Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Движение жидкости неравномерное

В трубе постоянного сечения, начинающейся от резервуара, при неизменном расходе Q образуются два участка потока — первый от резервуара участок, так называемый начальный, на котором движение жидкости неравномерное, и последующий участок — с равномерным движением жидкости.  [c.82]

Тесный пучок с осевым направлением жидкости. Необходимость исследования тесных пучков появилась в связи с развитием ядерной энергетики. К тесным относят пучки, в которых относительные расстояния между тепловыделяющими стержнями или трубками равны единице (s=d). Рабочая жидкость протекает внутри сложных каналов (ячеек), образованных соприкасающимися между собой трубками. Форма этих каналов изменяется в зависимости от компоновки труб в пучке и их размеров. При плотной упаковке труб в пучке температурное поле зависит не только от свойств жидкости и режима течения, но еще от геометрических размеров стержней или трубок и их теплопроводности. Закон распределения температуры по периметру трубки близок к косинусоидальному. Ярко выраженные максимумы температуры соответствуют линиям касания трубок. С увеличением скорости движения жидкости неравномерность распределения температуры уменьшается за счет проникновения турбулентности в узкие части ячейки. Влияние длины  [c.201]


Течение в заданном призматическом русле может быть равномерным или неравномерным, В зависимости от быстроты изменения глубины и скорости в направлении движения жидкости неравномерное течение может рассматриваться как медленно (плавно) изменяющееся или как быстро (и е п л а в н о) изменяющееся. В равномерном потоке трение на стенках находится в равновесии с потерями напора по длине и тем самым определяет связь между скоростью и глубиной при заданном расходе, В плавно изменяющемся потоке глубина изменяется очень медленно, так что трение на границах находится почти в равновесии с потерями напора. На поведение быстро изменяющихся потоков доминирующее влияние оказывают количество движения и силы инерции. Неравномерное течение будет рассмотрено в гл. 14.  [c.318]

В рассматриваемых случаях на коротких участках потока происходят изменения кинематических параметров. В пределах таких участков движение жидкости неравномерное.  [c.184]

Исследования показали, что при кольцевом (периферийном) вводе потока в аппарат движение жидкости значительно сложнее, чем при обычном боковом. Струя, поступая в кольцо и взаимодействуя со стенкой корпуса аппарата, разделяется на две части, обтекает эту стенку и устремляется по инерции в противоположный конец кольца. Отсюда через щели в стенке корпуса аппарата она выходит в его полость. При этом создаются условия для двойного винтового (вихревого) движения (рис. 8.8, а). В результате распределение скоростей по сечению рабочей камеры аппарата получается неравномерным (Ai = 1,8-н2, табл. 8.3). Закручивание потока столь значительное, что сохраняется даже после установки в начале рабочей камеры плоской решетки. Поэтому и за решеткой неравномерность распределения вертикальных составляющих скоростей не устраняется (Л = = 1,5- 2,0). Только после наложения на плоскую решетку спрямляющего устройства в виде ячейковой решетки, устраняющей закручивание потока, достигается практически полное выравнивание скоростей по всему сечению (М — 1,08ч-1,10). Опыты показывают, что установка одного спрямляющего устройства без плоской решетки неэффективна (см. рис. 8.8, б), так как вследствие малого сопротивления это устройство не может выравнять скорости по величине.  [c.213]

Второй вид переноса теплоты называют конвекцией. Конвекция происходит только в газах н жидкостях. Этот вид переноса теплоты осуществляется при перемещении и перемешивании всей массы неравномерно нагретых жидкости или газа. Конвекционный перенос теплоты происходит тем интенсивнее, чем больше скорости движения жидкости или газа, так как в этом случае за единицу времени перемещается большее количество частиц тела. В жидкостях и газах перенос теплоты конвекцией всегда сопровождается теплопроводностью, так как при этом осуществляется и непосредственный контакт частиц с различной температурой.  [c.346]


