Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Другие решения задач устойчивости

Известны и другие решения задачи устойчивости, которые получаются с использованием некоторых дополнительных условий. Например, в работе [2] для замыкания усеченной системы было предложено выражать старшие моменты порядка выше т п через младшие на основе соотношений, справедливых для гауссовских процессов.. Рассмотрим этот способ подробнее.  [c.142]

Другие решения задач устойчивости  [c.109]

Как оказалось, в задачах сдвижении существенны лишь стационарные значения некоторых определенных интегралов. Поэтому имеется заметное различие между вариационным исчислением — ветвью чистой математики, с одной стороны, и его приложением к задачам механики—с другой. С точки зрения чистой математики задача о нахождении стационарных значений не представляет большого интереса. После установления критерия для стационарных точек идут дальше и ищут дополнительные критерии для истинных экстремумов. Для вариационных принципов механики, однако, эти последние исследования представляют интерес только при решении задач устойчивости, когда ищется дей-ЗВ  [c.59]


В книгу не включен ряд практически важных задач расчета тонкостенных элементов конструкций, например устойчивость плоской формы изгиба балок, устойчивость витых пружин и естественно закрученных стержней, пологих оболочек, тонкостенных стержней и т. д. Это сделано по следующим соображениям. Автор старался сделать понятным вывод каждого соотношения даже неподготовленному читателю. Из множества задач устойчивости тонкостенных конструкций было выбрано несколько основных, на которых показана специфика задач упругой устойчивости. Автор надеется, что читатель, познакомившись с изложенными в книге решениями, сможет легче и глубже понять другие известные задачи устойчивости и главное скорее научится самостоятельно ставить и решать новые задачи.  [c.6]

Во-первых, всюду, где это специально не оговорено, материал считаем линейно упругим (изотропным или анизотропным). Конечно, многие практически важные задачи устойчивости деформируемых тел требуют учета более сложных реологических свойств (нелинейная упругость, пластичность, ползучесть и т. д.). Но для тонкостенных элементов силовых конструкций из современных высокопрочных материалов это ограничение вполне обосновано. Как правило, работоспособность таких конструкций определяется их устойчивостью в упругой области. Кроме того, для правильной постановки и решения задач устойчивости деформируемых тел с другими реологическими свойствами необходимо понимать формулировки и решения задач устойчивости для линейно-упругого тела.  [c.35]

Основное линеаризованное уравнение для пластины постоянной толщины (4.33), полученное в декартовой системе координат, удобно для решения задач устойчивости пластин, контур которых совпадает с координатными линиями. Для пластин другой формы может оказаться удобной другая, не декартова система координат. Так, для круглых пластин основное уравнение удобнее представить в полярных координатах.  [c.149]

Напомним, что до решения задачи устойчивости пластины необходимо определить начальное напряженное состояние пластины, т. е. найти усилия 7 , Т°, При сложных контурных нагрузках и граничных условиях для пластин сложной формы, многосвязных пластин и в некоторых других случаях эта задача обычно может быть решена только с помощью приближенного метода.  [c.168]

Методом Галер кина могут быть решены (и решены) многие другие задачи устойчивости прямоугольных и круглых пластин. Но при всех достоинствах этот метод нельзя считать универсальным методом решения задач устойчивости пластин. Основной недостаток метода Галеркина связан с необходимостью удовлетворения всех граничных условий при выборе базисных функций. Геометрические граничные условия можно выполнить сравнительно легко, но даже для пластин простой формы трудно выбрать базисные функции, удобные для математической обработки и удовлетворяющих всем силовым граничным условиям. Например, в задачах устойчивости прямоугольных пластин с одним свободным краем чрезвычайно трудно подобрать удобную систему базисных функций, удовлетворяющих граничным условиям на свободном краю. Это замечание относится и к пластинам с упруго закрепленным краем или пластинам с отверстиями. Во всех такого рода задачах приближенное решение удобнее получать энергетическим методом.  [c.177]


Как отмечалось, условия (6.52) —единственный вариант граничных условий, допускающих простое аналитическое решение задачи устойчивости цилиндрической оболочки. При других граничных условиях решение системы уравнений (6.71) даже при однородном безмоментном напряженном состоянии резко усложняется.  [c.261]

