Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Уравнения движения вязких жидкостей и газов

УРАВНЕНИЯ ДВИЖЕНИЯ ВЯЗКИХ ЖИДКОСТЕЙ И ГАЗОВ  [c.17]

Безразмерные уравнения движения вязкой жидкости и газа. Условия подобия  [c.481]

Представление о пограничном слое оказалось плодотворным по двум главным причинам. Во-первых, появилась возможность производить построение теории движения вязкой жидкости и газа на основе известных решений уравнений для идеальной жидкости и газа. Во-вторых, сложные уравнения Навье — Стокса в тонком пограничном слое оказалось возможным заменить более простыми уравнениями теории пограничного слоя.  [c.254]


В середине XX в. в теории пластичности выработаны общие принципы ее построения, и произошло существенное обогащение и развитие основ МСС. Уже в начале столетия стало ясно, что законы упругости и вязкости приближенно представляют уравнения состояния сред лишь в определенных диапазонах параметров движения, но не представляют их, например, в пластической и вязкоупругой области деформаций металлов и полимеров, в области неоднородных турбулентных движений вязких жидкостей и газов с большими скоростями и т. д. Постулатом макроскопической определимости в МСС устанавливается, что в малых макрочастицах любых сплошных сред в момент времени  [c.4]

Теоретическое изучение движения вязких жидкостей и газов, а также изучение движения тел в этих средах сопряжено с весьма большими математическими трудностями, так как уравнения (131) и (132) представляют собой систему нелинейных дифференциальных уравнений в частных производных.  [c.324]

Замкнутая система дифференциальных уравнений, описывающая передачу тепла конвекцией и включающая уравнения движения вязкой жидкости (газа), сохранения энергии, сплошности и передачи тепла на границе с твердой поверхностью, обработанная методами теории подобия , позволяет получить ряд критериев подобия.  [c.71]

Для построения теории сопротивления трения необходимо вывести уравнения движения вязкой жидкости при этом мы ограничимся рассмотрением таких течений жидкостей и газов, когда влиянием сжимаемости можно пренебречь.  [c.315]

Скачок уплотнения. Внутреннюю структуру скачка уплотнения, который в рамках гидродинамики идеальной жидкости заменяется разрывом, следует рассматривать на основе теории, учитывающей диссипативные процессы — вязкость и теплопроводность. В качестве простейшей модели можно использовать уравнение движения вязкой жидкости Навье — Стокса. Уравнения одномерного течения вязкого и теплопроводного газа — течения, стационарного в системе координат, связанной с фронтом ударной волны,— имеют вид  [c.212]

Вязкость и теплопроводность проявляются только при наличии больших градиентов гидродинамических величин, которые имеют место, например, в пограничном слое при обтекании тел или внутри фронта ударной волны. В этой книге вязкость и теплопроводность нас будут интересовать в основном с точки зрения их влияния на внутреннюю структуру фронта ударных волн в газах. При изучении этой структуры течение можно считать зависящим от одной координаты X (плоским), так как толщина фронта ударной волны всегда намного меньше радиуса кривизны его поверхности. Поэтому мы не будем останавливаться на выводе общего уравнения движения вязкой жидкости (газа), которьи можно найти, например, в книге Л. Д. Ландау и Е. М. Лифшица [1], и поясним только, как можно получить уравнения для одномерного, плоского случая.  [c.66]


В случае вязкого газа полная система уравнений, характеризующая его движение и различные процессы в нем, сложная и уравнений много. В качестве примеров получим полную систему уравнений движения.вязкой несжимаемой жидкости, а также уравнения движения идеальной несжимаемой жидкости и идеального газа.  [c.557]

Эти уравнения называются уравнениями Навье — Стокса их используют для описания движений вязких сжимаемых жидкостей и газов.  [c.82]

Идеальная или невязкая жидкость является упрощенной моделью реальной (вязкой) жидкости. По предположению, идеальная жидкость имеет все свойства реальной, кроме вязкости, поэтому для получения уравнения ее движения можно применить уравнения Навье — Стокса, положив л = О . Тогда уравнения движения вязкого газа (5.8) и движения вязкой несжимаемой жидкости (5.9) упрощаются и принимают вид  [c.99]