Если скорость движения жидкости мала по сравнению со скоростью звука, то возникающие в результате движения изменения давления настолько малы, что вызываемым ими изменением плотности (и других термодинамических величин) можно пренебречь. Однако неравномерно нагретая жидкость не является все же при этом вполне несжимаемой в том смысле, как это понималось выше. Дело в том, что плотность меняется еще и под влиянием изменения температуры этим изменением плотности, вообще говоря, нельзя пренебречь, и потому даже при достаточно малых скоростях плотность неравномерно нагретой жидкости все же нельзя считать постоянной. При определении производных от термодинамических величин в этом случае надо, следовательно, считать постоянным давление, а не плотность. Так, имеем  [c.276]

На плоскости горизонтальной твердой поверхности находится (в поле тяжести) тонкий неравномерно нагретый слой жидкости ее температура является заданной функцией координаты х вдоль слоя, причем (благодаря тонкости пленки) ее можно считать не зависящей от координаты г вдоль толщины слоя. Неравномерная нагретость приводит к возникновению стационарного движения жидкости в пленке, в результате чего ее толщина будет меняться вдоль слоя требуется определить функцию S = SU)-  [c.340]

Из класса неравномерных движений жидкости следует особо отметить движение с некоторыми кинематическими особенностями, позволяющими назвать движение плавно изменяющимся. Эти кинематические особенности следующие  [c.50]

В гидротехнике чаще всего приходится иметь дело с равномерным и неравномерным, но плавно меняющимся движением жидкости. Поэтому под потоками, если не делают специальной оговорки, подразумевают потоки только с такими кинематическими характеристиками.  [c.50]

Уравнение (15-5) является общим дифференциальным уравнением установившегося плавно изменяющегося неравномерного движения жидкости в открытом русле.  [c.153]

Установившееся неравномерное движение жидкости в непризматических руслах  [c.154]

УСТАНОВИВШЕЕСЯ НЕРАВНОМЕРНОЕ ДВИЖЕНИЕ ЖИДКОСТИ В ПРИЗМАТИЧЕСКИХ РУСЛАХ  [c.169]

При постепенном увеличении глубин вдоль потока говорят о наличии кривой подпора, при уменьшении же глубин — о кривой спада. Таким образом, можно выделить как основные две формы кривой свободной поверхности при неравномерном движении жидкости  [c.170]

Возьмем общее уравнение неравномерного движения жидкости в призматическом русле любой формы в таком виде  [c.174]

УСТАНОВИВШЕЕСЯ НЕРАВНОМЕРНОЕ ПЛАВНО ИЗМЕНЯЮЩЕЕСЯ ДВИЖЕНИЕ ЖИДКОСТИ В НЕПРИЗМАТИЧЕСКИХ РУСЛАХ  [c.181]

Теплообмен при свободной конвекции. В жидкости с неравномерным распределением температур и находящейся в поле сил тяжести при определенных условиях возникают беспорядочные течения, стремящиеся перемещать отдельные части жидкости так, чтобы установилась повсюду одинаковая температура. Такое движение жидкости называют свободной конвекцией.  [c.450]

Как уже было сказано выше, к местным сопротивлениям относятся различные фасонные участки трубопровода или русла (колена, тройники, задвижки и др.), в которых наблюдается неравномерное движение жидкости. В местах резкого изменения живого сечения или направления потока происходит отрыв по-  [c.85]

Если вход в трубу из резервуара выполнен достаточно плавным, специально рассчитанной конфигурации, то в начальном сечении 1—1 устанавливается практически равномерное распределение скоростей (рис. 69). По мере движения жидкости тормозящее влияние стенок распространяется на все большую толщу потока. На некотором участке, называемом начальным или входным, поток имеет ядро, где сохраняется равномерное распределение скоростей, и пристенный пограничный слой, где скорости распределяются неравномерно. Сечение ядра вниз по течению убывает, а толщина пограничного слоя возрастает. В конце участка / а, пограничный слой смыкается на оси трубы, и ниже по течению устанавливается параболическое распределение скоростей соответственно (6-29). Точнее говоря, это распределение скоростей достигается асимптотически, но с достаточной для практики точностью можно указать конечное расстояние ( 2,. 166  [c.166]

