зарядами - сила электрического изображения - имеет значительную дальность действия, до 10 мкм от поверхности. Следовательно, энергетический потенциал поверхности характеризуется потенциалом внепп1сго пространства на расстоянии примерно 10 мкм от поверхности. Облако электронов совместно с наружным слоем положительных ионов образует двойной электрической слой. Таким образом, наличие электрического потенциала поверхности твердого тела и полярных молекул поверхностно-активных веществ предопределяет уровень их энергетического взаимодействия при адсорбции и строение адсорби -)ованной пленки.  [c.54]


Кинетика перераспределения дефектов под действием диффузионных процессов определяется подвижностью дефектов при данной температуре. Обычно коэффициент диффузии вакансий значительно выше, чем междуузельных атомов, и их подвижность суш,ественна даже при комнатной температуре. По мере накопления точечных дефектов становятся существенными процессы их взаимодействия, в частности, коалесцендия с образованием микропор, вакансионных кластеров, дислокационных нетель [74]. С появлением дефектов строения связано возникновение напряжений в ионно-легированном слое, изменение коэффициентов диффузии, механических свойств твердых тел и т.д. Неравновесная концентрация дефектов строения и высокий уровень напряжений могут изменять характер упорядочения атомов, вызывать аморфизацию поверхностного слоя или фазовые превращения типа мартенситного. Профиль распределения радиационных дефектов в основном повторяет профиль распределения легирующих ионов. Однако максимум концентрации располагается ближе к поверхности, так как при низкой энергии ионов энергии, передаваемой в упругих столкновениях, недостаточно для образования дефектов строения. Распределение числа смещенных атомов для условий легирования, соответствующих данным рис. 3.2, приведены на рис. 3.4.  [c.82]

Применение рентгеновских дифракционных методов определило возможности выявления связи свойств твердых тел с их структурой в широком смысле слова при этом под структурой понимают не только строение кристаллической решетки, степень ее дефектности, но и величину кристаллов, их напряженность и ориентацию, фазовый состав изучаемого объема, характер распределения легирующих элементов и примесей. Метод позволяет глубоко изучить структурные изменения в металлах и сплавах при пластической деформации, термической обработке, разнообразных температурных (высоких и низких), силовых (однонаправленных, циклических) воздействиях, проникающем излучении. Благодаря богатой информативности рентгеноструктурный анализ используют в практических целях при установлении оптимальных технологических режимов изготовления изделий, офаботке и эксплуатации самых различных материалов.  [c.66]

Отклонение реальной поверхности изделий от идеальной связано с наличием неровностей. Эти неровности могут быть макрогео-метрического, микрогеометрического и субмикрогеометрического порядка. Природа образования их различна. Главными источниками макроскопических и микроскопических неровностей поверхности (нерегулярных отклонений формы, волнистости, микрорельефа) являются окончательные операции механической обработки. Источником возникновения субмикроскопических неровностей поверхности является внутреннее строение твердых тел и его несовершенства.  [c.24]

Изложенный в этой книге материал показывает, что исследования многообразного физико-химического влияния среды на процессы деформации и механического разрушения металлов образуют в настоящее время новую научную область на границе между молекулярной физикой, физикой твердого тела и физической и коллоидной химией. Эту область, развитую в основном работами советских ученых, можно рассматривать как крупный раздел физической механики, ставящий свос11 целью установление связи механических свойств твердых тел с их химическим составом, строением и со свойствами внешней среды, в которой протекают процессы деформации и разрушения.  [c.196]

Многообразие причин, обусловливающих П. тел и нарушение этой П., многочисленные аномалии, сопровождающие деформацию и разрушение, как то упругое последействие, усталость, упругий гистерезис, наличие внутренних напряжений, пороков и т. п. обстоятельства, крайне затрудняют создание достаточно простых и вместе с тем общих теорий, одинаково объясняющих прочность тел из различных материалов и в различных случаях напряженного состояния. Строгое рассмотрение результатов эксперимента и наблюдения над работой материала в лабораторных образцах и в действительных сооружениях приводит многих исследователей к мысли о невозможности создания в этой области каких-либо общих теорий и о необходимости каждый частный случай рассматривать и описывать как чисто индивидуальное явление. Несмотря на всю вескость доводов этих исследователей, отвечая потребности практики в методах аналитич. оценки П. и общему стремлению науки объяснять возможно больший круг явлений одного порядка, исходя из возможно меньшего числа основных положений, был создан целый ряд т. н. теорий П. Если эти теории и не в состоянии вместить любой частный случай деформации и разрушения, то все же многие из них дают возможность объяснить и предвидеть значение П. в достаточно широких пределах. Теперешний уровень наших знаний не позволяет построить теорию прочности, основанную на рассмотрении действительного строения твердых тел и действительной природы явлений деформации и разрушения. Современная электрич. теория кристаллов разрешает вопрос П. только в отношении кристаллов с простейшего тица решеткой и только в отношении частных случаев напряженного состояния использовать выводы этой теории для расчетной практики пока не представляется возможным. Поэтому в построении теории П. приходится исходить из чисто фор-мальны предположений, выбираемых т. о., чтобы па основе их можно было обнять все или возможно большее число частных слу-  [c.188]

