Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Обсудим вместе

Мы не станем подробно излагать здесь теорию теплопроводности решетки, основанную на уравнении Больцмана для фононов, а обсудим вместо этого важнейшие физические особенности задачи. Для этого воспользуемся элементарным приближением времени релаксации, аналогичным тому, которое применялось при обсуждении электронных явлений переноса в металлах в гл. 1 и 2.  [c.127]

Теперь обсудим влияние использования жидкого водорода на проектирование самолетов гражданской авиации в будущем. Сравним жидкий водород с обычным авиационным горючим и рассмотрим несколько общих технических идей, связанных с использованием водородного топлива в авиации. Применение жидкого водорода вместо обычного топлива, которое используют при комнатной температуре и которое имеет гораздо большую плотность, естественно, значительно усложнит ряд систем. На рис. 4 сопоставлены массы и объемы обычного углеводородного топлива и жидкого водорода в эквивалентных условиях (при заданных скорости и высоте полета для самолетов одинаковых типов с одинаковой коммерческой нагрузкой и дальностью полета).  [c.83]


Обсудим вариант другого подхода к формулированию гипотез, используемых при построении теории, при котором приходим к тому же результату, что и в последнем члене рмулы (14.13). Гипотезы 1, 3 и 4 из числа сформулированных в 14.3 используются, а вместо гипотез 2 и 5 принимаются соответственно нижеприводимые гипотезы.  [c.390]

В предыдущем разделе было описано несколько типов закономерностей поведения, общих для различных систем сплавов. Теперь подробнее рассмотрим некоторые из них и обсудим общие вопросы, связанные с механизмами различных процессов. Вместо детального анализа имеющихся в литературе механизмов мы решили попытаться представить проблему в более обобщенном виде. Сначала будут рассмотрены электрохимические факторы, тип скольжения и влияние водорода. Эта информация затем используется при формулировке широкого подхода к поведению водорода в материалах, включающего целый ряд новых идей. Мы полагаем, что этот подход согласуется с наблюдениями, обзор которых был дан в этой главе и позволяет выработать общую точку зрения на водородные процессы. Будут намечены важные проблемы, требующие дальнейших исследований.  [c.121]

Комитет координирования стандартов (ККС) при Организации Объединенных Наций, насчитывающий в своем составе 18 союзных стран, заменил в 1944 г. ИСА. После окончания второй мировой войны организация ИСА потеряла свое значение, так как условия требовали другой формы работы в Области международной стандартизации. 14 октября 1946 г. представители ККС при ООН собрались в Лондоне вместе с делегатами от национальных организаций по стандартизации стран — членов ККС, чтобы обсудить и принять устав новой международной организации, а также составить проекты рекомендаций по развитию технической работы. В результате дискуссии, в которой приняли участие 65 делегатов от 25 стран, было решено образовать международную организацию по стандартизации — ИСО.  [c.341]

В табл. 13.1 перечислены также некоторые типичные конечноэлементные модели вместе с вариационными принципами, иа которых основаны эти модели. Ограниченный объем настоящей главы не позволяет обсудить во всех подробностях связь между вариационными принципами и соответствующими конечно-элемент-ными моделями. Детально эта связь описана, например, в работах 8—121.  [c.358]

Если край (или другая линия искажения) проходит вдоль асимптотической линии срединной поверхности и 0 < 1/2, то вместо обсужденных выше методов расчленения надо прибегнуть к методу расчленения, описанному в 11.27 и основанному на использовании обобщенных краевых эффектов. Не имея в виду обсудить все связанные с этим детали, отметим некоторые обстоятельства, важные при оперировании с обобщенными краевыми эффектами.  [c.166]


Обсудим полученные выводы на более конкретных случаях. В 14.9 построена географическая система координат для произвольных поверхностей вращения. В ней коэффициент обращается в нуль в той вершине поверхности вращения Р, в которую помещен полюс географической системы координат. Таким образом, в окрестности полюса географической системы координат итерационную теорию оболочек, так же как и любую другую двумерную теорию, формально надо считать непригодной. Вместе с тем, вершина Р, вообще говоря (если она не представляет собой острие), не обладает особыми геометрическими свойствами. Особой в точке Р является только выбранная система координат. Поэтому обсуждаемый вывод требует пояснений.  [c.420]

