Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Течение вторичное

Течения вторичные 193 Толщина вытеснения 231  [c.410]

Общие свойства вторичных течений. Вторичные течения в потоке невязкой жидкости  [c.431]

Эриксен высказал, далее, гипотезу, что в общем слу.чае существует непрямолинейное течение. Об отклонении от классического распределения скоростей обычно говорят как о вторичном течении. Вторичное течение в данном случае — это компонента скорости, нормальная к образующим трубы, в результате которой движение жидкости происходит по спиралевидным линиям.  [c.233]


Как уже указывалось в разд. 5-2, и крутильное течение, и течение в зазоре между конусом и пластиной не контролируемы, если только не пренебрегать инерцией. Физически этот факт легко объясняется при помощи следующего рассмотрения. Чтобы уравновесить центробежные силы, необходимо иметь неоднородное распределение давления по радиусу. Поскольку угловая скорость не постоянна вдоль направления z (крутильное течение) или вдоль направления 0 (течение в зазоре между конусом и пластиной), такое распределение давления будет формировать вторичные течения в этом направлении.  [c.201]

Все ламинарные течения являются вискозиметрическими (хотя обратное утверждение несправедливо в гл. 5 некоторые из обсуждавшихся вискозиметрических течений характеризовались отличными от нуля инерционными силами). Хотя ламинарные течения возможны и для неньютоновских жидкостей, было показано [7], что в общем случае стационарное прямолинейное течение по трубе постоянного сечения для неньютоновских жидкостей невозможно, за исключением очень небольшого числа геометрий поперечного сечения (например, круглые трубы или бесконечные щели). Вторичные течения, т. е. циркуляционные течения в плоскости поперечного сечения, возникают как только принимаются во внимание отклонения от ньютоновского поведения.  [c.260]

ВТОРИЧНЫЕ И НАЛОЖЕННЫЕ ТЕЧЕНИЯ  [c.271]

Все же существует ряд задач, в которых вторичным течением пренебречь нельзя. Предположим, например, что представляет интерес вопрос о теплоотдаче от стенок трубы к движущемуся материалу в условиях рассматриваемого выше течения. В этом случае вторичное течение будет индуцировать конвективный механизм теплообмена в поперечном сечении, который может значительно усилить чисто кондуктивный механизм теплопереноса, преобладавший при отсутствии вторичного течения ).  [c.272]

Анализ вторичных течений, налагающихся на основное течение с предысторией постоянной деформации, можно провести с определенной математической строгостью. Действительно, рассмотрим течение с предысторией постоянной деформации, характеризуемое тензором N, фигурирующим в уравнении (3-5.21). Пусть G — соответствующая предыстория деформирования, полученная из уравнения (3-5.24), а именно  [c.272]

Такова фактически ситуация, встречающаяся при шнековой экструзии полимеров. Течение в спиралевидной области между шнеком и цилиндром представляет собой, по существу, ламинарное течение в канале с примерно прямоугольным поперечным сечением (если пренебречь кривизной). Однако теплообмен с цилиндром будет в значительной степени зависеть от любого вторичного течения.  [c.272]


Вторичные и наложенные течения 273  [c.273]

За исключением рассмотренных выше частных задач, основной результат теории вторичных течений заключен в уравнении (7-3.3). Он состоит в том, что анализ вторичных течений можно провести на основе уравнения состояния, нанример уравнения (7-3.4), которое определяет линейное (хотя и не изотропное) соотношение между дополнительным напряжением и предысторией деформирования вторичного течения. Следует помнить, что вид этого соотношения зависит от вида основного течения.  [c.275]

При турбулентном течении жидкости в изогнутых трубах — змеевиках вследствие центробежного эффекта в поперечном сечении трубы возникает вторичная циркуляция, наличие которой приводит к увеличению коэффициента теплоотдачи. Расчет теплоотдачи в змеевиках следует вести по уравнениям для прямой трубы (27-8) — (27-9), но полученное значение коэффициента теплоотдачи следует умножить на поправочный коэффициент 83 , = 1 -f 3,6 d/D, где d — диаметр трубы, а D — диаметр спирали.  [c.431]