Первое (в порядке исторического становления) важное прикладное направление в акустике связано с получением при помощи акустических волн информации о свойствах и строении веществ, о происходящих в них процессах. Применяемые в этих случаях методы основаны на измерении скорости распространения и коэффициента поглощения ультразвука на разных частотах (1 о" +10 Гцвгазахи 10 +10 Гцвжид-костях и твердых телах). Такие исследования позволяют получать информацию об упругих и прочностных характеристиках материалов, о степени их чистоты и наличии примесей, о размерах неоднородностей, вызывающих рассеяние и поглощение волн, и т. д. Большая группа методов базируется на эффектах отражения и рассеяния упругих волн на границе между различными средами, что позволяет обнаруживать присутствие инородных тел и их местоположение. Эти методы лежат в основе таких направлений, как гидролокация, неразрушающий контроль изделий и материалов, медицинская диагностика. Применение акустической локации в гидроакустике имеет исключительное значение, поскольку звуковые волны являются единственным видом волн, распространяющихся на большие расстояния в естественной водной среде. Как разновидность дефектоскопии, широко применяемой в промышленности, можно рассматривать ультразвуковую диагностику в медицине. Даже при небольшом различии в плотности биологических тканей происходит отражение ультразвука на их границах. Поэтому ультразвуковая диагностика позволяет выявлять образования, не обнаруживаемые с помощью рентгеновских лучей. В такой диагностике используются частоты ультразвука порядка 10 Гц интенсивность звука при этом не превышает 0,5 мВт/см , что считается вполне безопасным для организма. В настоящее время развитие дефектоскопии привело к созданию акустической томографии. В этом методе с помощью набора приемников ультразвука или одного сканирующего приемника регистрируются упругие волны, рассей-  [c.103]

Особенности движения жидкостей (по сравнению с движением твердых тел) обусловлены их специфическими физическими свойствами — легкоподвижностью, сжимаемостью и вязкостью. Эти свойства являются проявлением особенностей молекулярного строения жидко стей.  [c.9]


Для выполнения расчета необходимы данные по величинам коэффициентов теплопередачи от твердого тела несущей среде сх,. с и от последней твердому телу а также по величинам углов расширения у пограничного слоя и сужения Р потенциального ядра струйного течения. Величины а ., и Lf. могут быть найдены в зависимости от режима течения потока несущей среды, формы частиц, их размеров, плотности и от их внутреннего строения по методу, описанному в работе [43] или в первом приближении из уравнения Роу и Клакстона [44],  [c.141]

Обш ие теоремы механики формулируются для системы материальных точек, связанных силами взаимодействия плп подчиненных геометрическим связям. Простейшую систему представляет собою так называемое абсолютно твердое тело, т. е. система конечного или бесконечно большого числа материальных точек, расстояния между которыми остаются неизменными. После того как наложено столь жесткое кинематическое ограничение, вопрос о природе сил взаимодействия между точками, составляющими твердое тело, уже не возникает, эти взаимодействия не могут быть измерены никаким способом, они совершенно не влияют на характер движения тела. Продолжая тот же путь рассуждений, можно представить себе реальное твердое тело или жидкость как систему весьма большого числа материальных точек, взаимодействующих между собою определенным образом. Физическая точка зреиия будет состоять в том, чтобы приписывать этим материальным точкам определенную индивидуальность, отождествляя их с реальными атомами и молекулами. Проследить за движением каждой физической точки совершенно невозможно, так как число их слишком велико, поэтому, даже если принять за отправной пункт представление об атомном строении и об определенных законах междуатомного взаимодействия, все равно приходится вводить некоторые осредненные характеристики, описывающие движение атомов и действующие между ними силы, отказываясь от рассмотрения каждого атома в отдельности. Методы статистической физики хорошо развиты применительно  [c.19]