Полученные выше результаты собраны во втором столбце табл. 13.1. В третьем столбце этой таблицы представлены соответствующие результаты для процессов со стационарными потоками. В дальнейшем мы обсудим эти результаты, хотя и менее подробно, поскольку единственное существенное отличие в способе их получения состоит в том, что использовался контрольно-объемный анализ вместо анализа системы. Тем не менее эти результаты чрезвычайно важны с прикладной точки зрения, так как на практике различные процессы чаще всего сопровождаются теми или иными потоками.  [c.226]

Обсудим теперь вопрос о влиянии шероховатостей на передачу МР-излучения при помощи волновода. Как и в случае поворотных зеркал, суммарная интенсивность на выходе волновода складывается из интенсивностей зеркального отраженного и рассеянного на шероховатостях излучения. Рассмотрим прежде всего влияние неоднородностей стенок на зеркальную компоненту, интенсивность которой будет определяться выражением (4.57), если вместо Рр под интеграл вставить значение зеркального коэффициента отражения о учетом рассеяния на шероховатостях. Ограничимся рассмотрением предельно больших длин Ц при этом во-первых, справедливо условие (4.65), во-вторых, параметр р = паЬ 1 к 1 (а — радиус корреляции), т. е. поправка к зеркальному коэффициенту отражения 1см. формулу (4.44)] линейна по 6. Эти условия, в частности, означают, что параметр и (Я,/яа ) , а мощность зеркальной компоненты на выходе волновода определяется выражением  [c.153]

Обсудим вначале вопрос обоснования расчетного ускорения на основе простейшей модели (6.91) системы с одной степенью свободы. Для назначения расчетных детерминистических нагрузок используем следующий принцип [221 расчетные нагрузки должны быть таковы, чтобы рассчитанная по ним конструкция удовлетворяла требованиям надежности и безопасности по отношению ко всем нагрузкам и воздействиям, которые могут встретиться в течение установленного срока службы, обеспечивая вместе с тем достаточно высокие показатели экономичности и эксплуатационной эффективности.  [c.254]

Таково содержание теоремы ЛиувилЛя. Обсудим его подробнее. Равенство нулю полной производной от плотности газа фазовых точек по времени означает, что если перемещаться вдоль фазовой траектории вместе с какой-нибудь фазовой точкой, то значения функции р q, р) будут постоянными на всем пути следования. Другими словами при движении с потоком изображающих фазовых точек его плотность не изменяется.  [c.40]

Обсудим эти два аспекта по отдельности. Для простоты мы рассмотрим сначала одну бесспиновую частицу в объеме V = L . Ясно, что в квантовом случае совместная функция распределения координат частицы и импульса не существует из-за принципа неопределенности. Вместо этого мы можем ввести статистический оператор д, матричные элементы которого в заданном представлении определяют вероятности (диагональные элементы) и описывают квантовую суперпозицию состояний (недиагональные элементы). Например, в координатном представлении матрица плотности частицы имеет вид  [c.28]