Решение задачи Копти продольно-поперечного изгиба (4.4) широко используется в методе перемешений и методе начальных параметров для составления трансцендентных уравнений устойчивости [182, 307, 26]. Однако, оно может быть применено для решения задач устойчивости плоских и пространственных стержневых систем в рамках принципиально другого алгоритма —МГЭ. Для упругой системы можно составить уравнение устойчивости МГЭ типа (1.40). Стержни, не загруженные сжимающей силой F, должны иметь в уравнении (1.40) блок фундаментальных функций статического изгиба (2.11), а сжатые стержни — блок фундаментальных функций продольно-поперечного изгиба (4.4) с добавлением нормальных сил (для плоских задач устойчивости).  [c.181]

Здесь представлены решения задач устойчивости тонких изотропных прямоугольных пластин, сжатых сосредоточенными силами. Трудности решения таких задач связаны с формированием математических моделей сосредоточенных сил и первые результаты опубликованы лишь в 50-х годах XX столетия. В фундаментальных монографиях и справочниках приведены результаты только для шарнирного опирания по контуру прямоугольной пластины [47-49,71,262,299,300,316 и др.], а учет других краевых условий еще больше усложняет задачу, что, по-видимому, предопределило отсутствие соответствующих решений.  [c.451]

При других вариантах граничных условий на торцах сжатой в осевом направлении цилиндрической оболочки решение задачи устойчивости значительно усложняется. Однако выполненные исследования показали, что если на торцах оболочки не допускаются перемещения W и V, то для тонкой и достаточно длинной изотропной цилиндрической оболочки ft практически не зависит от остальных граничных условий и определяется полученной выше формулой.  [c.212]

Дальнейшее решение можно вести из условия б (ДЗ) = О либо из условия АЭ = О при дополнительном требовании минимума критической нагрузки. На основе того и другого условия можно строить как точные, так и приближенные решения задач устойчивости оболочек.  [c.226]

Аналогичные решения задачи устойчивости сжатого стержня можно найти в монографиях [4, 181, 186], но смысл коэффициентов жесткости там другой.  [c.213]

Разработка методов численного решения задач устойчивости оболочек (как и других задач теории оболочек) достигла в настоящее время такого уровня, при котором уже трудно назвать задачу, не поддающуюся численному решению. Для осесимметрично нагруженных оболочек вращения — это методы ортогональной прогонки. В случаях, не допускающих разделения переменных, — это различные вариационные методы, в том числе интенсивно разрабатываемые в последнее время методы конечных элементов.  [c.8]

В пятой главе описаны слоистые упругие трансверсально изотропные пластинки, имеющие симметричное относительно срединной плоскости строение пакета слоев. Выбор срединной плоскости в качестве плоскости приведения позволил отделить уравнения плоской задачи теории упругости от уравнений изгиба пластинки, которые и явились предметом исследования. Найден широкий класс решений этих уравнений, что позволило, в частности, решить задачу изгиба круговой пластинки, несущей поперечную нагрузку. В качестве примера рассмотрена задача осесимметричного деформирования круговой пластинки. Выполненное исследование, включающее в себя вычисление разрушающей, интенсивности нагрузки, определение механизма возникновения разрушения и определение зоны его инициирования, выявило принципиальную необходимость учета влияния поперечных сдвиговых деформаций на расчетные характеристики напряженно-деформированного состояния для пластин с существенно различными жесткостями слоев. Решена задача устойчивости пластинки, нагруженной силами, действующими в ее плоскости. Составлены общие уравнения устойчивости и подробно исследован тот случай, когда тензор докритических усилий круговой. Для этого случая найден широкий класс решений уравнений устойчивости. В качестве примера дано решение задачи устойчивости круговой пластинки, нагруженной равномерно распределенным по контуру сжимающим радиальным усилием. Эта же задача решена еще и на основе других неклассических уравнений, приведенных в третьей главе, а также на основе уравнений трехмерной теории устойчивости. Выполнен параметрический анализ полученных решений, что позволило указать границы применимости рассматриваемых уточненных теорий, оценить характер и степень влияния поперечных сдвиговых деформаций и обжатия нормали на критические интенсивности сжимающего усилия. Полученные результаты приводят к выводу о пригодности разработанных в настоящей моно-  [c.13]