С логической точки зрения геометрическая статика твердого тела должна рассматриваться как предельная теория. Она излагает известное число общих законов, применимых ко всем твердым телам, каковы бы ни были их молекулярное строение и их упругие свойства, если только деформации можно считать бесконечно малыми. Однако построенная таким образом теория представляет собой неполную теорию равновесия, так как она систематически оставляет в стороие. упругие свойства, привлечение которых становится в некоторых случаях совершенно необходимым. В этих случаях методы геометрической статики оказываются недостаточными для разрешения всех вопросов, которые может поставить перед нами задача о равновесии. Некоторые из этих вопросов могут даже оказаться противоречивыми, если сохранить гипотезу абсолютной неизменяемости твердого тела.  [c.231]

Хотя мы не знаем внутреннего строения жидкостей, тем не менее мы не можем сомневаться в том, что частицы, из которых они состоят, материальны и что поэтому законы равновесия применимы к жидкостям в такой же мере, как и к твердым телам. Действительно, осяовное свойство жидкостей, и притом — единственное, отличающее их от твердых тел, заь лю-чается, в том, что все части пх уступают малейшей силе и могут перемещаться друг относительно друга со всей возможной легкостью, независимо от того, какая связь и взаимодействие существуют между этими частями. Так как это свойство может быт . легко выражено математически, то отсюда следует, что законы равновесия жидкостей не требуют o o6oii теории и представляют собой лишь частный случай общей теории статики. С этой именно точки зрения мы и будем их рассматривать но мы полагаем, что нам следует начать с изложения различных принципов, которые применялись до сих пор в этой части статики, которую обычно называют гидростатикой, с тем, чтобы дополнить анализ принципов статики, ь оторый мы дали в первом отделе.  [c.234]

В зонах фактического касания поверхности сближаются на такие расстояния, при которых между частицами (атомами, ионами, молекулами), входящими в состав твердых тел, проявляются микроскопические межатомные, межмолекулярные, а также макроскопические (силы Лившица) взаимодействия. Можно считать, что эти силы имеют электрическое происхождение. В результате их действия в зонах фактического касания могут образоваться межатомные (ковалентная, ионная, металлическая) или меж-молекулярная связи, обусловленные дисперсионными, ориентационными или индукционными силами. Обычно связи возникают не между самими контактирующими твердыми телами, а между пленками, покрывающими их поверхности. Строение этих пленок, появляющихся в результате физической адсорбции и хемосорбционных процессов, сложное. При относительном скольжении образованные связи разрушаются и возникают вновь. Генерируемое при этом сопротивление относительному скольжению называют молекулярной составляющей силы трения. Общая сила трения будет равна сумме сил трения, возникающих на единичных микроконтактах. Л1олеку-лярную составляющую силы трения, возникающую в зоне касания произвольной микронеровности, вычислить теоретически невозможно вследствие сложности строения и химического состава пленок, покрывающих поверхности твердых тел. Ее приближенно определяют следующим образом  [c.190]

ТЕПЛОЕМКОСТЬ (решеточная — теплоемкость, связанная с поглощением теплоты кристаллической решеткой удельная— тепловая характеристика вещества, определяемая отношением теплоемкости тела к его массе электронная — теплоемкость металлов, связанная с поглощением теплоты электронным газом) ТЕПЛООБМЕН (излучением осущесгв-ляется телами вследствие испускания и поглощения ими электромагнитного излучения конвективный происходит в жидкостях, газах или сыпучих средах путем переноса теплоты потоками вещества и его теплопроводности теплопровод-ноетью проходит путем направленного переноса теплоты от более нагретых частей тела к менее нагретым, приводящего к выравниванию их температуры) ТЕПЛОПРОВОДНОСТЬ (решеточная осуществляется кристаллической решеткой стационарная характеризуется неизменностью температуры различных частей тела во времени электронная — теплопроводность металлов, осуществляемая электронами проводимости) ТЕПЛОТА (иенарения поглощается жидкостью в процессе ее испарения при данной температуре конденсации выделяется насыщенным паром при его конденсации образования — тепловой эффект химического соединения из простых веществ в их стандартных состояниях плавления поглощается твердым телом в процессе его плавления при данной температуре сгорания — отношение теплоты, выделяющейся при сгорании топлива, к объему или массе сгоревшего топлива удельная — отношение теплоты фазового перехода к массе вещества фазового перехода — теплота, поглощаемая или выделяемая при фазовом переходе первого рода) ТЕРМОДЕСОРБЦИЯ — удаление путем нагревания тела атомов и молекул, адсорбированных поверхностью тела ТЕРМОДИНАМИКА — раздел физики, изучающий свойства макроскопических физических систем на основе анализа превращений без обращения к атомно-молекулярному строению вещества  [c.286]