Прежде чем приступить к математическим выкладкам, имеет смысл хотя бы кратко обсудить физическую сторону задачи. Важная особенность нелинейного процесса переноса заряда состоит в том, что он характеризуется несколькими временами релаксации. Электрон-электронное взаимодействие, описываемое оператором Я, приводит к термализации электронов за некоторое время релаксации Заметим, что это взаимодействие не меняет суммарный импульс электронов и их полную энергию. Поэтому, если не учитывать других взаимодействий, на достаточно грубой шкале времени состояние электронной подсистемы можно характеризовать средним значением полного импульса (Ре) и средней энергией HJK Релаксация импульса электронов обусловлена их взаимодействием с фононами и примесными атомами. Если температура не слишком велика, то в реальных полупроводниках характерное время релаксации импульса электронов г определяется, в основном, их упругим рассеянием на примесных атомах ). С повышением температуры возрастает роль электрон-фононного взаимодействия, которое приводит к релаксации как среднего импульса электронной подсистемы, так и средней энергии. Тогда вместо и г нужно использовать другие значения времен релаксации с учетом вклада электрон-фононного взаимодействия. В главе 5 первого тома (см. приложение 5Б) было показано, что следует различать изотермические (Tgg С г) и адиабатические (г > г) условия. В первом случае для описания состояния электронной подсистемы достаточно задать средние значения полного импульса и энергии, а во втором требуется более детальное описание, скажем, с помощью функции распределения электронов.  [c.100]


Обсудим варьирование в последней группе слагаемых в правой части (11) вместе с варьированием ускорений. Напомним, что виртуальные вариации бгк должны удовлетворять уравнениям для виртуальных перемещений, число которых равно числу независимых удерживающих связей (обозначим это число через I). Кроме того, виртуальным вариациям 5гк могут быть поставлены в соответствие разности ускорений к к, где — мыслимые ускорения по Четаеву, удовлетворяющие условиям связей в фиксированный момент времени в действительном состоянии. Будем использовать только мыслимые ускорения, близкие действительным, т. е.  [c.104]

Введение. Теория упругости изучает механику деформируемых тел, которые восстанавливают свою первоначальную форму, после того как удалены силы, вызывающие деформацию. Обсуждение явлений упругости встречается уже в работах Гука (1676 г.). Однако первые реальные попытки создания теории упругости, исходя из понятия сплошной среды, позволяющего игнорировать молекулярное строение тела и описывать макроскопические явления с помощью функций координат пространства, относятся к первой половине восемнадцатого столетия ). С тех пор было приложено много усилий к изучению математической теории упругости и ее приложений к физике и инженерному делу. Судя по большому числу опубликованных работ по изучаемому предмету, исключается возможность с одинаковой полнотой изложить весь предмет в объеме одной книги. Настоящая работа имеет более ограниченную цель. В ней делается попытка дать краткий обзор некоторых разделов теории упругости и вместе с тем обсудить достаточное количество отдельных задач для того, чтобы дать некоторые представления относительно математического аппарата, необходимого для решения подобных задач. Даже в пределах этих ограниченных рамок в книге имеются значительные пробелы. В ней ничего, например, не говорится о такой важной теме как теория упругой устойчивости или о таком важном разделе как вычисление упругих постоянных кристаллов с помощью теории кристаллических решеток.  [c.7]

После университета я начал работу в коллективе, где царила атмосфера творческого поиска, общего устремления к решению прикладных проблем газовой динамики больших скоростей. Я с благодарностью думаю о Г. Н. Абрамовиче, Г. И. Петрове и многих других, с кем мне довелось общаться и вместе работать. Именно тогда в далеком уже теперь 1951 году по просьбе М. В. Келдыша я сначала заменил его на первых лекциях по газовой динамике для группы студентов Московского физико-технического института, а затем и прочитал курс до конца. М. В. Келдыш обсудил со мной план курса и содержание отдельных лекций, ему принадлежит и совет—не изменяя основной теоретической направленности курса, стремиться сблизить его с прикладными техническими вопросами.  [c.9]