В учебном пособии рассмотрены основные вопросы совре менной гидромеханики статика, кинематика и динамика. Приведены выводы общих уравнений движения сплошных сред. Даны законы переноса импульса, тепла и вещества. Изложена теория потенциального днижения как для плоских, так и для пространственных потоков. Рассмотрена сжимаемость газа при дозвуковых и сверхзвуковых течениях. Освещены вопросы теории движения вязкой жидкости, подробно рассмотрены ламинарное и турбулентное движения в трубах и в пограничном слое. Дан метод расчета трубопроводов.  [c.2]

Опыт показывает, что в потоках вязких жидкостей или газов около поверхности твердого тела или у границы двух потоков жидкости, движущихся с разными скоростями, действие сил вязкости в разных областях течения проявляется неодинаково. Оно проявляется заметно там, где возникают большие поперечные градиенты скорости и, как следствие, касательные напряжения велики. По мере увеличения расстояния от стенки действие сил вязкости ослабевает и становится исчезающе малым на сравнительно небольшом удалении, В обычных условиях течения скорость частиц жидкости относительно обтекаемой поверхности и на самой поверхности равна нулю с увеличением расстояния от стенки она быстро увеличивается, приближаясь к скорости внешнего потока О), где поперечные градиенты скорости практически равны нулю, а касательные напряжения, возникающие вследствие трения, пренебрежимо малы. Течение в области, удаленной от поверхности, можно считать совпадающим с потенциальным течением идеальной жидкости и применять к нему закономерности теории идеальной жидкости. Эту область называют потенциальным или внешним потоком. Тонкий слой жидкости, прилегающий к поверхности обтекаемого тела и заторможенный вследствие трения, называют динамическим пограничным слоем. В пределах пограничного слоя касательное напряжение от трения очень велико даже при малой вязкости жидкости, поскольку очень велик градиент скорости в направлении, перпендикулярном поверхности тела. Во внешнем потоке инерционные силы преобладают над силами вязкости, поэтому уравнения Навье—Стокса переходят в уравнения движения идеальной жидкости.  [c.18]

Пятое издание содержит изложение основных разделов механики жидкости и газа кинематики, статики и динамики. Общие дифференциальные уравнения динамики выведены как для однородной, так и для неоднородной, гомогенной и гетерогенной сред. Рассмотрены методы интегрирования уравнений динамики в задачах несжимаемых и сжимаемых, идеальных и вязких жидкостей п газов при ламинарных и турбулентных режимах движения. Приведено значительное число примеров приложений этих решений, иллюстрирующих большие возможности современных методов механики жидкости и газа в технической практике.  [c.2]

Проблема движения вязкой жидкости вблизи плохо обтекаемого тела представляет одну из наиболее сложных и до сих пор нерешенных проблем нелинейной механики жидкости. Роль конвективных членов, представляющих нелинейность в уравнениях Навье — Стокса, в создании зон замкнутых обратных токов, в явлении неустойчивости этих зон, начиная с некоторого критического рейнольдсова числа обтекания тела, отрыва их от тела и схода в область следа будет, вероятно, еще долго привлекать внимание исследователей. Велико прикладное значение этой проблемы. Такие важные технические задачи, как автоколебания цилиндрических тел в равномерных однородных потоках жидкостей и газов, звучание струн в потоках (эоловы тоны), использование обратных токов в следе за телом для стабилизации пламени в камерах горения, и ряд других близких по своей гидродинамической сущности проблем упираются в необходимость изучения динамических явлений в кормовой области плохо обтекаемых тел. Основная проблема сопротивления движению тел плохо обтекаемой формы в жидкостях и газах при малых и средних значениях рейнольдсовых чисел также остается до сих пор нерешенной.  [c.509]


Изучение распространения звука в текучих средах, т. е. в жидкостях и газах, начнем с классической гидродинамики. Как известно, в гидродинамике предполагается, что покоящаяся текучая среда является однородной, изотропной, вязкой, теплопроводной, химически инертной. Любую проблему движения в рамках гидродинамики можно рассмотреть с помощью системы четырех дифференциальных уравнений, которые выражают закон Ньютона, уравнение состояния текучей среды, закон сохранения массы (уравнение непрерывности) и закон сохранения энергии в термодинамическом процессе движения среды.  [c.166]