С другой стороны, при затруднениях в решении задач устойчивости (стабилизации) по всем переменным, полезную дополнительную информацию можно получить посредством предварительного решения соответствующих ЧУ (ЧС)-задач.  [c.35]

Местная устойчивость элементов. В случае продольного сжатия трехслойной пластинки с одинаковыми внешними слоями решение задачи устойчивости распадается на два решения, одно из которых соответствует кососимметричному искривлению всей пластинки (общей потере устойчивости), а другое — симметричному искривлению внешних слоев без искривления срединной поверхности всей пластинки (т. е. местной потере устойчивости внешних слоев).  [c.254]

Если ребра теряют устойчивость от продольного сжатия панели, то можно считать, что после этого они перестают воспринимать дополнительную продольную сжимающую нагрузку. При этом приведенный модуль нормальной упругости заполнителя изменяется. Если в формуле для Ех (14) положить Ер, = О, то мы получим соответствующее значение касательного приведенного модуля E . При решении задачи устойчивости панели в формулы критических нагрузок (см. стр. 269—289) в качестве Е следует вводить этот касательный модуль Е . В других случаях работы панели может понадобиться значение секущего приведенного модуля Е . Оно после потери устойчивости ребрами армировки изменяется с нагрузкой и может быть найдено по формуле  [c.266]

При точном решении задач устойчивости различных элементов конструкций из таких сплавов, как, например, Д16-Т, у которых диаграммы растяжения и сжатия заметно отличаются друг от друга, для получения более правильного результата следует пользоваться диаграммами сжатия применяемого материала, а не растяжения.  [c.84]

Устойчивость других решений задачи трех тел  [c.846]

И применяют к решению задач устойчивости за пределом упругости. Произвольность таких рассуждений очевидна, поскольку нельзя говорить о том, что материал пластинки может в одном направлении (х) переходить за предел упругости, а в другом ( ) оставаться упругим. Кроме того, указанные и аналогичные рассуждения не дают общего метода составления дифференциального уравнения устойчивости в общем случае, когда на пластинку действует сложная система сил и не отражают тот бесспорный факт, доказанный в 37 и 38, что действующие силы существенным образом влияют на величины жёсткостей, т. е. на коэффициенты уравнений, связывающих изгибающие моменты с кривизнами.  [c.304]

Полученные результаты могут быть использованы при решении задач устойчивости трехслойных оболочек, несущие слои которых выполнены и из других ортотропных материалов.  [c.3]

Комбинированные методы и алгоритмы анализа. При решении задач анализа в САПР получило достаточно широкое распространение временное комбинирование численных методов. Наиболее известны рассмотренные выше алгоритмы ФНД для численного интегрирования ОДУ, являющиеся алгоритмами комбинирования формул Гира. Другим примером временного комбинирования методов служат циклические алгоритмы неявно-явного интегрирования ОДУ. В этих алгоритмах циклически меняется формула интегрирования — следом за шагом неявного интегрирования следует шаг явного интегрирования. В базовом алгоритме неявно-явного интегрирования используют формулы первого порядка точности — формулы Эйлера. Такой комбинированный алгоритм оказывается реализацией А-устойчивого метода второго порядка точности, повышение точности объясняется взаимной компенсацией локальных методических погрешностей, допущенных на последовательных неявном и явном шагах. Следует отметить, что в качестве результатов интегрирования принимаются только результаты неявных шагов, поэтому в алгоритме комбинированного неявно-явного интегрирования устраняются ложные колебания, присущие наиболее известному методу второго порядка точности — методу трапеций.  [c.247]

Отметим существенное различие между задачами синтеза оптимальных структур и задачами анализа качества структур технических объектов. В анализе необходимо убедиться, что решение существует, а численные методы анализа устойчивы. При структурном синтезе не гарантировано даже существование номинальной структуры, удовлетворяющей всем требованиям ТЗ на проектируемый объект. Существующие и разрабатываемые ММ синтезируемых технических объектов, как правило, оказываются довольно чувствительными к начальным условиям, к размерности задачи оптимизации, к виду целевых функций и ограничений. Поэтому необходимым условием для решения задач синтеза оптимальных структур технических объектов различной природы является использование методов и средств автоматизированного проектирования. Естественно, что формализованные модели и методы для САПР, с одной стороны, должны характеризоваться высокой степенью общности и достоверности, а с другой стороны, должны быть разрешимыми с вычислительной точки зрения.  [c.269]