В разд. 2.32 мы видели, что при полуклассическом рассмотрении взаимодействия излучения с атомными системами, которые не связаны ни между собой, ни с какой-либо другой системой, возникают специфические трудности. Например, приходилось исключать все случаи, в которых частота некоторой компоненты поля излучения или какая-нибудь суммарная или разностная частота попадает в (острый ) резонанс с одной из частот переходов. [При последовательном квантовом описании удается избежать возникновения таких проблем путем автоматического учета различных механизмов затухания, например радиационного затухания (ср. пп. 3.111 и 3.112).] Указанным способом при применении результатов разд. 2.32 можно трактовать процессы, свободные от потерь (ср. разд. 2.23), такие как генерация высших гармоник и параметрические эффекты вне областей резонанса, но не многофотонное поглощение или излучение или вынужденное комбинационное рассеяние. Поэтому важно расширить модели таким образом, чтобы они позволяли правильно учесть ограниченную память атомной системы и были применимы для исследования резонансных эффектов (ср. разд. 2.31). С точки зрения уменьшения расчетных трудностей весьма целесообразными оказались модели, в которых взаимодействие всех отдельных атомных систем между собой и с другими системами со многими степенями свободы не учитывается в явном виде. Вместо такого учета в уравнения для отдельной атомной системы вводится глобальный механизм потерь в виде связи с тепловым резервуаром . Такой подход мы уже описали в разд. В2.27 и 2.24, и теперь мы можем непосредственно воспользоваться полученными там результатами. При этом мы обсудим наиболее подробно вычисление восприимчивостей первого порядка, а затем обобщим результаты на высшие порядки.  [c.238]

В системах многих одинаковых частиц во многих случаях более удобным оказывается аппарат вторичного квантования. Мы обсудим его здесь только в той мере, в какой он может быть полезен для более ясного понимания тех рассуждений, в которых привлекаются понятия операторов рождения и уничтожения частиц. Пусть есть волновая функция тождественных частиц, зависящая только от одной из пространственных координат х, для каждой г-й частицы из общего числа N. Для простоты мы допустим, что эти частицы удовлетворяют бозе-статистике, т.е. волновая функция симметрична по переменным х,. На языке вторичного квантования нет необходимости фиксировать число частиц N, допуская возможность как рождения и аннигиляции частиц, так и изменения чисел заполнения различных квантовых состояний. Поэтому вместо одной функции можно представить себе набор функций разным  [c.300]

Эти результаты мы используем в 19 для описания зонной структуры электронного газа в слабом периодическом потенциале. После того, как мы получили представление о значении зонной модели, мы в 20 изучим общие свойства функции Е к). Мы увидим, что решения уравнения Шредингера для электрона в периодическом потенциале описывают квазичастицы [электроны в кристалле, или блоховские электроны). Влияние периодического потенциала включено в свойства этих квазичастиц. Для динамики электронов в кристалле, т. е. для их движения под действием внешних сил, это означает следующее вместо того, чтобы рассматривать движение отдельных электронов под действием комбинации внешних полей, кристаллического потенциала и кулоновского взаимодействия, вводится понятие электрона кристалла. Последний испытывает влияние только со стороны внешних сил, реагируя как квазичастица с эффективной массой /п ( ) и связью между энергией и импульсом, заданной зонной структурой. Во всех остальных отношениях, однако, квазичастица реагирует на эти силы как свободный электрон. Это мы обсудим (наряду с другими вопросами) в 21.  [c.71]


В качестве примера обсудим эволюцию оскулирующих элементов эллиптической орбиты КА за один виток при наличии постоянного возмущающего касательного ускорения или возмущающего касательного ускорения, которое является четной функцией от истинной аномалии. Вместо производных оскулирующих элементов по времени будем рассматривать производные по истинной аномалии, так как зависимости элементов эллиптической орбиты от времени весьма громоздки, а от истинной аномалии — достаточно просты. При этом учтем, что  [c.356]

Я хотел бы обсудить вопросы масштабного эффекта для передвижения водных животных двух основных категорий, характеризуемых соответственно низкими и высокими значениями чисел Рейнольдса при плавании, что в общем эквивалентно рассмотрению водных животных микроскопического и макроскопического размеров. Для режима с малыми числами Рейнольдса будет дан краткий обзор способов передвижения микроорганизмов с помощью жгутиков и ресничек для того, чтобы определить ключевые параметры, лежащие в основе гидромеханической и физиологической характеристики двух групп микроорганизмов. Как здесь показано, ограниченная область размеров животных, скоростей плавания и частот колебаний, наблюдаемых для определенных групп, вместе с очень ограниченными имеющимися данными  [c.80]