При определенных условиях (определенном сочетании режимных и геометрических параметров) наблюдается реверс вихревой трубы, заключающийся в том, что из отверстия диафрагмы истекают не охлажденные, а подогретые массы газа. При этом полная температура периферийного потока, покидающего камеру энергоразделения через дроссель, ниже исходной. А.П. Меркуловым введено понятие вторичного вихревого эффекта [116] и предпринята попытка его объяснения, основанная на теоретических положениях гипотезы взаимодействия вихрей. При работе вихревой трубы на сравнительно высоких степенях закрутки в приосевой зоне отверстия диафрагмы вследствие существенного снижения уровня давления в области, где статическое давление меньше давления среды, в которую происходит истечение (Р < J ), возникает зона обратных в осевом направлении течений, т. е. в отверстии диафрагмы образуется рециркуляционная зона. При некотором сочетании режимных и геометрических параметров взаимодействие зоны рециркуляции и вытекающих элементов в виде кольцевого закрученного потока из периферийной области диафрагмы приводит к образованию вихревой трубы, наружный  [c.89]

Рис. 2.29. Схема образования вторичных течений, объясняющих реализацию вторичного вихревого эффекта на режиме реверса Рис. 2.29. <a href="/info/771132">Схема образования</a> вторичных течений, объясняющих реализацию вторичного вихревого эффекта на режиме реверса
Анализ профиля распределения осевой скорости подтверждает существование режимов работы трубы, при которых наблюдается возвратное течение в центральной области отверстия диафрагмы — вторичное рециркуляционное движение, направленное  [c.105]

Потеря устойчивости течения между двумя концентрическими цилиндрами приводит к появлению и росту вторичного течения (вихрей Тейлора). С увеличением числа Рейнольдса вихри Тейлора становятся неустойчивыми, и при втором критическом числе Рейнольдса устанавливается новый режим, в котором по вихрям Тейлора бегут азимутальные волны [225].  [c.144]

Особого рода неустойчивости возникают при переходе закрученного течения в покоящуюся среду. Эксперименты на вихревых форсунках и горелках показали, что при выходе закрученного потока из горловины соответствующего вихревого устройства развиваются вторичные течения, происходит так называемый распад вихря. Считается [62, 237], что существуют 3 основных вида распада осесимметричный, спиральный и в виде двойной спирали.  [c.145]

Таким образом, либо вследствие самой индукции, либо по другим причинам, винтовые вихри существенным образом определяют структуру основного и вторичных течений.  [c.148]

Вязкость п теплопроводность множества частиц. Используемые в разд. 5.4 методы справедливы то.лько для случаев, когда падающие частицы (г) сталкиваются только один раз с частицами (з) по аналогии со свободномолекулярным течением. Следует ожидать, что если достаточно велико и концентрация частиц (г) также достаточно велика, то при столкновении отраженных частиц (г,) множества (г) с падающими частицами г2) эти (Г() частиц будут отброшены назад и будут вторично участвовать в столкновении с множеством ( ). В результате для частиц (г) будет иметь место переход от свободномолекулярного течения к вязкому. Мы не буде.м  [c.232]


При освещении кюветы сфокусированным излучением аргонового лазера хорошо наблюдается движение конвекционных потоков частиц, находящихся вне фокуса (рассмотрение действующих в таких условиях сил см. в УФН, 110, 1973). В течение нескольких секунд, а иногда и минут можно наблюдать яркое свечение рассеянного на взвешенной частице лазерного излучения (рис. 2.27). Следует заметить, что в этом эффектном опыте проявляются особенности лазерного излучения, которое можно сфокусировать в пятно диаметра л и создать условия, позволяющие освободиться от вторичных эффектов, которые при использовании тепловых источников во много раз превышают исследуемое явление.  [c.112]

