Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Уравнения движения идеальных (не вязких) жидкостей и газов

В случае вязкого газа полная система уравнений, характеризующая его движение и различные процессы в нем, сложная и уравнений много. В качестве примеров получим полную систему уравнений движения.вязкой несжимаемой жидкости, а также уравнения движения идеальной несжимаемой жидкости и идеального газа.  [c.557]

Опыт показывает, что в потоках вязких жидкостей или газов около поверхности твердого тела или у границы двух потоков жидкости, движущихся с разными скоростями, действие сил вязкости в разных областях течения проявляется неодинаково. Оно проявляется заметно там, где возникают большие поперечные градиенты скорости и, как следствие, касательные напряжения велики. По мере увеличения расстояния от стенки действие сил вязкости ослабевает и становится исчезающе малым на сравнительно небольшом удалении, В обычных условиях течения скорость частиц жидкости относительно обтекаемой поверхности и на самой поверхности равна нулю с увеличением расстояния от стенки она быстро увеличивается, приближаясь к скорости внешнего потока О), где поперечные градиенты скорости практически равны нулю, а касательные напряжения, возникающие вследствие трения, пренебрежимо малы. Течение в области, удаленной от поверхности, можно считать совпадающим с потенциальным течением идеальной жидкости и применять к нему закономерности теории идеальной жидкости. Эту область называют потенциальным или внешним потоком. Тонкий слой жидкости, прилегающий к поверхности обтекаемого тела и заторможенный вследствие трения, называют динамическим пограничным слоем. В пределах пограничного слоя касательное напряжение от трения очень велико даже при малой вязкости жидкости, поскольку очень велик градиент скорости в направлении, перпендикулярном поверхности тела. Во внешнем потоке инерционные силы преобладают над силами вязкости, поэтому уравнения Навье—Стокса переходят в уравнения движения идеальной жидкости.  [c.18]


Идеальная или невязкая жидкость является упрощенной моделью реальной (вязкой) жидкости. По предположению, идеальная жидкость имеет все свойства реальной, кроме вязкости, поэтому для получения уравнения ее движения можно применить уравнения Навье — Стокса, положив л = О . Тогда уравнения движения вязкого газа (5.8) и движения вязкой несжимаемой жидкости (5.9) упрощаются и принимают вид  [c.99]

Представление о пограничном слое оказалось плодотворным по двум главным причинам. Во-первых, появилась возможность производить построение теории движения вязкой жидкости и газа на основе известных решений уравнений для идеальной жидкости и газа. Во-вторых, сложные уравнения Навье — Стокса в тонком пограничном слое оказалось возможным заменить более простыми уравнениями теории пограничного слоя.  [c.254]

В отличие от уравнений Эйлера уравнения Навье — Стокса (2.50) описывают движение не идеальной, а реальной вязкой жидкости, характер движения которой наиболее заметно меняется вблизи обтекаемых твердых поверхностей. Теперь на твердых стенках, находящихся в покое, не только нормальные, но и касательные составляющие скорости потока с должны быть равны нулю. Условие нулевой скорости жидкости на стенках канала или поверхностях обтекаемых тел вытекает из гипотезы прилипания , согласно которой при соприкосновении вязкой жидкости с неподвижными стенками непосредственно на них частицы жидкости имеют нулевую скорость. Опыты показывают, что эта гипотеза хорошо соответствует действительности и нарушается только при обтекании твердых поверхностей сильно разреженными газами.  [c.145]

Уравнение (10.1), полученное на основании теории Эйлера, выражает закон количества движения, поэтому оно верно для любого потока идеальной или вязкой жидкости. Справедливо оно и для всех типов лопаточных машин паровых и газовых турбин, детандеров, насосов (центробежных и осевых), центробежных и осевых компрессоров как идеальных, так и реальных. Уравнение (10.1) описывает обмен энергией между потоком газа и лопаточным аппаратом в любом направлении, поэтому, используя его, можно анализировать свойства и характеристики ТК и производить их пересчет при изменяющихся условиях, что очень важно для правильного выбора и эксплуатации ТК-  [c.199]

Пятое издание содержит изложение основных разделов механики жидкости и газа кинематики, статики и динамики. Общие дифференциальные уравнения динамики выведены как для однородной, так и для неоднородной, гомогенной и гетерогенной сред. Рассмотрены методы интегрирования уравнений динамики в задачах несжимаемых и сжимаемых, идеальных и вязких жидкостей п газов при ламинарных и турбулентных режимах движения. Приведено значительное число примеров приложений этих решений, иллюстрирующих большие возможности современных методов механики жидкости и газа в технической практике.  [c.2]