Обсудим теперь границы применимости формулы (Х.1.11) и вытекающих из нее результатов. Строго говоря, одновременное использование динамического уравнения для простых волн (Х.1.2) (описывающего волны только в области до образования разрывов) и функции распределения (Х.1.7) нормального шума приводит к противоречию. Дело в том, что в соответствии с релеев-ским распределением (Х.1.18) амплитуда некоторых периодов , входящих в состав полной реализации 7 (0, 2 = = 0), может принимать сколь угодно большие значения. Поэтому уже в непосредственной близости от источника волна содержит разрывные участки. Вместе с тем вероятность выбросов с большими амплитудами мала, что позволяет на больших расстояниях использовать полученные результаты в качестве приближенных.  [c.258]

Функцию X) называют плотностью вероятности величины X. Обычно она определяется не экспериментально, а из детального статистического исследования флуктуирующей величины X. В общем случае X) может зависеть от tu и поэтому необходимо было бы писать f(X, 1) вместо /(Х). К счастью, оказывается, что во многих случаях X, i - -t)=f[X, для всех значений t, и тогда говорят, что случайный процесс стационарен, и можно писать X, tl + t)=f X). Шумовые процессы, которые здесь предполагается обсудить, практически все являются стационарными  [c.11]

Здесь мы обсудим несколько более детальные работы [3, 4], где методом непрерывного воздействия были получены три резонансные кривые. Эти кривые, нормированные на одну и ту же площадь, приведены на фиг. 22 [3]. Фактически, как показано в гл. III, экспериментально наблюдаются производные резонансных кривых, а кривые на фиг. 22 были получены путем интегрирования этих производных, усредненных по нескольким экспериментальным кривым. Вершины их явно более плоские, чем вершины гауссовых кривых с равной площадью и одинаковым максимальным значением. Значения соответствующих моментов вместе с некоторыми более ранними результатами [2] приведены в табл. 1 и 2. Согласие с теорией вполне удовлетворительное.  [c.118]

Эти уравнения отличаются от уравнений Хартри (17.7) наличием слева дополнительного слагаемого, называемого обменным членом. Появление обменного члена значительно усложняет ситуацию. Подобно самосогласованному полю I7 (это слагаемое часто называют прямым), он нелинеен по тр, но в отличие от прямого члена не имеет вида V (г) ор (г). Вместо этого обменный член записывается как У (г, г ) ор (г ) г, т. е. является интегральным оператором. В результате в своей общей форме уравнения Хартри — Фока необычайно трудны для решения. Единственным исключением является случай газа свободных электронов. Когда периодический потенциал равен нулю (или постоянной величине), уравнения Хартри — Фока удается решить точно, выбирая в качестве хр набор ортонормированных плоских волн ). Хотя случай свободных электронов вряд ли имеет отношение к проблеме электронов в реальном металле, решение для свободных электронов указывает на возможность дальнейших приближений, которые делают уравнения Хартри — Фока в присутствии периодического потенциала более пригодными для расчетов. Поэтому мы кратко обсудим случай свободных электронов.  [c.333]

Вместо произвольного параметра А здесь можно ввести непосредственно энергию. Требования (I), (II), (III) определяют проблему собственных значений весьма общим образом. Вопрос о её разрешимости мы обсудим ещё в следующем параграфе.  [c.85]

Удивительно светлая, богатая, красивая Личность. Он прожил непро-стук1, но счастливую жизнь. Он любил свое дело —науку, любил семью и дом, любил друзей, любил институт, и ему было в нем уютно. Дверь его кабинета была открыта всегда и для всех. И люди к нему приходили показать и обсудить сюи результаты, спросить совета. Он умел слушать и сльппать. Всегда это была атмосфера искреннего человеческого внимания и общения. В любых ситуациях он помогал не всем вместе, но каждому в слдельюсти. ЧЕЛОВЕК поразительного такта—очень редкое явление в нашей современной жизни.  [c.228]

