Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Сжатие двухосное

Постоянные А, В, С, D, Е, входящие в критерий (22), определяются по результатам пяти опытов, два из которых представляют собой одноосное растяжение и сжатие, а три других проводятся при плоских напряженных состояниях — двухосном сжатии, двухосном растяжении и чистом сдвиге.  [c.52]

Если, наоборот, температура перегородки в исходный момент была ниже температуры стенок (вид 6), то к концу остывания в перегородке возникают двухосные напряжения сжатия, а в стенках - растяжения.  [c.76]


Такое напряженное состояние называют равномерным двухосным растяжением (или сжатием).  [c.149]

После сборки детали испытывают двухосное напряженное состояние (см. рис. 252). В материале втулки в радиальном направлении возникают напряжения сжатия Ог, а в тангенциальном — напряжения растяжения В материале вала в обоих направлениях возникают напряжения сжатия а г и о]. Наибольшие напряжения появляются на внутренних поверхностях обеих деталей. Эти напряжения не должны превышать пределы текучести материала деталей. Однако, как показал опыт эксплуатации прессовых соединений, для неразборных соединений допускаются некоторые пластические деформации в наиболее напряженной зоне.  [c.394]

В этом случае на всех площадках, проходящих через исследуемую точку, касательное напряжение равно нулю, а нормальное напряжение имеет одно и то же значение =о [см. формулы (11.30) и (П.31) . Такое напряженное состояние называется равномерным двухосным растяжением (или сжатием).  [c.57]

До сих пор изучались расчеты на прочность в случаях, когда материал находится или в одноосном напряженном состоянии (растяжение, сжатие), или простейшем двухосном, когда главные напряжения в каждой точке равны между собой по значению и противоположны по знаку (сдвиг, кручение).  [c.221]

Точки, расположенные в I четверти (квадранте) диаграммы, будут характеризовать двухосное растяжение (Оз = 0 0 > >0 и О2>0) точки, расположенные во И и IV квадрантах,— двухосное растяжение — сжатие (О >0 ст2=0 ° з<0)> точки, расположенные в III квадранте,— двухосное сжатие (О2<0  [c.224]

Мы рассматривали гипотезы прочности, опираясь на данные опытов с двухосным напряженным состоянием. Опытных данных, относящихся к трехосным напряженным состояниям, значительно меньше. Имеющиеся опыты свидетельствуют о том, что при напряженных состояниях, близких к трехосному сжатию, материалы, даже хрупкие, способны выдерживать весьма значи-  [c.233]

Если в некоторой точке поперечного сечения бруса одновременно возникают нормальные и касательные напряжения, то напряженное состояние в этой точке двухосное (плоское) и для расчета на прочность надо определить эквивалентное напряжение, т. е. применить ту или иную гипотезу прочности. Нормальные и касательные напряжения одновременно возникают при работе бруса на кручение и растяжение или сжатие, на изгиб и кручение, на изгиб с кручением и с растяжением или со сжатием. Во всех этих случаях расчет выполняют на основе гипотез прочности. При прямом или косом  [c.299]


После сборки детали испытывают двухосное напряженное состояние (см. рис. 3.40, а, б). В материале втулки в радиальном направлении возникают напряжения сжатия о,-, а в тангенциальном — напряжения растяжения В материале вала в обоих направлениях возникают напряжения сжатия о( и <з. Эти напряжения не должны превышать пределы текучести материала деталей.  [c.397]

На плоское напряженное состояние, заданное площадками чистого сдвига с напряжениями т = 10 МПа, накладывается двухосное сжатие с напряжениями 10 МПа. Каково будет результирующее напряженное состояние  [c.48]

Различают линейное (или одноосное), плоское (или двухосное) и объемное (или трехосное) напряженные состояния. При линейном напряженном состоянии только одно из главных напряжений (a при одноосном растяжении или Сд при одноосном сжатии) отлично от нуля. При плоском напряженном состоянии не равны нулю два главных напряжения и, наконец, при объемном — все три главных напряже-  [c.39]