Скачок уплотнения. Внутреннюю структуру скачка уплотнения, который в рамках гидродинамики идеальной жидкости заменяется разрывом, следует рассматривать на основе теории, учитывающей диссипативные процессы — вязкость и теплопроводность. В качестве простейшей модели можно использовать уравнение движения вязкой жидкости Навье — Стокса. Уравнения одномерного течения вязкого и теплопроводного газа — течения, стационарного в системе координат, связанной с фронтом ударной волны,— имеют вид  [c.212]

Уравнения Прандтля — Мизеса основаны на использовании наряду с X в качестве второй независимой переменной функции тока Принятое в настоящее время во многих вопросах гидро- и газодинамики применение в качестве независимого переменного функции тока т]) основывается на том, что в идеальных жидкостях и газах (при стационарных их движениях) вдоль линий тока, т. е. при постоянстве функции тока, сохраняются некоторые важные характеристики потока (полный напор — в идеальной несжимаемой жидкости, полная энтальпия — в идеальном газе), о чем уже была речь в гл. 1П. В вязкой жидкости, в силу наличия диссипации. механической энергии, эти величины сохраняться не могут, но, как сейчас будет показано, выделение функции тока г 5 в качестве аргумента позволяет получить в простой и наглядной форме уравнение, напоминающее по типу уравнение теплопроводности.  [c.568]

Уравнение Эйлера (26а) определяет движение идеальной жидкости. Для получения уравнений гидродинамики реальной (вязкой) жидкости или газа надо искать решение уравнения Больцмана, отличное от локального распределения Максвелла. Мы получим тогда уравнения Навье—Стокса, Барнетта и т. д., в которых коэффициенты вязкости, теплопроводности и диффузии выражаются через молекулярные характеристики. Эти уравнения представляют собой замкнутую систему уравнений термодинамики необратимых процессов. Такой вывод этих уравнений в общем случае выходит за рамки нашего курса. Мы ограничимся здесь только характеристикой методов решения кинетического уравнения Больцмана и рассмотрим ряд частных задач статистической теории неравновесных систем.  [c.142]

Для решения этой, в общем виде весьма сложной нелинейной системы уравнений в частных производных необходимо еще знать начальные и граничные условия задачи. Укажем, что в своей общей постановке вопрос об условиях существования и единственности решения составленной системы уравнений до сих пор не решен. Соответ-сгвующие условия обычио указываются в каждом отдельном случае. Отметим лишь одну характерную физическую особенность движения жидкостей и газов с внутренним трением. ]Лри обтекании неподвижного твердого тела вязкой жидкостью обращается в нуль не только нормальная компонента скорости (условие непроницаемости, имеющее место и в идеальной жидкости), но также и касательная компонента (условие прилипания жидкости к стенке или отсутствия скольжения жидкости по стенке).  [c.479]


Смотреть страницы где упоминается термин Уравнения движения идеальных (не вязких) жидкостей и газов : [c.6]    [c.183]    [c.219]    [c.4]   
Смотреть главы в:

Теоретические основы теплотехники Теплотехнический эксперимент Книга2  -> Уравнения движения идеальных (не вязких) жидкостей и газов



ПОИСК



283 — Уравнения жидкости

Вязкая жидкость в движении

Газы Уравнение движения

Газы идеальные

Газы идеальные (см. идеальные газы)

Движение вязкой жидкости

Движение газов

Движение тел в жидкости или газе

Движение тел в жидкостях и газах

Жидкости вязкие — Уравнения движения

Жидкость вязкая

Жидкость идеальная

ИДЕАЛЬНАЯ ЖИДКОСТЬ Уравнения движения идеальной жидкости

Идеальной жидкости движение

Идеальные жидкости и газы

Идеальный газ в движении

О газе в движении

УРАВНЕНИЯ движения газов

Уравнение в вязком газе

Уравнение идеального газа

Уравнения движения вязких жидкостей и газов

Уравнения движения вязкого газа

Уравнения движения вязкой жидкости

Уравнения движения вязкой жидкости идеальной жидкости

Уравнения движения жидкости

Уравнения движения идеальной жидкости

Уравнения тел вязких



© 2025 Mash-xxl.info Реклама на сайте