Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Релаксации механизмы

Релаксации механизмы 114, 154 Релаксация поперечная 154  [c.240]

В твёрдых телах акустич. Р. может иметь различную природу. Напр., Р, имеет место при взаимодействии УЗ с электронами проводимости в полупроводниках. В этом случае сОр растёт с ростом проводимости кристалла и уменьшается с ростом теми-ры и подвижности носителей тока, а величина дисперсии определяется коэфф. электромеханич. связи. Релаксационные процессы имеют место также в полимерах, резинах и различных вязкоупругих средах. В этих веществах наблюдается значительная дисперсия звука, вызванная релаксацией механизма высокой эластичности.  [c.306]


Такие уравнения отличаются от рассмотренных ранее, поскольку в функциях, характеризующих память, вместо инвариантов тензора С фигурируют инварианты тензора С. Иными словами, предполагается, что механизм забывания (или релаксации) деформаций зависит не от величины деформации, а от ее скорости. Имеются разногласия относительно того, для какого момента следует вычислять эту скорость деформации. Одни авторы 117, 18] предпочитают вычислять скорость деформации в момент наблюдения,  [c.227]

Релаксация поля поворотных моментов приводит к ротационному повороту, осуществить который можно при помощи различных механизмов.  [c.347]

Проводимость вещества зависит от времени релаксации т, которое определяется механизмом рассеяния. Таким образом, на коэффициент поглощения свободными носителями заряда оказывают влияние механизмы рассеяния. Действительно, в полупроводниках рассеяние акустическими фононами приводит к поглощению, меняющемуся как рассеяние на оптических фононах дает зависимость к - -, а рассеяние ионизованными примесями — Если в веществе имеют место все три типа рассеяния, то коэффициент поглощения свободными носителями равен сумме трех членов  [c.311]

Здесь R измеряется в см /Кл п — в см е= 1,6-10 Кл г — числовой множитель (так называемый холл-фактор), значение которого определяется механизмом релаксации импульса носителей. Знак R связан со знаком заряда но-  [c.454]

Механизмом, с помощью которого осуществляется любой релаксационный процесс, является обмен различными вида ми энергии при столкновении молекул друг с другом к обмен атомами при элементарных химико-кинетических актах. Продолжительность релаксации каждой степени свободы оценивается с точки зрения эффективности обмена соответствующим видом энергии при соударениях.  [c.129]

Из соображений необходимости непрерывной и согласованной деформации отдельных зерен в поликристалле наряду с зернограничным проскальзыванием должны действовать другие механизмы деформации. Это удобно проиллюстрировать на рис. 105. Предположим, что приложенные напряжения вызывают проскальзывание вдоль границы зерен АВ на расстояние А. Проскальзывание даст вклад, в зернограничную деформацию (егр), но вызовет концентрацию напряжений в точке В. Для релаксации этого напряжения необходимо развитие пластического течения в соседнем зерне вдоль ВС (еэ). Реально это означает, что, достигнув точки В, дислокация должна вызвать скольжение в соседнем зерне по направлению к С, затем вдоль D и т.д. (так называемый эстафетный механизм) - Такое движение возможно, если дислокация способна не только скользить, но и переползать, поскольку ВС и D не обязательно параллельны.  [c.179]


В книге приводятся данные о механизме пластической деформации, результаты исследований упрочнения и устойчивости состояния аустенитных сплавов после ВТМО, исследований дислокационной структуры и ее влияния на жаропрочность, исследований природы усталости, релаксации напряжений в процессе нагрева и др.  [c.120]

Первый механизм коррозии протекает в чистой газовой среде либо под влиянием отложений золы, коррозионная активность которых со временем не изменяется. В таком случае в течение времени релаксации коррозии на чистой поверхности корродирующего материала образуется оксидная пленка со стабильными диффузионными свойствами.  [c.94]