Не останавливаясь вторично на исследовании течения в сопле Лаваля, напомним только, что ускорение потока в дозвуковой части сопла Лаваля (М<1) получается путем сужения канала dF < 0), но, начиная с критического сечения (М = 1), для получения сверхзвукового потока и дальнейшего его ускорения приходится изменять знак воздействия, т. е. расширять канал (dF>Q).  [c.204]

На рис. 8.13 представлена принципиальная схема каскада высокого давления ГТД с организацией в подкамерном пространстве закрученного течения охладителя. Под камерой сгорания / расположен цилиндрический либо конический корпус вихревого энергоразделителя 2, куда из полости течения вторичного воздуха 3 камеры сгорания / подается часть вторичного воздуха. На охлаждение турбины, как следует из схемы течения, подаются закрученные приосевые массы газа, охлажденные в камере энергоразделения. Избыточное по сравнению с охлажденным потоком давление подогретого потока воздуха срабатывается в процессе охлаждения задней полости сопловой лопатки. Неизбежные утечки воздуха через осевой зазор за последним рабочим колесом турбины при их подкрутке в направлении вращения ротора используются на организацию дополнительного потока, вдуваемого в приосевую зону.  [c.383]

Предположим, что рассматривается стационарное прямолинейное течение в длинной трубе с поперечным сечением некруглой формы, например в трубе с эллиптическим сечением. Если повторить для этого случая проведенный в гл. 5 анализ течения Пуазей-ля, окажется, что не существует контролируемых прямолинейных течений. Распределение if по сечению трубы будет не однородным ло координате 9 эллиптической системы координат. Это свидетельствует о существовании нулевого распределения скорости в плоскости поперечного сечения трубы. Тем не менее желательно предположить (для задач определенного типа), что это вторичное течение не слишком существенно например, не следует ожидать его большого влияния на величину /, описывающую падение давления на единицу длины трубы.  [c.272]

Процессы и вещества, способствующие удалению продуктов анодной реакции е поверхности электрода, называются анодными поляризаторами. Им1] могут быть как процессы механического удаления ионов перемешиванием электролита, так и вторичные реакции, связ1)Ша]ощие выходящий в раствор ион металла в трудно диссоциирующий комплекс или переводящие его п осадок. Примером такой реакции является реакция растворения меди в растворах аммиака. Образование трудно диссоциирующего комплексного иона [Си(ПНз)4] +, сильно понижающего концентрацию ионов меди в электролите, объясняет беспрепятственное течение процесса растворения меди и ее сплавов в аммиачных растворах.  [c.36]

В начале в раствор переходят одновременно цинк и медь в пропорции, соответствующей составу сплава. Ионы меди затем вторично выделяются из раствора, а образовавшийся осадок меди ускоряет электрохимическую коррозию латуни, как добавочный катод. В результате в раствор переходят ионы цинка, и с течением времени обесцинкование распространяется так глубоко, что приводит к образованию сквозных поврежде1шй латуни. Для уменьшения обесцннкования латуней сплав дополнительно легируют небольшими количествами олова, никеля, алюминия, а чаще всего мышьяка, порядка 0,001—0,012%. Возможный механизм влияния мышьяка — увеличение перенапряжения вторичного выделения меди.  [c.253]

Имеется еще один подход, предложенный Бринкманом и обсуждаемый Тэмом [41], в котором при анализе ползущего течения вязкой жидкости около пробной частицы воздействие вторичных частиц учитывается дополнительной распределенной в жидкости силой сопротивления, пропорциональной и/— fo. В результате поправка в силе fg получается промежуточной между (3.8.5) и  [c.184]