В зависимости от изменения гидравлических параметров движение жидкости в потоке конечных размеров может быть равномерным и неравномерным. Равномерное — это такой вид установившегося движения, при котором гидравлические параметры остаются неизменными по длине. Неравномерное — это вид установившегося движения, при котором параметры потока по длине переменны. Пример равномерного движения — поток в трубе круглого сечения или в русле канала с призматическим сечением, а неравномерного — на расширяющихся или сужающихся участках труб или каналов.  [c.25]


Русла открытых потоков бывают искусственные (каналы) и естественные (русла рек), а движение жидкости в таких руслах — равномерным и неравномерным. Равномерное движение на значительной длине можно получить только в искусственных призматических руслах, т. е. таких руслах, у которых размеры и форма по-  [c.66]

Установившееся движение жидкости, характеризующееся постоянством расхода во времени, подразделяют на равномерное и неравномерное.  [c.276]

Неравномерным называется такое установившееся движение, при котором средняя скорость и площади живых сечений потока изменяются по его длине. Примером служит установившееся движение жидкости в трубе переменного сечения.  [c.277]

В рассматриваемом случае течение жидкости вызывается не перепадом давлений, а увлекающим действием вращающейся цапфы. Иными словами, движение жидкости вызывается касательными силами, приложенными по всей поверхности соприкасания смазки с цапфой. Через зти касательные силы жидкости сообщается энергия и, таким образом, кинетическая энергия вращающейся цапфы передается жидкости в слое смазки. При этом, если кинетическая энергия от цапфы подводится равномерно по всей поверхности соприкасания со слоем смазки, то расходуется она в слое неравномерно где толщина слоя смазки больше, там, согласно (XI.37), сопротивление вращению меньше, и наоборот.  [c.260]

Неравномерным движением жидкости называют такой вид установившегося движения, при котором живые сечения и средние скорости потока изменяются по его длине. Примером неравномерного движения служит движение жидкости в конической трубе или в канале, глубина потока в котором изменяется из-за возведения гидротехнических сооружений.  [c.32]

В сооружениях водоотведения, дренажа и удаления конденсата, в системах отопления широко применяют безнапорные трубопроводы, в которых поток жидкости имеет свободную поверхность. Безнапорное движение жидкости может быть установившимся и неустановившимся, равномерным и неравномерным. Оно происходит под действием силы тяжести. Режим движения обычно турбулентный. Ниже излагаются основы расчета безнапорных трубопроводов в условиях равномерного установившегося движения жидкости при турбулентном режиме.  [c.70]

НЕРАВНОМЕРНОЕ УСТАНОВИВШЕЕСЯ ДВИЖЕНИЕ ЖИДКОСТИ В ОТКРЫТЫХ РУСЛАХ  [c.90]

Рис. 8.1. Примеры неравномерного движения жидкости в открытом русле Рис. 8.1. Примеры неравномерного движения жидкости в открытом русле
Для равноплотных дисперсных потоков (рт = р) получим, что 1 ф = 0, <р , 1 и Хт = Т, т. е. частицы без скольжения по скорости повторяют движение жидкости и. периоды поперечных пульсаций компонентов потока совпадают. При tTтемпературная неравномерность ф = г т/ <1 (при нагреве потока) и l (при охлаждении).  [c.194]

Для устранения или у.меньшення влияния пристенного эффекта на протекание жидкости через насыпной слой можно, например, разделить поперечное сечение, начиная с участка или Яд, перфорированными листами или сетками 4 (см. рис. 3.12, д) переменного живого сечения, т. е. убывающего к периферии (следовательно, коэффициент сопротивления, возрастающий к периферии). Это приведет к увеличению сопротивления движению жидкости вблизи стенки, а следовательно, к устр. шению возникающей неравномерности распределения скоростей по сечению. Соответственно уменьшится возможность нарушения упаковки слоя.  [c.91]