Основываясь на аналогии между уравнениями для упругого тела в состоянии равновесия и для вязкой ньютоновской жидкости в установившемся стоксовом течении, Хилл и Пауэр [16] вывели два экстремальных принципа. Стьюарт [28] обсудил эти взаимно дополняющие вариационные принципы и применил их к проблеме ламинарного течения в однородных каналах. Эти теоремы ограничивают диссипацию энергии в данной краевой задаче с обеих сторон, т. е. в интервале между верхним и нижним пределами, соответствующими произвольному выбору допустимых функций. Одна такая функция, которая доставляет верхний предел, определяется по теореме Гельмгольца. Для нижнего предела напряжения должны быть такими, как если бы они были результатом действия на тело конечной силы, или пары сил, или обоих факторов вместе. Многочисленные применения приведены в работе [16], включая случай поступательного движения сферы в неограниченной среде, где для иллюстрации показано, что справедливы неравенства  [c.113]

Обсудим подробнее характер затухания напряженно-деформированных состояний оболочки и начнем с б. нзм- При построении этйй величины в (П. 15.1) надо положить ц = в ( П.12). Отсюда следует, что общий показатель изменяемости т напряженных состояний Ye. изм равен показателю изменяемости внешнего краевого воздействия 6. Вместе с тем Ye. иэм стро-  [c.501]

Важное отступленпе. Обсудим особую роль температуры в задачах теплопроводности. В большинстве случаев температура проявляет себя как некоторый потенциал, т.е. поток тепла вызывается разностью температур, а само значение температуры не оказывает на него влияния. В рассмотренной задаче вместо Г, = 200 и Гоо = 100 мы могли бы использовать или = 250 и = 150, или Т = 100 и Гоо = О, или = 2000 и = 1900. Тогда наше решение для Т просто отличалось бы на постоянное значение. Задача определяется именно разностью температур - 7 о , а не абсолютными значениями и Т .  [c.47]

С учетом этого обсудим некоторую часто совершаемую ошибку. После получения численных и точных значений температуры желательно подсчитать относительную погрешность, которая возникает при численном решении. Можно было бы определить относительную погрешность как - точУ точ- ошибочно находить относительную погрешность таким образом в задачах теплопроводности и конвекции, так как в этом случае абсолютная температура оказывается необоснованно важной характеристикой, хотя она может быть уменьшена или увеличена на произвольную константу. Погрешность будет гораздо меньше, если мы используем = 2000 и = 1900 вместо = 200 и = 100. Тем не менее мы решаем, по существу, одну и ту же задачу. Погрешность станет огромной, если локальное значение окажется близким к нулю. Мы должны помнить, что для расчета теплопроводности важны только разности температур, а не их абсолютные значения. Удовлетворительно определить относительную погрешность по температуре можно в виде ( числ точИ /) оо)- Для данной физической задачи характерной является разность температур - Т , поэтому целесообразно оценивать погрешность численного решения по отношению к этой разности. В общем случае удобно найти относительную погрешность в ви-де - 7 точУ( тах 7 тш)> гдс И — максимальная и минимальная температуры, задаваемые точным решением.  [c.48]


Рассмотрим сначала типы регистрирующ,их сред и методы записи голограмм. Мы перечислим не только возможные преиму-ш,ества этих методов, но и выявим их смысл и связь с другими параметрами голограмм. Затем мы покажем, насколько важную роль играет каждый отдельный параметр регистрируемой волны иными словами, мы можем записать только либо амплитуду волны от объекта, либо ее фазу, либо и то и другое вместе. Мы представим смысл выбора того или иного метода записи и связанный с методом записи тип голограммы. Затем мы обсудим важный параметр, тесно связанный с типом выбранной регистрирующей среды, а именно модулируемый параметр волны. Этот параметр (амплитуда, фаза или то и другое вместе) волны, освещающей голограмму при восстановлении изображения, изменяется этой голограммой и в зависимости от выбранного способа модуляции воздействует на формируемые изображения.  [c.139]