Значительно развито содержание глав VHI—XI, посвященных общей динамике вязких несжимаемых жидкостей и газов, включая сюда теорию пограничного слоя и турбулентных движений. В этих главах изложены многие новые вопросы, относящиеся к динамике вязких неньютоновских и электропроводных жидкостей в магнитном поле, к результатам современных машинных расчетов точных решений уравнений Стокса, включая неизотермические движения и свободную конвекцию, к новым методам расчета пограничных слоев в несжимаемых жидкостях и в газовых потоках больших скоростей и к современным представлениям о турбулентности и ее применениям к некоторым прикладным задачам.  [c.2]

Основы учения о движении вязкой жидкости были заложены в 1821 г. французским ученым Навье и получили свое завершение в 1845 г. в работах Стокса (1819—1903), который сформулировал закон линейной зависимости напряжений от скоростей деформаций, представляющий обобщение простейшего закона Ньютона, и дал в окончательной форме уравнения пространственного движения вязкой жидкости, получившие наименование уравнений Навье — Стокса. Используя специальные молекулярные гипотезы относительно свойств реальных газов, уравнения движения вязкого газа выводили в 1821 г. Навье, в 1831 г. Пуассон (1781—1846) и в 1843 г. Сен-Венаи (1797—1866). Урав " нения Навье —Стокса в криволинейных координатах в 1873 г. вывел Д. К- Бобылев.  [c.26]

Уравнения Прандтля — Мизеса основаны на использовании наряду с X в качестве второй независимой переменной функции тока Принятое в настоящее время во многих вопросах гидро- и газодинамики применение в качестве независимого переменного функции тока т]) основывается на том, что в идеальных жидкостях и газах (при стационарных их движениях) вдоль линий тока, т. е. при постоянстве функции тока, сохраняются некоторые важные характеристики потока (полный напор — в идеальной несжимаемой жидкости, полная энтальпия — в идеальном газе), о чем уже была речь в гл. 1П. В вязкой жидкости, в силу наличия диссипации. механической энергии, эти величины сохраняться не могут, но, как сейчас будет показано, выделение функции тока г 5 в качестве аргумента позволяет получить в простой и наглядной форме уравнение, напоминающее по типу уравнение теплопроводности.  [c.568]

Современная вычислительная гидродинамика занимается разработкой таких актуальных направлений, как расчет движений вязкой жидкости, численное исследование течений газа с физикохимическими превращениями, изучение распространения ударных волн в различных средах, решение газодинамических задач при наличии излучения и т. д. Данная книга ограничена обсуждением лишь одной из этих проблем — численным расчетом течений вязкой жидкости, описываемых уравнениями Павье—Стокса. Эти уравнения необходимо рассматривать в целом ряде практически интересных случаев (отрыв потока, кормовой след, взаимодействие вязкого газа с ударной волной), которые не охватываются концепцией пограничного слоя.  [c.8]

Выпишем уравнения движения вязкой сжимаемой жидкости или газа. Поле течения определяется кинематическими, термодинамическими величинами и параметрами, характеризующими теплофизические свойства заданной среды. Изменения величин связаны между собой законами сохранения массы, количества движения, энергии.  [c.70]

Точные решения уравнений Навье — Стокса для плоской неизотермической задачи о движении вязкой жидкости и газа вокруг вращающегося цилиндра в безграничном пространстве и в полости между двумя вращающимися цилиндрами бесконечной длины были впервые даны Л. Г. Степанянцем (1953). Появление электронно-вычислительных машин открыло возможность численного изучения более сложных, неплоских движений вязкой жидкости между вращающимися цилиндрами. Из рабог этого вычислительного направления отметим исследования Н. П. Жидкова, А. А. Корнейчука, А. Л. Крылова и С. Б. Мосчинской (1962), в которых получено численное решение уравнений Навье — Стокса для случая когда движение вязкой жидкости зависит от расстояния до общей оси вращения цилиндров и от азимута, и А. Л. Крылова и Е. К. Произволо-вой (1963), где найдено решение аналогичной задачи, зависящее от того же расстояния и координаты, параллельной оси цилиндров. Л, А. Дорфман и Ю. Б. Романенко (1966) также численным методом рассмотрели движение в неподвижном стакане, доверху заполненном вязкой жидкостью приводимой в движение вращающейся крышкой, соприкасающейся с жидкостью. И в этом случае обнаружено наличие зон вторичных течений в виде замкнутых линий тока, расположенных в меридиональных плоскостях (рис. 1),  [c.511]