В общем случае особенностью движения жидкости через эти элементы является неравномерность распределения скоростей по сечению. Такая неоднородность потока приводит не только к снижению эффективности работы аппарата, но часто к локальному перегреву и запеканию зерен слон (при горячем газе), к локальному замораживанию отдельных участков рабочего элемента (в теплообменниках), к усилению капле- и тума-ноуноса (в фильтрующих аппаратах) и другим подобным нежелательным явлениям, а иногда даже к полному выходу аппарата из строя.  [c.268]

Процессы теплопередачи в жидкости осложняются по сравнению с теплопередачей в твердых телах возможностью движения жидкости. Погруженное в движущуюся жидкость нагретое тело охлал<дается значительно быстрее, чем в неиодвилсной жидкости, где теплопередача происходит только с помощью процессов теплоироводности. О движении неравномерно нагретой жидкости говорят как о конвекции.  [c.292]

Основные соотношения для аэрогидродинами-ческих сил. На рис. 6.8 показан контур сечения стержня, находящегося в однородном плоском потоке жидкости или газа. При обтекании контура на него действует распределенное (по периметру контура) давление р. Если бы скорость потока была равна нулю, то эпюра давлений по контуру сечения стержня была бы равномерной и равнодействующая сила (и момент) от давления р, действующая на единицу длины стержня, была бы равна нулю. При движении жидкости или газа эпюра давлений р по контуру сечения становится неравномерной (рис. 6.8), что приводит к появлению отличного от нуля момента и равнодействующей силы с проекциями я в системе координат Эпюра давлений зависит от режима обтекания, который характеризуется числом Рейнольдса Re=vllv, где v — кинематическая вязкость  [c.237]


Рассмотренные выше различные способы расчета кривых свободной паверхностн при неравномерном движении жидкости в призматических руслах являются приближенными, поскольку в целях интегрирования дифференциальных ураниеипй в каждом способе принимались отдельные допущения. Приближенное же решение можно также получить, решая дифференциальные уравнения методом суммирования или, иначе говоря, путе.м определения интеграла функции по общеизвестным способам Симпсона, Гаусса, по правилу трапеций и т. п.  [c.179]

УрзЕшение неравномерного движения жидкости в непризматическом русле (15-5) более сложное, чем уравнение для призматических русел, интегрированию не поддается для обп 1,его случая.  [c.181]

Основные виды движения. Расход жидкости. Движение может быть равномерным и неравном1фным, сплошным и прерывистым. При равномерном движении величина скорости не меняется по длине струйки, в против ом случае движение называется неравномерным.  [c.65]

При изучении неравномерного движения жидкости пользуются понятием плавноизменяющегося движения, при котором 1) радиус кривизны линий тока очень велик и в пределе стремится к бесконечности 2) угол расхождения между линиями тока очень мал и в пределе стремится к нулю 3) живые сечения струек — плоские площадки, нормальные к оси потока. Следовательно, плав-ноизмеияющееся движение по своим свойствам приближается к равномерному движению, состоящему из прямых и параллельных между собой элементарных струек.  [c.277]

Полученные теоретические зависимости дают хорошую сходимость с результатами экспериментов для участков трубы с развившимся ламинарным режимом при равномерном движении жидкости. Однако на практике встречаются случаи неравномерного движения на начальных участках трубопроводов. Начальным называется участок, на котором происходит формирование профиля скоростей ламинарного режима движения (рис. 4.4). Для нахождения длины начального участка /нач можно воспользоваться формулой /нач/ =0,029Ке. При подстановке в эту формулу значения критического числа Рейнольдса получаем максимальную длину начального участка, равную 66,5 диаметра.  [c.44]

В данном разделе курса рассматривается установивщееся неравномерное течение воды в открытых руслах в условиях плавно изменяющегося движения. Формулировка неравномерного движения была дана выще. Из нее следует, что движение жидкости будет неравномерным, когда по длине потока изменяется живое сечение и средняя скорость или при неизменном живом сечении изменяются величины и распределение скоростей по живому сечению.  [c.90]