При воздействии второго механизма коррозии поверхность металла быстро покрывается равномерной оксидной пленкой. Из-за быстрого возникновения оксидной пленки коррозия за очень короткое время, намного меньшее времени релаксации, переходит от кинетического к диффузионному или промежуточному режиму окисления. Быстрое образование на поверхности металла защитной оксидной пленки позволяет рассматривать коррозию во всем диапазоне времени т тр протекающей при постоянной степени показателя окисления (при заданной температуре), а изменение интенсивности коррозии в переходном процессе выражается в изменении лишь множителя А в формуле (3.7). Таким образом, в первоначальной стадии коррозии величина А при постоянной температуре металла зависит от времени и изменяется от максимального значения, соответствующего моменту т==0, до величины, имеющей место при коррозии под влиянием стабильных  [c.95]

Таким образом, дисперсное упрочнение по сравнению е другими механизмами упрочнения оказывается наиболее термически стабильным и наблюдается в некоторых случаях [220—222] вплоть до температуры 0,8Т пл- Это явление в первом приближении можно объяснить различием в уровне диффузионных потоков, необходимых для релаксации тех или иных препятствий.  [c.94]

Бороздчатый рельеф может быть сформирован, как показали Фри-дель [4171 и А, Н. Орлов [425], при сравнительно медленном распространении трещины скола с периодической релаксацией трещина периодически преодолевает собственную зону пластической релаксации (рис. 5Л5) под действием все возрастающей нагрузки, пока длина трещины не достигнет критического размера. Критический размер трещины, сформированный по механизму скола с релаксацией, как показано в работе [380], экспоненциально зависит от температуры.  [c.207]

При температурах выше во втором переходном интервале — Тх разрушению предшествует значительная деформация (см. рис. 5.13). В образцах формируется шейка. Механизм роста докритических трещин— слияние пор (рис. 5.14, в, г). Критический размер трещины, -формирующейся по механизму слияния пор, так же как и скола с периодической релаксацией, экспоненциально зависит от температуры [4291. При температурах Гх и выше образцы разрушаются только путем слияния пор, т. е. критический размер трещины достигает размера образца, и скол отсутствует.  [c.208]

Выдержка материала при постоянной нагрузке активизирует процессы релаксации у кончика трещины. Они могут играть противоположную роль для материала в зависимости от его чувствительности к выдержке под нагрузкой. Проявление чувствительности выражено в смене механизма разрушения до того, как достигается предельный уровень циклической вязкости разрушения. Для материала в пластичном состоянии в случае вы-  [c.114]

Нагружение материала ЗК с частотами в несколько тысяч герц связано с возрастанием скорости изменения нагрузки в цикле, которая может стать соизмерима со скоростями ударного нагружения материала. Процессы релаксации подводимой энергии в цикле нагружения к материалу не успевают проявить себя в полной мере при высокой скорости деформации. Применительно к пластичным материалам влияние возрастания скорости деформации на развитие усталостных трещин выражено в подавлении механизма формирования усталостных бороздок, типичного для низкочастотной области нагружения (см. главу 6).  [c.681]


Наумова С. И., Волков С, Д., К теории спонтанного повреждения композита от релаксации собственных напряжений в связующем, сб. Механизмы релаксационных явлений в твердых телах , Каунас, 1974.  [c.490]

Механизм адгезионного взаимодействия усложняется также из-за усадочных и термических напряжений, появляющихся вследствие различия коэффициентов термического линейного расширения полимера и наполнителя. Динамическое равновесие процесса образования и разрыва связей в присутствии воды определяет релаксацию напряжений на поверхности раздела на молекулярном уровне. Поэтому вода является необходимым ингредиентом при образовании адгезионной связи между жесткими полимерами и поверхностью минеральных веществ. Высокая адгезия сО Храняет-ся только до тех пор, пока гидролиз на поверхности раздела является обратимым процессом.  [c.225]

Опыт показал, что кипячение в воде является жестким испытанием и потому не позволяет с достаточной степенью точности оценить влияние длительного старения на композиты в условиях высокой влажности и переменной температуры. Механические и другие свойства стеклопластиков на основе аппретированных волокон после воздействия теплой влажной среды в течение нескольких. лет также значительно ухудшаются. Поэтому можно сказать, что в процессе деструкции важную роль играет временной фактор. Процессы релаксации напряжений и коррозии, которые могут способствовать деструкции, изменяются во времени, и их механизм не может быть точно установлен на основе ускоренных испытаний.  [c.271]