Рассмотрим более детально это различие на примере анализа собственных колебаний одноатомной цепочки, с массой частиц т, расположенных на расстоянии а друг от друга, отвечающих равновесию. При продольных колебаниях цепочки возникают силы, стремящиеся вернуть частицы в положение равновесия. Решение задачи движения частиц из положения равновесия без потери устойчивости цепочки привело к установлению связи между частотой колебаний -, волновым числом а и величинами определяющими свойства це-  [c.199]

Кроме ошибок аппроксимации, существует другой источник ошибок численного решения, связанный с погрешностью вычислений. В зависимости от вычислительного алгоритма могут уменьшаться и возрастать ошибки округления. В случае возрастания говорят, что вычислительный метод неустойчив, в случае убывания — устойчив. Для решения задач используют устойчивые методы. Один и тот же алгоритм может быть устойчив при выполнении некоторых условий и неустойчив при их нарушении. Условие неустойчивости является внутренним свойством разностной схемы и не связано с исходной дифференциальной задачей. Исследование устойчивости обычно проводится для линейных задач с постоянными коэффициентами, и результаты исследования, полученные для линейных систем, переносят на нелинейные уравнения газовой динамики, но при этом надо иметь в виду, что  [c.271]


Отдельная глава посвящена расчету элементов конструкций с учетом ползучести расширен по сравнению с другими сборниками задач состав задач по вопросам усталостной прочности включен параграф, посвященный расчету тонкостенных стержней замкнутого профиля на стесненное кручение. В отдельные параграфы выделены вопросы нелинейного деформирования элементов конструкций. В главе Устойчивость и продольно-поперечный изгиб стержней помещены задачи, которые помогут студентам приобрести не только навыки расчетов на устойчивость, но и уяснить понятие критического состояния системы и применяемого в исследовании устойчивости метода Эйлера. Креме того, решение этих задач подготовит студентов к более успешному освоению курса устойчивости сооружений.  [c.3]

Таким образом, дополнив систему уравнений разветвленной сети трубопроводов объемного гидропривода двумя последними уравнениями, можно продолжать решение задачи после остановки поршня одного из гидроцилиидров. При этом следует иметь в виду, что вся система уравнений изменилась, так как изменилось число проточных элементов и тупиковых узлов. Следовательно, необходимо заново определить матрицы [1] [К] [S] и т. д. Кроме того, следует иметь в виду, что объемный модуль упругости относительно большая величина для жидкостей, применяемых в гидроприводе, он равен приблизительно 1200 МПа. Поэтому коэффициенты в двух последних уравнениях также значительно больше коэффициентов в остальных уравнениях, т. е. градиент возрастания давления в полости нагнетания и падения давления в полости слива значительно выше градиентов изменения давления в других участках гидросистемы. Последнее обстоятельство требует уменьшения шага интегрирования для получения устойчивости при вычислениях (можно рекомендовать шаг интегрирования в этом случае 10 ..10 с).  [c.185]

Часто бывает очень сложно найти характеристический спектр второй вариации, и более приемлемым оказывается другой путь решения задачи. Вторая вариация минимизируется и определяется ее знак в минимуме. При положительном знаке равновесие устойчиво, в противном случае — неустойчиво. Условие хлопка получается приравниванием минимального значения к нулю.  [c.189]

Вариационные принципы механики неразрывно связаны с теорией групп преобразований, синтезом аналитического и геометрического аспектов механики, оптико-механической аналогией и единой волново-корпускулярной картиной движений, классической и квантовой теорией физических полей, вариационными методами решения задач движения, равновесия, устойчивости и структуры физических систем и другими фундаментальными проблемами.  [c.780]

Для записи энергетического критерия устойчивости в форме Брайана предварительно требуется определить начальные напряжения в упругом теле. При решении некоторых задач устойчивости иногда оказывается удобным записать энергетический критерий в другой форме, не содержащей непосредственно начальных напряжений невозмущенного состояния равновесия [61. Покажем, как это можно сделать.  [c.57]