Такую модель можно рассматривать как компромиссную между выдвинутой А.П. Меркуловым моделью реверса в виде вторичного вихревого эффекта и моделью вторичных течений, предложенной Линдерстремом-Лангом [236] и развитой авторами работы [70] и Р.З. Алимовым [28]. При определенных условиях в камере энергоразделения происходит перестройка профилей тангенциальной, аксиальной и радиальной скоростей с образованием слоистых течений, в которых периферийный поток частично за счет радиальной составляющей начинает истекать в виде кольцевого потока из отверстия диафрагмы в окружающую среду в виде интенсивно закрученного потока, обмениваясь импульсом, массой и энергией с рециркулирующим потоком из окружающей среды. В периферийный поток при этом будет перекачиваться энергия из возвратного приосевого. Охлажденные массы газа ре-  [c.90]

Течение газа в цилиндрическом канале сопровождается образованием структуры, состоящей из двух вращательно-поступательных потоков. По периферии движется потенциальный (первичный) вихрь. Центральную область занимает вторичный вихрь с квазитвердой закруткой, образующейся из масс газа, втекающих из окружающей среды. Вблизи оси поступательная составляющая скорости вторичного вихря имеет противоположное первичному направление. При некоторых условиях течение в вихревом генераторе звука (ВГЗ) теряет устойчивость, в результате чего возникают интенсивные пульсации скорости и давления, которые распространяются в окружающую среду в виде звуковых волн [96]. Источником звуковых волн при этом считается прецессия вторичного вихря относительно оси ВГЗ. Пульсации скорости и прецессию ядра наблюдали визуально в прозрачной трубке с помощью вводимого красителя [94]. При нестационарном режиме угол наклона винтообразной линии тока периодически менялся по величине точно в соответствии с углом поворота прецессирующего ядра.  [c.118]


Все изложенные выше примеры, анализ доступных литературных данных позволяют сделать вывод о том, что вихревые трубы использовались лишь в условиях отсутствия вторичного центробежного поля сил, накладываемого на основное, создаваемое закручивающим устройством. Поэтому отсутствуют исследования характеристик процесса энергоразделения в вихревых трубах в условиях воздействия на них вторичного поля инерционных сил. Тем не менее, очевидно, что оно определенным образом искажает обычную картину течения в камере энергоразделения вихревых труб. Такое воздействие должно сопровождаться не только изменением характеристик макроструктуры потока, но и характеристик его микроструктуры. На каждый турбулентный микро-или макровихрь в зависимости от его расположения в объеме камеры энергоразделения и собственных размеров действует своя дополнительная сила инерции, зависящая от частоты вращения ротора и радиуса от центра элемента вихря до оси.  [c.379]

Следует отметить, что в роторе практически любого типа частота вращения изменяется в достаточно широком диапазоне, а это означает, что создаваемые при этом окружные скорости могут существенно раздичаться. Так, например, для ротора ГТД при небольшой частоте его вращения п значение окружной скорости может быть сопоставимо со значением осевой составляющей скорости истечения из отверстия диафрагмы и течения в камере энергоразделения. В то же время на крейсерских режимах и на максимальных частота вращения ротора такова, что в зависимости от радиуса расположения вихревого энергоразделителя R окружная составляющая скорости U, создаваемая вторичными инерциальными силами, может достигать критической. Очевидно, что характер влияния во многом будет определяться взаимным расположением векторов напряженностей первичного и вторичного инерциальных полей. Исследования, проведенные в работе [212] показали, что у вихревой трубы, для которой вторичное поле инерциальных сил создавалось ее вращением относительно оси, расположенной перпендикулярно к оси симметрии камеры энергоразделения и размещенной в области соплового ввода, с ростом частоты вращения трубы п температурные эффе-  [c.379]

Рассмотрим случай однократного рассеяния при столкновении частиц со сферой радиусом Н, когда частица после столкновения в течение конечного интервала времени не сталкивается со сферой вторично. Для простоты рассмотрим случай ц = 1. При зеркаль-  [c.213]