Вязкость разрушения, или сопротивление материала распространению трещины, может быть определена также при помощи понятия критических скоростей высвобождения энергии при продвижении трещины ди, связанных с Ki - Многочисленные авторы (см., например, [18—23]) исследовали распространение разрушения, изучая механизмы рассеяния энергии, например выдергивание волокна, нарушение связи волокно — матрица, релаксация напряжения, разветвление трещины и пластическое деформирование матрицы. Механизмы рассеяния энергии, знание которых позволяет определить вязкость разрушения, сложны по своей природе и зависят от прочности связи волокно — матрица, типа матрицы (хрупкая или пластичная), диаметра волокна, прочности волокна и т. д. Поэтому только тщательное исследование поверхностей, образовавшихся в результате разрушения, дает основание для установления соответствия экспериментально определенных значений Gu тому или иному механизму. Так, например, было сделано предположение о том, что вязкость разрушения стекло- и боропластиков связана главным образом с величиной упругой энергии, накопленной в волокнах, а соответствующая характеристика углепластиков на эпоксидном связующем — с работой докритического распространения микротрещины и работой выдергивания разорванных волокон.  [c.53]

В твёрдых диэлектриках при отклонении системы фононов от равновесия время релаксации связано с i временем жизни фононов т, = Зх/Сс, где х — коэф. теплопроводности, С — теплоёмкость решётки, с — ср. значение скорости звука, т, — i/T при темп-ре Т порядка и выше дебаевской. При распространении звука в пьезополупроводниках частота релаксации Юр растёт с ростом проводимости кристалла И уменьшается с ростом темп-ры и подвижности носителей тока, а величина дисперсии скорости звука определяется коэф, электромеханич. связи. Дислокац. поглощение звука в Монокристаллах также имеет релаксац. характер, причём время релаксация зависит от длины колеблющегося отрезка дислокации, вектора Бюргерса и постоянных решётки.. Релаксац. процессы имеют место также в полимерах, резинах и разл. вязкоупругих средах, в этих веществах наблюдается значит, дисперсия скорости звука, связанная с релаксацией механизма высокой эластичности.  [c.330]

Вследствие релаксац. механизма изменения конформации молекул каучука механич. свойства Р. в различных условиях невозможно полностью описать с помощью только Есо. Поэтому технич. Р. при их испытаниях обычно характеризуют величиной напряжения при заданном удлинении (100%, 200%, 300% и т. д.) нри стандартных скорости деформации и темн-ре. Напряжение нри удлинении 300% типовой наполненной Р. из изопренового каучука при скорости растяжения 50 см мин ж 20° 130—150 кг см . Если режим испытания выбран так, что зависимость напряжение — деформация в пределах 100% приближается к линейной, то напряжение при 100% может условно характеризовать модуль Юнга Р. (для данного ре-яшма). При циклич. деформациях сравнительно небольшой амплитуды (до 10—20%) амплитудные значения наиряжения, как правило, пропорциональны деформации. Коэфф. пронорциопальности, наз. динамическим модулем, при стандартной частоте и темп-ре является одной из наиболее важных характеристик Р., предназиаченпых для работы в условиях многократных деформаций. С увеличением  [c.392]

Следует также отметить, что на продольных шлифах были обнаружены микронесплошности (рис. 2.17,а), которые имеют порообразный вид и могут быть характеризованы как вязкие микротрещины. По всей видимости, происхождение этих микросплошностей связано либо с зарождением и последующим ростом микропор, либо с теми зародившимися острыми микротрещинами, для которых не выполнено условие страгивания, т. е. в вершине которых после зарождения произошла пластическая релаксация, приведшая к их затуплению и последующему подрастанию по пластическому механизму.  [c.91]