Уравнения движения вязкой жидкости в совокупности с условием сплошности характеризуют движение жидкости и газа в любых условиях. Эти уравнения совместно с уравнениями, характеризующими граничные условия, определяют течение пото-  [c.59]

В основу вывода уравнений движения вязкой жидкости Пуассон положил своеобразный анализ деформации частиц среды за бесконечно малые промежутки времени, представляя каждую элементарную деформацию состоящей из двух процессов — упругой деформации согласно уравнениям теории упругости и последующего перераспределения (выравнивания) давлений в жидкости. Применение этих рассуждений привело Пуассона к прспорцио-нальности касательных напряжений скоростям деформации частиц. Однако в результате он получил уравнения движения, содержащие формально не две, а три физические характеристики жидкости (помимо плотности). Причиной этого было отсутствие достаточно строгого определения равновесного давления в потоке вязкой жидкости. Впрочем для малосжимаемой капельной ншдкости и адиабатического движения газа Пуассон свел число независимых физических характеристик жидкости к двум, в результате чего его уравнения движения приняли форму, близкую к точным уравнениям движения вязкой жидкости.  [c.67]

Для интегрирования ур-ний (1), (2) требуется задать начальные (если движение не явл. стационарным) и граничные условия, к-рыми для вязкой жидкости явл. условия прилипания к твёрдым стенкам. В общем случае (движение сжимаемой и нагреваемой жидкости) в Н.— С. у. учитывается ещё переменность р и зависимость li от темп-ры, что изменяет вид ур-ний. При этом дополнительно используются ур-ние баланса энергии и Клапейрона уравнение. П.— С. у. применяют при изучении движения реальных жидкостей и газов, причём в большинстве конкретных задач ограничиваются приближёнными решениями.  [c.443]

Уравнение Эйлера (26а) определяет движение идеальной жидкости. Для получения уравнений гидродинамики реальной (вязкой) жидкости или газа надо искать решение уравнения Больцмана, отличное от локального распределения Максвелла. Мы получим тогда уравнения Навье—Стокса, Барнетта и т. д., в которых коэффициенты вязкости, теплопроводности и диффузии выражаются через молекулярные характеристики. Эти уравнения представляют собой замкнутую систему уравнений термодинамики необратимых процессов. Такой вывод этих уравнений в общем случае выходит за рамки нашего курса. Мы ограничимся здесь только характеристикой методов решения кинетического уравнения Больцмана и рассмотрим ряд частных задач статистической теории неравновесных систем.  [c.142]

Все теоретические исследования о движении вязкой жидкости исходят из предпосылки о справедливости уравнений Навье —Стокса для истинного неустановившегося пульсирующего движения. Однако ввиду крайней запутанности, извилистости и сложности траекторий частиц жидкости при турбулентном движении и, повидимому, вообще всех основных функпиональных связей получение решения уравнений Навье — Стокса для таких движений представляет собой крайне громоздкую и сложную задачу, которую можно сравнить с задачей об описании движения отдельных молекул большого объёма газа. Поэтому, подобно тому как в кинетической теории газов, так и в гидромеханике основные задачи о турбулентных движениях жидкости ставятся как задачи о разыскании <функциональных соотношений между средними величинами.  [c.128]

Для определения локальных характеристик движения и теплообмена жидкостей и газов используются уравнения, следующие из основных физических законов сохранения массы, количества движения, энергии в сочетании с обобщенным законом вязкого течения Ньютона и законом теплопроводности Фурье. Это приводит к уравнениям неразрывности, движения и энергии, которые дополняются функциями свойств жидкости от температуры и давления. При отсутствии турбулентности в химически однородных однофазных изотропных средах полученная система уравнений является замкнутой. Эти уравнения справедливы и для описания мгновенных характеристик течения в пределах микромасщтаба турбулентного потока.  [c.230]