Кроме приведенных простейших примеров имеется большое количество других более сложных задач, допускающих точное аналитическое решение [21 ]. Однако в общем случае при произвольных законах изменения EJ (х) и No х) уравнение (3.4у не удается аналитически проинтегрировать. Тогда для определения критических нагрузок и форм изогнутой оси стержня при потере устойчивости прибегают к приближенным методам. Одним, из наиболее эффективных машинных методов определения критических нагрузок в задачах устойчивости прямых стержней является метод начальных параметров.  [c.85]

Рассмотрим решения нескольких задач устойчивости стержней энергетическим методом. Исследуем устойчивость шарнирно опертого стержня при двух вариантах закрепления верхнего конца в осевом направлении (рис. 3.12, а и б) 1) верхний конец может свободно смещаться в осевом направлении 2) верхний конец закреплен неподвижно. Очевидно, и в том и в другом случае решение можно получить с помощью ряда  [c.95]

Оба подхода к решению задач устойчивости цилиндрических оболочек в условиях ползучести содержат принципиально необходимое для их реализации введение в расчетную модель начальных прогибов (начального моментного состояния, если нет стеснения торцов), так как идеальные цилиндрические оболочки в условиях осевого сжатия без искривления образующих не могут терять устойчивость при длительном нагружении. С другой стороны, учет действительных начальных несовершенств приближает расчетную модель к реальному юбъекту и повышает точность результатов исследования.  [c.7]

Использование вместо закона упругости (2.4) или (4.3) соотношений классической теории стержней или теории С. П. Тимошенко, учитывающей поперечный сдвиг, для решения задач устойчивости рассматриваемых слоистых эластомерных конструкций приводит к неверным результатам. Причин тому две для эластомерных конструкций нужна другая форма закона упругости и другие значения коэффициентов жесткости на.рдвиг И изгиб.  [c.237]

При рассмотрении задачи прочности такого бруса система уравнений распалась на два независимых уравнения, одно из которых было 5фавнением для усилий в связях сдвига в стержне с абсолютно жесткими поперечными связями, а другое давало такое распределение усилий S в поперечных связях, какое получается для отпора грунта при решении задачи о балке на упругом основании. Покажем, что и система уравнений устойчивости такого стержня распадается на две независимые группы. Одна из них дает такие значения критической нагрузки и формы потери устойчивости, какие возникают в стержне с абсолютно жесткими поперечными связями, которые при этом остаются ненапряженными, другая же группа уравнений приводит к решению, аналогичному решению задачи устойчивости стержня в упругой среде.  [c.234]

Когда уравнения возмущенного движения нелинейны, вопрос о существовании периодических движений рассматривали А. А. Андронов (1937) для уравнений второго порядка и П. А. Кузьмин (1939) для уравнений второго и третьего порядков, а вопросы о поведении траекторий как в области точек бифуркации, так и в точках ответвления периодических орбит исследовал Н. Н. Баутин (1950). Последний показал, что в рассматриваемых случаях поведение динамической системы вблизи границы области устойчивости определяется ее поведением на самой границе. Те границы области устойчивости, на которых невозмущенное движение устойчиво,, называют безопасными , а те границы, на которых оно неустойчиво,— опасными . Нахождение опасных и безопасных границ сводится, к решению задачи устойчивости в критических случаях. Впоследствии эти результаты были развиты в работах ряда авторов (А. И. Лурье, 1951 И. Г. Малкин, 1952, и другие).  [c.60]

Для решения задачи, прежде всего, необходимо иметь простую и точную процедуру вычисления поля скорости, индуцированного винтовыми вихревыми нитями. В отличие от прямолинейных нитей с простой записью решения в виде полюса, для винтовых нитей закон Био-Савара не интегрируется в конечном виде. Его трудно (из-за сингулярности в ядре) непосредственно использовать для численного расчета поля скорости, а известные асимптотические решения не дают требуемой точности при определении скорости (см., например, [10]), необходимой для решения задачи устойчивости во всем диапазоне изменения шага винтовых вихрей. Другая форма решения через бесконечные ряды из косых произведений модифицированных цилиндрических функций (ряды Каптейновского типа) была найдена Хардиным [7] для винтовой вихревой нити в безграничном пространстве и обобщена в [9] для нити в бесконечной трубе, соосной цилиндру вдоль которого навита нить. Далее ограничимся рассмотрением только первого случая, для которого упомянутые ряды имеют вид  [c.394]