Для часто встречающегося случая двухосного напряженного состояния, когда нормальное напряжение в продольном сечении равно нулю (изгиб с кручением, сжатие или растяжение с кручением), имеем Оу=0 Ох=0. Уравнение для определения эквивалентного напряжения принимает вид  [c.99]

Чистое трехосное сжатие возникает в любом теле, независимо от его формы, при всестороннем гидростатическом давлении (рис. 7.23, а). Неравномерное трехосное сжатие характерно для точек, расположенных в окрестности контактирующих тел, таких как, например, ролики и обоймы подшипников, втулки и валы (рис. 7.23, б). Пример возникновения двухосного сжатия показан на рис. 7.23, в. Двухосное равное сжатие ((72 = (7з) возникает при нагружении давлением вала, имеющего свободные торцы (рис. 7.23, г). Одноосное сжатие также относится к рассматриваемому классу напряженных состояний и возникает, в частности, при чистом изгибе и сжатии однородного стержня (рис. 7.23, д).  [c.323]

При деформации по схеме двухосного растяжения (его можно рассматривать как результирующую гидростатического растяжения и одноосного сжатия) пластическое течение начнется только тогда, когда растягивающее напряжение превысит сжимающее, перпендикулярное поверхности листа.  [c.296]

Для сильно текстурованных гексагональных материалов отсутствие подходяще ориентированной системы скольжения для утонения и приводит к высокому пределу текучести при сжатии, а значит к заметному упрочнению при двухосном растяжении.  [c.296]

Ребро заштрихованного элемента (рис. 1П.2), испытывающего двухосное растяжение и сжатие, совпадает с АО, поэтому их деформации равны и могут быть  [c.85]

При двухосном растяжении (сжатии) справедливы те же формулы, но одно из напряжений равно нулю.  [c.103]

ДВУХОСНОЕ РАСТЯЖЕНИЕ И СЖАТИЕ  [c.175]

Схема воздействия сил ( напряженное состоянием). Пластичность, а точнее — деформируемость металлического тела, зависит от величины и направления действия деформирующих сил. Существует девять схем действия 1) одноосное растяжение 2) одноосное сжатие 3) двухосное растяжение 4) двухосное сжатие 5) растяжение и сжатие 6) трехосное растяжение 7) трехосное сжатие 8) двухосное растяжение и сжатие 9) двухосное сжатие и растяжение.  [c.192]

Существующее многообразие принципов классификации механических испытаний [16, 45, 46] позволяет сравнительно свободно решать самые различные задачи. В частности, при изучении процесса деформационного упрочнения важно проводить испытания так, чтобы металл имел возможность максимально проявить свои пластические свойства. Предложенная Фридманом [1] оценка жесткости разных видов механических испытаний через коэффициент мягкости а, основанная на анализе всех возможных видов напряженного и деформированного состояния, позволяет расположить наиболее распространенные из них в следующий ряд (по степени увеличения способности металла к пластической деформации) трехосное растяжение — двухосное растяжение — одноосное растяжение — кручение — одноосное сжатие — трехосное сжатие.  [c.30]


При обычно принятых отношениях ширины и высоты образца (больше 3) изгиб по любой из схем (трех- и четырехточечной) вызывает неоднородное плоское двухосное напряженное состояние в образце в результате затрудненности поперечной деформации. Нижняя часть образца при этом растянута, верхняя — сжата. К тому же напряжения, связанные с величиной изгибающего момента, различны по длине и сечению образца. Максимальные напряжения создаются вблизи поверхности. Эти особенности метода изгибных испытаний затрудняют оценку средних истинных напряжений и деформаций, которые можно было бы точно сопоставить механическим свойствам в других видах испытаний.  [c.35]