Задачи вязкого течения жидкостей и газов в пограничном слое при внешнем обтекании тел. Этот класс объединяет все задачи ламинарного и турбулентного, стационарного и нестационарного режимов течения однородных и миогокомионентных газов и жидкостей при свободном и вынужденном обтекании плоских и пространственных тел с произвольным распределением скоростей в потенциальном или завихренном потоке при произвольных условиях на границах и на поверхностях разрывов, Задачи данного класса описываются системой дифференциальных уравнений параболического типа, содержащей по крайней мере одну одностороннюю пространственную или временную координату, вдоль которой протекающий процесс зависит только от условий на одной из границ рассматриваемой области. Например, для задач теплообмена при неустановившемся ламинарном или турбулентном двумерном движении однородного газа система, состоящая из уравнений неразрывности движения и энергии, имеет вид  [c.184]

Наибольшие трудности представляет продгежуточная область. До сих пор нельзя еще говорить об установившихся методах расчета движений в пограничных слоях в этой области значений Reo и Moo, хотя вопросами этогО рода для общих движений вязкого газа еще во второй половине XIX века занимался Максвелл, а в начале нашего века Кнудсен, Милликен и др. Если говорить о той части рассматриваемой промежуточной области, которая граничит с крайней правой областью применимости уравнений Навье — Стокса, то здесь, по-видимому, можно удовольствоваться введением некоторых поправок в обычные методы механики жидкости и газов. Поправки эти идут в двух направлениях. Во-первых, становится существенным введение дополнительных членов в уравнения Навье — Стокса, выражающих необходимость использования в этих случаях некоторых нелинейных законов, приходящих на смену линейным законам Ньютона, Фурье и Фика.  [c.655]

Для достаточно широкого круга задач такие результаты были действительно иолу чены. Однако практика расчетов показала, что при решении сколько-нибудь сложных задач в случае каких-либо особенностей, например, зон пограничных слоев с большими градиентами параметров потока в задачах динамики вязкой среды, зон концентрации напряжений в прочностных задачах, зон кумуляции энергии в ряде задач физики взрьь ва, сложных локальных особенностей границ областей, лобовой способ решения дает малонадежные численные результаты, теряется точность вычислений. Кроме того, трехмерные расчеты, особенно в механике жидкости и газа при учете реальной геомет- зии аппаратов, с большим трудом осуществляются на современных ЭВМ, даже если в течениях не возникает каких-либо особенностей. Если же соответствующие потоки газа или жидкости турбулируются, то даже в рамках имеющихся математических моделей, в частности уравнений Навье-Стокса со специальной вязкостью, описывающих движения такого типа, расчет, например, трехмерного обтекания самолета турбулентным потоком газа с помощью имеющихся разностных методов, по оценкам известного аме-  [c.14]


Теория движения вязкой жидкости в форме, весьма близкой к современной, была опубликована в 1845 г. Стоксом (1819—1903), который, выделив из общего перемещения элемента жидкости деформационную часть, указал простую линейную зависимость возникающих в жидкости напряжений от скоростей деформаций, г. е. дал обобш,е-ние ранее уже упомянутого закона Ньютона. До Стокса, основываяс1. на некоторых специальных молекулярных гипотезах относительно свойств реальных газов, уравнения движения вязкого газа выводили в 1826 г. Навье (1785—1836), в 1831 г. Пуассит (1781 —1846) и в 1843 г. Сеп-Венан (1797—1886).  [c.27]

Для решения этой, в общем виде весьма сложной нелинейной системы уравнений в частных производных необходимо еще знать начальные и граничные условия задачи. Укажем, что в своей общей постановке вопрос об условиях существования и единственности решения составленной системы уравнений до сих пор не решен. Соответ-сгвующие условия обычио указываются в каждом отдельном случае. Отметим лишь одну характерную физическую особенность движения жидкостей и газов с внутренним трением. ]Лри обтекании неподвижного твердого тела вязкой жидкостью обращается в нуль не только нормальная компонента скорости (условие непроницаемости, имеющее место и в идеальной жидкости), но также и касательная компонента (условие прилипания жидкости к стенке или отсутствия скольжения жидкости по стенке).  [c.479]