Коэффициент теплопроводности для большинства неметаллических твердых тел линейно изменяется с температурой. Ряд керамических веществ (окись бериллия, алюминия, двуокись титана и др.) имеет сложную температурную зависимость для коэффициента теплопроводности. Его велчина вначале падает, а затем возрастает за счет увеличения лучистого переноса тепла внутри этих тел. Указанные керамические. вещества являются твердыми диэлектриками и одновременно пористыми телами. Кроме них, многие твердые тела имеют не сплошное, а пористое или волокнистое строение Различные пористые материалы характеризуются наличием пустых промежутков (пор) между отдельными твердыми частицами. Часть этих пор представляет собой небольшие замкнутые объемы, а некоторые из них сообщаются между собой, образуя открытую пористость. Наполнителем пор может являться различная среда. Распространение тепла обусловливается совокупностью различных явлений. Внутри твердых частиц тела, а также в местах непосредственного контакта между ними тепло переносится за счет теплопроводности. В среде, заполняющей поры, перенос тепла осуществляется также теплопроводностью и, кроме того, за счет конвекции и теплового излучения. С увеличением размеров пор роль конвекции увеличивается. При уменьшении размеров пор и увеличении их количества имеет место одновременное уменьшение размеров твердых частиц, составляющих пористое тело. Это приводит к уменьшению поверхности соприкосновения между частицами, соответствующему увеличению контактного теплового сопротивления, а следовательно, уменьшению коэффициента теплопроводности.  [c.9]


Предлагаемая вниманию читателя монография посвящена одной из самых актуальных современных научных проблем, лежащей на стыке материаловедения, физики и химии твердого тела, — нанокристаллическому состоянию вещества. Это первое в отечественной и мировой литературе обобщение экспериментальных результатов и теоретических представлений о строении и свойствах не только дисперсного, но и компактного твердого тела с нанометровым размером частиц, зерен, кристаллитов или других элементов микроструктуры. До сих пор основная масса научной информации по этой тематике публиковалась в различных научных журналах и в материалах конференций. А. И. Гусев, автор первого в мире обзора по компактным наноматериалам ( Эффекты нанокристаллического состояния в металлах и сплавах // УФН. 1998. Т. 168, № 1), взял на себя нелегкий труд познакомиться с сотнями оригинальных исследований по нанокристаллическому состоянию, сгруппировать их по изучаемым материалам и свойствам, выявить общее и частное в результатах этих работ, заострить внимание на самых интересных и практически важных эффектах наносостояния.  [c.4]

Наст пающий XXI век - век новых материалов и технологий, век создания композиций с прогнозируемыми свойствами, что в значительной степени связано с использованием новых физико-химических приемов формирования поверхности заданного химического состава и строения с атомно-молекулярной точностью ( атомарная сборка ). Необходимость дальнейшего прогресса в этой области заставляет исследователей погружаться в самые глубокие проблемы квантовой механики и физики твердого тела. Надежность производства микро- и нанокомпозитов должна быть очень высокой на всех стадиях технологического процесса. Поэтому получение принципиально новых характеристик искусственных композиционных структ ф, основанных на квантовых эффектах, явлении самоорганизации, невозможны без создания новых прецизионных синтетических процессов и разработки новых подходов к их анализу.  [c.166]


Смотреть страницы где упоминается термин Твердые тела и их строение : [c.550]    [c.279]    [c.280]    [c.10]    [c.8]    [c.18]    [c.195]    [c.7]    [c.8]    [c.20]    [c.53]    [c.285]   
Смотреть главы в:

Сопротивление материалов и основы теории упругости и пластичности  -> Твердые тела и их строение



ПОИСК



28—31 — Строение

ПРИНЦИПЫ СТРОЕНИЯ ТВЕРДОГО ТЕЛА

ТЕОРЕТИЧЕСКИЕ ОСНОВЫ МЕТАЛЛОВЕДЕНИЯ Строение и свойства твердого тела. Основные свойства металлов



© 2025 Mash-xxl.info Реклама на сайте