Оказалось, что наиболее ярко влияние второй компоненты нагружения на достижение предельного состояния выражено в размере зоны статического проскальзывания в момент перегрузки. Если в области двухосного растяжения имело место монотонное убывание зоны проскальзывания, с ее исчезновением при соотношении главных напряжений -1,0, то в области растяжения-сжатия имело место немонотонное изменение размеров указанной зоны. Сначала ее размер убывал при увеличении второго напряжения сжатия, а далее происходило вновь нарастание размера зоны статического проскальзывания. Изложенные результаты эксперимента свидетельствуют о синергетической ситуации в вершине трещины, когда в момент перехода к статическому проскальзыванию при монотонном увеличении раскрытия вершины трещины могут одновременно участвовать в процессе два фактора, оказывающих влияние друг на друга.  [c.111]

Возрастание толщины пластины не влияет на степень стеснения пластической деформации вдоль фонта трещины, что подтверждается независимостью размеров зоны вытягивания от геометрических характеристик пластины [90]. Двухосное растяжение увеличивает степень стеснения, в том числе и у поверхности пластины. У поверхности пластины возникает дополнительное сжатие, препятствующее раскрытию трещины. Этот факт принципиально отличает условия деформирования материала в вершине трещины при двухосном растяжении от условий деформирования материала при одноосном растяжении.  [c.111]

Рис. 6.17. Схемы устройств для испытания плоских крестообразных моделей при двухосном (а) растяжении и (б) двухосном растяжении-сжатии, (в) схема расположения поверхностной трещины в образце и (г), (д) пример разбиения зоны этой трещины на трехмерные элементы для оценки напряженного состояния материала МКЭ Рис. 6.17. Схемы устройств для испытания плоских крестообразных моделей при двухосном (а) растяжении и (б) <a href="/info/488556">двухосном растяжении-сжатии</a>, (в) <a href="/info/4764">схема расположения</a> <a href="/info/130057">поверхностной трещины</a> в образце и (г), (д) пример разбиения зоны этой трещины на <a href="/info/167119">трехмерные элементы</a> для <a href="/info/222982">оценки напряженного</a> состояния материала МКЭ
Рис. 6.25. Сферические частицы в изломе крестообразных образцов из алюминиевого сплава АК6 с поверхностными трещинами, испытанных при двухосном растяжении-сжатии = -0,5 Рис. 6.25. <a href="/info/131829">Сферические частицы</a> в изломе крестообразных образцов из <a href="/info/29899">алюминиевого сплава</a> АК6 с <a href="/info/130057">поверхностными трещинами</a>, испытанных при <a href="/info/25666">двухосном растяжении</a>-сжатии = -0,5
После перегрузки у поверхности образца нарушается монотонность формирования скосов от пластической деформации. Высота и ширина скоса постепенно уменьшается, а после достижения трещиной некоторой длины снова возрастает. При этом в срединной части излома, которая не меняет своей ориентировки после перегрузки, наблюдается формирование последовательно зоны статического проскальзывания с ямочным рельефом или зоны более сглаженного рельефа при резком снижении СРТ после перегрузки (рис. 8.14). Статическое проскальзывание при использованных параметрах цикла нагружения наблюдалось в области растяжения-сжатия образца, а выраженная зона вытягивания в виде уступа с более сглаженным рельефом излома соответствовала тем же перегрузкам, но при двухосном растяжении. Непосредственно за зоной статического проскальзывания трещины происходило выраженное контактное взаимодействие берегов усталостной трещины, что формировало зону, имевшую макроскопически черный цвет. Этот факт уже отмечен для одноосных перегрузок [24].  [c.426]