Сложность записи в явном виде (20.10) или лодобных выражений для других характеристических функций заключается в необходимости учесть все возможные в этой системе в принципе фазы и составляющие вещества, причем их свойства yJ должны быть заданы во всем интересующем интервале изменения переменных, поскольку заранее, до решения задачи, не ясно, какие части системы из всего виртуального набора их будут при данных условиях устойчивыми, а какие неустойчивыми. При последующем расчете эта исходная максимально сложная модель внутреннего строения системы может только упрощаться. Если же какая-либо из возможных фаз или составляющее не учтены в начале расчетов, то они не будут лредставленньши и в конечном результате, что может явиться причиной плохого соответствия между реальной равновесной системой и ее термодинамическим образом. Значения термодинамических функций составляющих (обычно требуются энтальпии ь энтропии их образования) находят в справочной литературе, в периодических изданиях, оценивают приближенными методами или получают в результате специально поставленных экспериментов.  [c.172]

Именно устойчивость формы гармонических колебаний по отношению к широко распространенному классу линейных систем и определяет то исключительное положение, которое занимают гармонические колебания среди всех других форм колебаний. Устойчивость формы играет решающую роль не только в случае гармонической внешней силы, когда эта устойчивость позволяет заранее утверждать, что в линейной системе вынужденные колебания будут гармоническими, и тем самым свести задачу о вынужденных колебаниях только к определению амплитуды и фазы гармонического вынужденного колебания. Так как в линейных системах справедлив принцип суперпозиции, то и в случае негармопической внешней силы решение задачи  [c.622]

Энергетические методы широко применяют в задачах статики и динамики тонкостенных конструкций. Наиболее распространенным из них является метод Релея — Ритца, предусматривающий представление решения в виде ряда по координатным функциям. Выбор метода решения задачи — интегрирование дифференциального уравнения (классическими методам и или методом Галер-кина) или применение энергетического метода — часто связан с определенными трудностями. Можно показать, что при условии корректного применения метода Галеркина к системе дифференциальных уравнений [22], он в математическом отношении эквивалентен методу Релея — Ритца [133]. Однако, если имеется только дифференциальное уравнение, то следует применять метод Галеркина или другие методы его решения, а если имеется только выражение, определяющее энергию системы, следует отдать предпочтение энергетическим методам. Эти соображения не помогают выбрать метод решения задач, которые сформулированы как в дифференциальной, так и в энергетической постановке. Он определяется в этих случаях предшествующими расчетами, а также наличием программ решения задач на собственные значения (для устойчивости и колебаний) для вычислительных машин. Традиционно энергетические методы получили наибольшее распространение в США и Германии, в Англии отдавалось предпочтение конечно-разностным методам решения дифференциальных уравнений, а в СССР — методу Галеркина.  [c.179]

Аштон и Ваддоупс [17 ] решили методом Релея — Ритца задачу устойчивости прямоугольной пластины с произвольной схемой расположения слоев при одноосном и двухосном сжатии, а также сдвиге в плоскости пластины. Полученные ими решения достаточно хорошо совпали с результатами эксперимента при одноосном сжатии пластин, защемленных по всем сторонам, пластин, защемленных по двум сторонам и шарнирно опертых по двум другим сторонам [15 [, сдвиге пластин, защемленных по всем сторонам [16], а также при одноосном сжатии пластин с линейно изменяющейся толщиной.  [c.184]


Смотреть страницы где упоминается термин Другие решения задач устойчивости : [c.156]    [c.482]    [c.647]    [c.4]    [c.36]   
Смотреть главы в:

Динамические задачи нелинейной теории упругости  -> Другие решения задач устойчивости



ПОИСК



Другие задачи

Устойчивое решение

Устойчивость решений



© 2025 Mash-xxl.info Реклама на сайте