Критерий подобия течений газа. Потоки газа называют подобными, если для соответствующих точек течений и соответственных моментов времени сохраняются неизменными соотношения (масштабы) одноименных величин (скоростей, давлений и др.). Для того чтобы течения были подобными, необходимо соблюдение геометрического подобия кроме этого, должны удовлетворяться гидроаэродинамические критерии подобия, получаемые в результате рассмотрения общих уравнений движения вязкой сжимаемой жидкости (52.1). Численные значения коэффициентов в этих уравнениях при подобии течений не должны меняться в связи с переходом от одного из течений к другому, так как в противном случае изхченились бы решения данных уравнений и соответственно с этим были бы различными характеристики сравниваемых течений (одновременно с указанными уравнениями должны рассматриваться начальные и граничные значения каждой данной задачи, от которых также зависят получаемые решения).  [c.465]

Наиболее просто распределяются скорости течения частиц вязкой жидкости или газа внутри трубы, площадь сечения которой неизменна по длине, а линии движения частиц жидкости или газа сохраняют направление, параллельное оси трубы. Это так называемый случай стабилизированного ламинарного течения жидкости. Градиент давления жидкости по линиям тока в этом случае оказывается постоянным, и скорости движения частиц жидкости гю распределяготся по сечению трубы согласно уравнению  [c.170]

Вывод соотношений на поверхностп разрыва путем проделанного выше предельного перехода аналогичен данному Мизесом выводу уравнений пограничного слоя из точных уравнений движения вязкого и тенлонроводного газа. Отсылая за подробностями к книге [5], где дан этот вывод для несжимаемой жидкости, приведем уравнения пограничного слоя для газа  [c.200]

В механике жидкостей и газов важную роль играют течения при больших значениях числа Рейнольдса. Решение уравнений Навье-Стокса, описывающих движение ВЯЗКОГО газа, представляет до сих пор значительные трудности даже при использовании современной вычислительной техники, хотя в этом направлении имеются определенные успехи. Однако именно для течений при больших значениях числа Re численное решение задач оказывается наиболее сложным и трудоемким. Кроме того, результаты численных исследований в определенном смысле подобны экспериментальным данным — ОНИ требуют теоретического анализа, построения моделей явления, законов подобия и т. д. Поэтому до настоящего времени обычным путем является использование классической теории пограничного слоя Прандтля [Prandtl L., 1904]. В ЭТОМ случае предполагается, что поскольку число Re велико, вязкие члены уравнений Павье-Стокса несущественны почти во всем потоке, кроме узких областей течения, толщина которых уменьшается при возрастании числа Re. Внешнее невязкое течение газа описывается уравнениями Эйлера. Их решение дает часть краевых условий для уравнений пограничного слоя.  [c.9]

При помощи этого решения из уравнения переноса получается приближение основной системы уравнений сплошной среды, используемое для изучения движения невязких газов и жидкостей. Следующее приближение f служит для вывода уравнений движения вязких газа и жидкости. Отыскивая методом Чэпмэна-Энскога третье приближение решения кинетического уравнения, получаем уравнения, с помощью которых можно решать задачи о движении сильно разреженных газов — задачи молекулярной аэродинамики, весьма актуальные для исследования движения ракет и спутников в верхних слоях атмосферы.  [c.21]


Смотреть страницы где упоминается термин Уравнения движения вязких жидкостей и газов : [c.219]    [c.88]    [c.236]    [c.6]    [c.4]    [c.349]    [c.825]    [c.443]   
Смотреть главы в:

Теоретические основы теплотехники Теплотехнический эксперимент Книга2  -> Уравнения движения вязких жидкостей и газов



ПОИСК



283 — Уравнения жидкости

Вязкая жидкость в движении

Газы Уравнение движения

Движение вязкой жидкости

Движение газов

Движение тел в жидкости или газе

Движение тел в жидкостях и газах

Жидкости вязкие — Уравнения движения

Жидкость вязкая

О газе в движении

Понятие о подобии гидродинамических явлений. Безразмерные уравнения движения вязкой жидкости и газа. Условия подобия

УРАВНЕНИЯ движения газов

Уравнение в вязком газе

Уравнения движения вязкого газа

Уравнения движения вязкой жидкости

Уравнения движения жидкости

Уравнения движения идеальных (не вязких) жидкостей и газов

Уравнения тел вязких



© 2025 Mash-xxl.info Реклама на сайте