При равновесном и статическом сжатиях резины с применением смазки справедливо уравнение (1.32). Сжатие при сухом трении более сложно. Цилиндрический образец резины в этом случае испытывает (в направлении, перпендикулярном нагружению) двухосное растяжение, а по плитам и вблизи них вследствие возникновения трения — сдвиг. Совместный эффект сжатия, двухосного растяжения и сдвига ведет к изгибу (выпучиванию) боковой поверхности образца. Вертикальная ось сохраняет свое положение, но лишь при условии, например, что /lo о 1,5. Образцы большой высоты продольно изгибаются, и, теряя устойчивость, иногда выскакивают из междуплитного пространства. Наибольшее напряжение растяжения создается в сечении посредине высоты образца на его периферии. В центре опорных поверхностей образец частично испытывает трехосное сжатие.  [c.23]

При дальнейшем остывании ниже те.мпературь материал перегородки твердеет и, сокращаясь, подвергается растяжению. Так как сокращение происходит в двух направлениях (по осям. X и г), то в перегородке к концу остывания возникают двухосные напряжения растяжения, а в стенках — реак гивные напряжения сжатия.  [c.76]

На рис. VIII.5, а видно, что для стекла до Оз=-300 МПа решающая роль принадлежит растягивающему напряжению ai = - -40 МПа. Для гипса до напряжения Оз=-12 МПа решающая роль также принадлежит растягивающему напряжению a = +4 МПа. III квадрант (т. е. случай двухосного сжатия) не обследован.  [c.225]


Чистое трехосное сжатие возникает в любом теле, независимо от его ([юрмы, при всестороннем гидростатическом давлении (рис. 289, а). Неравномерное трехосное сжатие характерно для точек, расположенных в окрестности контактирующих тел, таких, как, например, ролики н обоймы подшипников, втулки и валы, и др. (рис. 289, б). Пример иозникновеиия двухосного сжатия показан на рис. 289, а. Двухосное равное сжатие (o — j) возникает при нагружении давлением вала, HMeiouiero свободные торцы (рис. 289, г).  [c.248]

Если все три главных напряжения не равны нулю, то напря-женное состояние называют о б ъ е м н bLM. иди т р е х йх л ы м. Нсл1Глйшь два главных напряжения отличны от нуля, то напряженное состояние называют плоским, или двухосным. И наконец, если лишь одно главное напряжение не равно нулю, то напряженное состояние будет линейным, или одноосным. В частности, при работе бруса на растяжение или сжатие в любой его точке возникает одноосное напряженное состояние. При растяжении не равное нулю главное напряжение должно быть обозначено Oj, а при сжатии — Стд. Заметим также, что при растяжении главная площадка, на которой возникает напряжение Oj, совпадает с поперечным сечением бруса.  [c.225]

При двухосном (плоском) и трехосном (пространственном) напряженных состояниях возможны самые различные соотношения между главными напряжениями. Для того чтобы экспериментально установить значения этих напряжений, соответствующие допускаемым состояниям, необходимо провести очень большое число испытаний при различных соотношениях между главными напряжениями. Практически осуществить такие эксперименты невозможно не только из-за больщого их числа, но также в связи с трудностью их проведения. Поэтому приходится, используя результаты опытов на одноосное растяжение и сжатие материала, теоретически (с помощью так называемых теорий прочности) определять его прочность для любых случаев двухосного и трехосного напряженных состояний.  [c.342]

Общий случай двухосного напряженного состояния, в котором О1/сТз<0 и компоненты напряженного состояния переменны, показан на рис. Х1.18,а. Такое напряженное состояние существует в точке бруса, испытывающего совместные растяжение-сжатие, изгиб и кручение (см. VIII. 5).  [c.346]