При традиционном описании процесса пластической деформации исходят из того, что существующие в кристаллах системы скольжения позволяют обеспечить его формирование без разрушения сплошности. В.Е. Паниным и др. [11] было доказано, что пластическое течение происходит одновременно на нескольких уровнях, причем трансляция на одном уровне обязательно сопровождается поворотом на более высоком уровне, и наоборот. Принципиально важным в этом подходе является то, что любое нарушение структуры кристалла при подводе к нему внешней энергии рассматривается с позиции самоорганизации локальных структур, обусловленной энтропийными эффектами. Вторичные структуры, формирующиеся в деформируемом кристалле при достижении необходимого уровня возбуждения, представляют совокупность локальных структур - от дефектов типа точечных или линейных до аморфного состояния, возникающего при высокой плотности дефектов. Таким образом, при анализе пластической деформации кристаллов необходимо учитывать кооперативное взаимодействие трансляции, ответственной за изменение формы (дисторсии), и ротации, ответственной за изменение объема (дилатации). При этом важную роль в распространении скольжения играют границы зерен. Эволюция скольжения включает образование полос скольжения на начальных этапах пластической деформации, которые потом трансформируются в полосы микроскопического сдвига, что приводит к возникновению зоны локализованной макропластической деформации, проходящей через весь объем. Переход от одного масштабного уровня (микрополосы) к другому (макротюлосы) являет собой неустойчивость пластической деформации, предопределяющую шейко-образование. Он характеризуется тем, что шменяются элементарные носители деформации - дислокации сменяются дисклинациями. Дисклинации являются более энергоемкими дефектами, чем дислокации, что позволяет системе про-  [c.241]

Рассмотрим бифуркацию при пересечении единичной окружности парой комплексно-сопряженных мультипликаторов вида (.1 — exp(=F2nai), где а — иррациональное число. Это приводит к появлению вторичного течения с новой независимой частотой  [c.157]


Смотреть страницы где упоминается термин Течение вторичное : [c.121]    [c.122]    [c.245]    [c.273]    [c.357]    [c.159]    [c.301]    [c.182]    [c.106]    [c.115]    [c.126]    [c.145]    [c.343]    [c.46]    [c.160]    [c.625]   
Основы гидромеханики неньютоновских жидкостей (1978) -- [ c.271 ]

Гидроаэромеханика (2000) -- [ c.198 , c.207 ]

Теория пограничного слоя (1974) -- [ c.219 , c.223 , c.241 , c.248 , c.396 , c.399 , c.553 , c.564 , c.581 , c.591 ]

Аэродинамика решеток турбомашин (1987) -- [ c.76 , c.77 ]



ПОИСК



ВТОРИЧНЫЕ И ЗАМКНУТЫЕ ТЕЧЕНИЯ

Вторичное конвективное течение

Вторичное течение в прямой трубе. Обсуждение вопроса

Вторичное течение жидкости третьего или более высокого порядка в прямой трубе

Вторичное течение при движении несжимаемой жидкости в прямой трубе. Предварительные соображения

Вторичные и наложенные течения

Вторичные конвективные течения в вертикальном слое

Вторичные течения в неподвижных решетках

Вторичные течения в потоке вязкой жидкости. Экспериментальные исследования

Вторичные течения вблизи порога и их устойчивость

Вторичные течения влажного пара в прямых решетках

Вторичные течения картины

Вторичные течения качественное описание физической

Вторичные течения потери

Вторичные течения формула для определения интенсивности

Вторичный пар

Общие свойства вторичных течений. Вторичные течения в потоке невязкой жидкости

Оценка параметров вторичных течений в пограничных слоях на тонких крыльях

Уравнение Пуассона для вторичных течений

Формирование вторичных течений на тонких полубесконечных крыльях



© 2025 Mash-xxl.info Реклама на сайте