Обсудим вкратце обобщение теории предыдущего раздела на случай электронной плазмы, погруженной в непрерывный положительный фон. Сама по себе задача формулируется точно так же, но в уравнениях учитывается ненулевой заряд (—е) (для электронов). Поэтому вместо уравнений (12.6.2) нужно воспольэоваться следующей системой, выведенной из формул (12.5.29) — (12.5.32)  [c.78]

Как уже говорилось, эта систеш незамкнута, в ней необходимо добавить связь между V и А. Обсудим этот вопрос применительно к ударным волнам. Пусть при а = О задан ударный фронт с амплитудой скачка, зависящей от Р, т.е. задана форш фронта о 03) и зависимость М (/3), где М = = и /со, Со - скорость звука в невозмущенной среде. Этого, однако, недостаточно — необходимо, вообще говоря, тадать все течение за ударным фронтом и затем рассштривать его движение, решая уравнения гидродинамики вместе с граничными условиями на разрыве.  [c.96]

Резолюция на отдельном листке, машинописью 7. Обсудить на очередном заседании С[пециального] комитета]. 2. Тов. Первухину вместе с тт. Арцимовичем и Ефремовым подготовить проект Постановления по письму т. Арцимовича. Л. Берия. 30 марта 1949 г.  [c.625]

Второе отличие состоит в том, что вместо теорем 1 и 2 35 мы смогли воспользоваться только теоремой 3 из 35, хотя, скажем, при 1т = 0 оператор 1т/С переводит функции из в функции из С (К+). Здесь причина состоит в том, что не удается выделить главную самосопряженную часть оператора I из-за несамо-сопряженности граничных условий (38.3). Обсудим это обстоятельство.  [c.376]

Обсудив судебную практику по делам о преступном нарушении правип безопасности движения и эксплуатации транспортных средств, Ппенум Верховного Суда СССР отмечает, что бопьшин-ство этих деп судами разрешается в соответствии с требованиями закона. Вместе с тем, как показапо изучение судебной практики, в  [c.243]

Обсудим теперь вопрос о том, можно ли использовать квантовые корреляции для передачи информации. На наличие нелокальных корреляционных связей в квантовой механике впервые было указано в работе Эйнштейна, Подольского, Розена [8]. Такая корреляция выглядела как своего рода парадокс, а в более поздних работах она была установлена со всей определенностью. Большую роль при этом сыграла теорема Белла [29], согласно которой наличие скрытых параметров перед квантовыми измерениями должно было бы проявляться в виде некоторых неравенств, не наблюдающихся экспериментально [31,90,91]. Тем самым была подтверждена ортодоксальная квантовая механика. Вместе с тем это означает, что в момент квантового измерения возникают нелокальные корреляционные связи. В эксперименте Аспекта, Далибарда, Роджера [31] было четко показано, что эти связи устанавливаются сверхсветовым образом. Тем самым, естественно, ставится вопрос о том, нельзя ли использовать квантовые корреляции для сверхсветового обмена информацией  [c.270]

Будем полагать теперь, что величина большой полуоси а найдена из решения уравнения Ламберта. Вместе с ней определяются углы 8 и б. Обсудим последовательность вычислений параметра орбиты эксцентриситета е и аргумента перицентра со. Аргумент широты = со + О1, используемый при вычислении со, можно найти из скалярного произведения единичного вектора г = (г , г%, г г) и единичного вектора = (созй, 0), направленного из на-  [c.113]

Для того чтобы обсудить несколько особых ситуаций, связанных со свободными колебаниями, снова рассмотрим два простых маятника (см. рис. 3.4), соединенных пружиной. Для этой системы элементы диагональной матрицы масс [см. выражение (3.9)] имеют вид Мц = УИ22 = fnP. Кроме того, вместо матрицы S там используется матрица S, содержащая обусловленные силами тяжести элементы вида  [c.220]