Кроме зарождения пор на включениях поры могут формироваться из микротрещин, зародившихся в результате дислокационных реакций (механизм Стро, Коттрелла и т. д.) и не распространившихся по механизму скола (ai<5 ). В данном случае микротрещины притупляются за счет релаксации напряжений в их вершинах и превращаются в пору. Несмотря на возможный дислокационный механизм зарождения пор, вязкое разрушение конструкционных материалов происходит за счет пор, зародившихся на частицах второй фазы включениях, карбидах и т. д. Таким образом, существует большой набор значений деформации, требуемой для зарождения поры. Поры возникают на включениях при значительно меньших деформациях, чем на карбидах и нитридах. Возникновение пор вокруг крупных частиц облегчено по сравнению с мелкими.  [c.111]


Магниторезистивный эффект — увеличение сопротивления металлического образца, помещаемого в магнитное поле,— описывается довольно сложной теорией. Магниторезистивный эффект будет наблюдаться в том случае [1], когда поверхность Ферми несферична, и особенно когда она содержит вклады электронов и дырок или электронов из двух зон. Если существуют два типа носителей, имеющие различный заряд, массу или время релаксации, то магнитное поле будет влиять на них по-разному. Соответственно будет изменяться и полная проводимость, представляющая собой векторную сумму двух компонентов. Этот механизм приводит к появлению поперечного магниторезисторного эффекта, который примерно пропорционален квадрату напряженности магнитного поля Я, а в сильных полях приходит к насыщению. Особый случай представляет металл, у которого различные типы носителей имеют одинаковое время релаксации. Тогда изменение сопротивления Ар под действием магнитного поля можно записать в виде  [c.250]

Подвижность носителей. Подвижность носителей заряда определяется согласно (7.124) временем релаксации т. Время релаксации было введено в модели свободных электронов Друде для объяснения теплопроводности и электропроводности металлов. Предполагалось, что за единичнре время любой электрон испытывает столкновение с вероятностью, равной 1/т, т. е. считалось, что результат столкновения не зависит от состояния электронов в момент рассеяния. Такое упрощение является чрезмерным. Частота столкновений электрона сильно зависит, например, от распределения других электронов, так как в силу принципа Паули электроны после столкновений могут переходить только на свободные уровни. Кроме того, в твердом теле существуют различные механизмы рассеяния. Поэтому при таком описании столкновений от приближения времени релаксации отказываются. Вместо введения времени релаксации предполагают существование некоторой вероятности того, что за единичное время электрон из зоны п с волновым вектором к в результате столкновения перейдет в зону с волновым вектором ki. Эту вероятность находят с помощью соответствующих микроскопических расчетов. Такой подход, однако, очень сильно осложняет рассмотрение.  [c.249]

Термоэлектреты получают следующим образом. При повышенной температуре диэлектрик поляризуется в сильном внешнем поле, а затем в этом же поле охлаждается. В результате такой обработки поляризованное состояние оказывается замороженным , поскольку время релаксации медленных тепловых механизмов при уменьшении Т снижается в тысячи и миллионы раз (т — ехрХ  [c.298]

Рассмотренный механизм пластической деформации благодаря образованию направленного раствора внедрения или замещения используют для объяснения релаксации напряжений в металлах, т. е. снижения величины напряжений во времени a=a(t) благодаря переходу части упругой деформации в пластическую и при заданной и постоянной общей деформации e= onst. В случае B= onst при образовании направленного раствора возникают остаточные деформации ео при условии, что j Ma упругих Ее и остаточных деформаций остается постоянной eo-fe = e = onst. Снижение е приводит  [c.155]

Особенности кинетических диаграмм разрушения. В первых исследованиях, касающихся оценок кинетики докритического роста трещип при длительном статическом нагружении в водных средах, рассматривались преимущественно закаленные низкоот-пущенные стали с пределом текучести выше 1500 Н/мм . Было показано, что скорость распространения трещины прямо пропорциональна коэффициенту интенсивности напряжении растущей коррозионной трещины. Дальнейшее распространение подходов линейной механики разрушения па более широкий круг высокопрочных материалов и коррозионных сред выявило более сложный характер зависимости viK). Типичная кинетическая диаграмл1а коррозионного растрескивания в координатах gv-K представлена на рис. 42.3. На участках I и III скорость роста трещины увеличивается с повышением X, а в пределах участка II, охватывающего значительный диапазон значений К, наблюдается стабилизация скорости. Существуют различные суждения о причинах четко выраженных участков диаграммы коррозионного растрескивания. Их связывают с влиянием в пределах каждого участка доминирующего механизма воздействия среды. Второй горизонтальный участок часто связывают с релаксацией напряжений в вершине трещины вследствии ее интенсивного ветвления. Характер зависимости v K) во многом зависит от структуры сплава и типа среды. Для высокопрочных сталей с мартенситной структурой с пределом текучести 1500 Н/мм и выше на кине-  [c.341]