Оценка прочности при До сих пор рассматривали случай одноосного двух- и трехосном напряженного состояния. При оценке проч-напряженном состоянии, ности двухосного или трехосного напряжен-Гипотезы прочности ного состояния, если следовать но указанному пути, то в каждом напряженном состоянии ( ji, 02, 03) нужно было бы для каждого материала иметь соответствующие диаграммы исш.1таний с числовыми характеристиками предельных точек. Понятно, что такой подход к решению, вопроса неприемлем. Действительно, разнообразие напряженных состояний безгранично, номенклатура применяемых мат териалов чрезвычайно велика, и создать каждое из могущих встретиться на практике напряженных состояний, да к тому же для всех материалов, в лабораторных условиях невозможно как по техническим, так и по экономическим причинам. Следовательно, располагая ограниченными экспериментальными данными о свойствах данного материала — значениями предельных напряжений при одноосном растяжении и сжатии, — необходимо иметь возможность оцежвать его прочность  [c.152]

Применительно к сквозным трещинам решающее влияние на закономерности роста трещины при возрастании соотношения оказывает напряженное состояние в вершине трещины, что вызывает изменение размера зоны пластической деформации. Разрушение перемычек между мезотуннелями происходит путем сдвига одинаковым образом, как при двухосном растяжении, так и при двухосном растяжении-сжатии. Это происходит потому, что вторая компонента нагрузки (растяжения и сжатия), лежащая в плоскости трещины, ориентирована вдоль осей мезотуннелей. Поэтому влияние второй компоненты на рост сквозных трещин проявляется преимущественно через изменение размера зоны пластической деформации в вершинах мезотуннелей — с уменьшением размера зоны пластической деформации происходит монотонное уменьшение всех кинетических параметров СРТ, шага бороздок и скосов от пластической деформации.  [c.323]

Расположение трещины в образце может быть сбоку и в средней его части. Было показано, что в образце с центральным отверстием задержка трещины выше при прочих равных условиях, чем в компактном образце с боковой трещиной [37]. Такое влияние расположения трещины было объяснено наличием дополнительного сжатия в плоскости трещины в образце с центральным отверстием. Для подтверждения этой гипотезы были проведены испытания плоских крестообразных образцов с центральным отверстием. Первоначально была выращена усталостная трещина при одноосном нагружении, а затем после добавления компоненты 02 = -0,19ао,2 и Ог = -0,58оо,2 в плоскости трещины была реализована двухосная перегрузка. После этого из образца была вырезана трещина и испытания продолжили при одноосном растяжении. Развитие трещины происходило после более длительной задержки трещины, чем это имело место в случае одноосной перегрузки того же уровня, что связано с созданием большего размера зоны в момент перегрузки для сквозной трещины в случае двухосного растяжения-сжатия, чем при одноосном растяжении.  [c.410]

Рис. 8.8. Схемы нагружения плоских крестообразных образцов из сплава Д16Т на двухосное растяжение и растяжение-сжатие путем изменения (а) амплитуды, (6) уровня напряжения, а также (в) путем блочного изменения соотношения главных напряжений Рис. 8.8. <a href="/info/34395">Схемы нагружения</a> плоских крестообразных образцов из сплава Д16Т на <a href="/info/25666">двухосное растяжение</a> и <a href="/info/79322">растяжение-сжатие</a> путем изменения (а) амплитуды, (6) уровня напряжения, а также (в) путем блочного изменения соотношения главных напряжений

Смотреть страницы где упоминается термин Сжатие двухосное : [c.521]    [c.285]    [c.319]    [c.237]    [c.143]    [c.273]    [c.108]    [c.155]    [c.314]    [c.323]    [c.425]    [c.436]   
Сопротивление материалов (1999) -- [ c.323 ]

Сопротивление материалов (1986) -- [ c.273 ]

Прикладная механика твердого деформируемого тела Том 1 (1975) -- [ c.440 ]

Расчёты и конструирование резиновых изделий Издание 2 (1977) -- [ c.29 ]



ПОИСК



Двухосное растяжение и сжатие

Двухосное растяжение и сжатие. Круг напряжений

Двухосное растяжение—сжатие и чистый сдвиг

Круг напряжений для двухосного напряжённого сжатия



© 2025 Mash-xxl.info Реклама на сайте