Именно это и сделал Херринг, воспользовавшись тем, что волновые функции, которые требуется найти, должны быть ортогональны волновым функциям внутренних оболочек (последние считаются известными). Таким образом, полное разложение для волновых функций зоны проводимости можно получить, если пользоваться не просто плоскими волнами, а плоскими волнами, которые предварительно были сделаны ортогональными к волновым функциям внутренних оболочек. В процессе ортогонализации мы учтем осцилляции в области сердцевины ионов, что позволит нам в дальнейшем достаточно хорошо описать и соответствующие осцилляции в волновых функциях, которые мы ищем. Следовательно, метод ортогонализованных плоских волн, или OPW метод ), очень похож на метод плоских волн, но только в нем вместо обычных плоских волн фигурируют ортогонализованные плоские волны. Такой подход оказался очень полезным при расчетах зонных структур на его основе был построен и метод псевдопотенциалов, который мы обсудим несколько позже.  [c.99]

Теории, указанные в названии, должны бы были быть главным предметом этой книги, но, к сожалению, они значительно менее разработаны, чем решёточные калибровочные теории. Мы опишем сначала основные методы построения таких теорий, разбивающиеся на три класса непрерывные пределы решеточных теорий, прямые непрерывные конструкции и комбинированный метод. Первые два из них мы проиллюстрируем на простых примерах, а именно на двумерной чистой теории Янга — Миллса и на модели Швингера (без-массовая двумерная электродинамика). Комбинированному методу будет посвящена большая часть оставшихся глав. Он используется для построения двумерной абелевой модели Хиггса, которая будет обсуладена нами достаточно подробно и которая, как будет показано, является квантовой теорией поля в смысле Вайтмана мы дадим также общий план построения массивной двумерной квантовой электродинамики с помощью этой стратегии. Выяснится, однако, что аксиомы Вайтмана не являются самой естественной основой для калибровочных теорий, по крайней мере в неабелевом случае. Поэтому в конце мы обсудим другие возможные основания, пригодные при рассмотрении обобщенных калибровочно-инвариантных объектов, таких как петли Вильсона, вместо локальных полей-  [c.107]

Исходя из уравнения (ХП.22), легко можно получить феноменологическое уравнение для (I) = Sp Ia при о)= о)о. Вместо R t) = следует воспользоваться более общей формулой (XII.18). Соответствующие вычисления, хотя и не сложны, но довольно утомительны и поэтому здесь не приводятся. Дальнейшее обобщение состояло бы в замене описания механизма релаксации при помощи локальных полей, определяемых случайным гамильтонианом (XII.23), описанием с помощью гамильтониана диполь-дипольного взаимодействия, определенного формулами (VIII.67)—(VIII.69). Результаты, полученные таким образом, качественно мало отличаются от приведенных выше. Их основная черта по-прежнему состоит в зависимости времени поперечной релаксации от амплитуды радиочастотного поля. Соответствующие вычисления можно найти в работе [2]. Вследствие недостатка экспериментальных данных, подт вер-ждающих существование таких условий, при которых основные предположения (XI 1.15) действительно выполняются, обсудим следующие результаты, полученные в работе [2].  [c.478]

В одной главе было бы невозможно подробно рассмотреть все или хотя бы большинство нежелательных последствий, обусловленных непосредственно применением метода размерностей. Вместо этого я предлагаю обсудить в общих чертах лишь некоторые из них. Затем на примере пленочного охлаждения, мы увидим подробнее, какими могут быть нежелательные результаты применения метода размерностей, а именно как мало сходства могут иметь выводы экспериментальных исследований с действительностью, если данные втискиваются в жесткие рамки идей стач>ой концепции, известной под названием "метод размерностей".  [c.119]


Смотреть страницы где упоминается термин Обсудим вместе : [c.193]    [c.152]    [c.478]    [c.143]    [c.134]   
Смотреть главы в:

САПР, или как ЭВМ помогает конструктору  -> Обсудим вместе



ПОИСК





© 2025 Mash-xxl.info Реклама на сайте