Смотреть страницы где упоминается термин Движение жидкости неравномерное : [c.266]    [c.27]    [c.174]    [c.175]    [c.230]    [c.64]    [c.67]   
Гидравлика. Кн.2 (1991) -- [ c.78 , c.138 ]

Гидравлика и насосы (1984) -- [ c.29 ]

Гидравлика (1982) -- [ c.91 , c.94 ]

Гидравлика (1984) -- [ c.74 , c.131 ]

Гидравлика Основы механики жидкости (1980) -- [ c.46 , c.215 , c.259 ]

Гидравлика Изд.3 (1975) -- [ c.73 ]



ПОИСК



Влияние неравномерности распределения скоростей по плоскому живому сечению на величину количества движения и величину кинетической энергии некоторой массы жидкости, протекающей через данное живое сечение (второе вспомогательное положение)

Глава XIII Дифференциальные уравнения установившегося неравномерного плавно изменяющегося движения жидкости в открытых руслах и их исследование Общие сведения

Глава восемнадцатая УСТАНОВИВШЕЕСЯ НЕРАВНОМЕРНОЕ ПЛАВНО ИЗМЕНЯЮЩЕЕСЯ ДВИЖЕНИЕ ЖИДКОСТИ В НЕПРИЗМАТИЧЕСКИХ РУСЛАХ 18- 1. Решение для общего случая

Глава семнадцатая УСТАНОВИВШЕЕСЯ НЕРАВНОМЕРНОЕ ДВИЖЕНИЕ ЖИДКОСТИ В ПРИЗМАТИЧЕСКИХ РУСЛАХ 17- 1. Формы свободной поверхности потока в призматических руслах с прямым уклоном дпа

Глава четырнадцатая. Неравномерное движение жидкости в трубах и каналах

Движение жидкости безнапорное неравномерное

Движение неравномерное

Дифференциальное уравнение неравномерного движения покоя жидкости

Дифференциальные уравнения установившегося неравномерного планоизменяющегося движения жидкости в открытых руслах и их исследование Общие сведения

Задачи гидродинамики. Установившееся и неустановившееся движения жидкости. Равномерное и неравномерное движения жидкости

Интегрирование дифференциального уравнения неравномерного плавноизменяющегося движения жидкости в призматическом русле Общие данные

Краткие сведения о неравномерном движении жидкости

М Глава XIV Интегрирование дифференциального уравнения неравномерного плавно изменяющегося движения жидкости в призматических руслах Общие данные

Неравномерное движение жидкости в открытых руслах

Неравномерное и равномерное движения. Напорное и безнапорное движения, свободные струи. Гидравлические элементы живого сечения Сводка классификаций движений жидкости

Неравномерное напорное движение несжимаемой жидкости. Характерные особенности течения и потери энергии

Неравномерное установившееся движение жидкости в открытых руслах

Неравномерность

Общие замечания об интегрировании уравнения неравномерного движения жидкости

Основное дифференциальное уравнение установившегося неравномерного плавноизменяющегося движения жидкости в открытых руслах

Потери напора при неравномерном движении жидкости

Уравнение неравномерного движения жидкости в непризматических руслах с постоянной глубиной

Установившееся и неустановившееся, равномерное и (Зь неравномерное движение жидкости. Уравнение неразрывности струи

Установившееся неравномерное движение жидкости в непризматических руслах при пространственном изменении очертания потока Дифференциальное уравнение неравномерного движения жидкости в непризматических руслах с пространственным изменением очертания потока

Установившееся неравномерное плавно изменяющееся движение жидкости в открытых непризматических руслах

Установившееся неравномерное плавно изменяющееся движение жидкости в открытых непрнзматических руслах

Установившееся неравномерное плавно изменяющееся движение жидкости в открытых призматических и непризматических руслах



© 2025 Mash-xxl.info Реклама на сайте