Некоторые замечания о неразпостных ядрах ползу чести стареющих материалов. Выше были рассмотрены только те перазно-стные ядра ползучести и релаксации для стареющих материалов, которые связаны с настоящим исследованием. Однако имеется много работ как теоретического, так и экспериментального характера, в которых рассматриваются ядра ползучести и релаксации иной структуры, связанные с изучением различных сторон механизма явлений ползучести этих материалов. Основные результаты в этой области получены в ряде экспериментальных работ [230, 531, 607, 632] и в теоретических исследованиях [5, 72, 100, 256, 390].  [c.75]

При образовании скопления дислокаций и соответствующей концентрации напряжений у вершины скопления представляется весьма вероятным, что пластическая деформация в соседнем зерне начнется в результате работы зернограничных источников [54, 102]. Удаляясь от поверхности зерна, дислокации, эмитированные этими источниками, взаимодействуют с дислокациями сетки Франка и могут создать новые источники типа источников Франка — Рида. Поскольку эти новые источники не заблокированы примесями, они оказываются способными либо к размножению полных дислокаций, либо (при достаточно высоком уровне напряжений сдвига) — к размножению частичных дислокаций, т. е. к образованию двойника, например, по полюсному механизму Коттрелла — Билби или по механизму Шлизви-ка [20] (рнс. 2.17). Развитая в работе [22] модель, в которой двойникование начинается после частичной (за счет скольжения) релаксации концентраторов напряжений, приводит к получению аналогичной уравнению Холла — Петча для скольжения зависимости напряжения начала двойникования от размера зерна  [c.60]

Упрочнение увеличением числа дислокаций до.лжно рассматриваться с учетом двух механизмов (Од(л) и сТд(п я))- Рост плотности дислокаций при их беспорядочном переплетении и образовании леса для объемного упрочнения мало эффективен, так как вместе с активным упрочнением устраняется возможность релаксации пиковых напряжений. В этом случае упрочнение, например наклепом, рационально, как правило, в поверхностном слое, при исходной матрице с высокой пластичностью. Деформационное упрочнение сохранит свое определенное значение, но развитие и совершенствование этого механизма, вероятно, целесообразно в сочетании с последующей перестройкой (полигонизационный нагрев) или сегрегационным закреплением (деформационное старение) созданных дислокаций.  [c.10]

Процесс пластического течения в кристалле осуществляется эстафетным механизмом в результате возникновения механического поля вихревой природы. Механическое поле в кристалле распространяется в виде волн смещений и поворотов. Поэтому в кристалле в любые, произвольно выбранные моменты времени могут существовать места разрядки, где полностью прошла релаксация напряжений от внешнего источника, и места с наиболее ярко протекающими процессами пластической деформации. Там, где сдвиг заторможен, и там, где активно реализуется деформация, возникает эффект взаимодействия зон с разным градиентом накопленных дефектов. Это приводит к возникновению мод вращения объемов материала и фрагментированию кристалла на малые объемы. Границы возникающих областей служат зонами заторможенного сдвига, где возникает наибольшая плотность дефектов. В этих областях происходит самоорганизованный процесс аккомодации энергии из условия сохранения сплошности. Эстафетное распространение деформации характеризуется тем, что любой сдвиг сопровождается эффектом поворота.  [c.143]


Хотя теория деформируемого слоя оказалась непригодной для композитов, армированных стекловолокном, из-за чувствительности каучукоподобных полимеров на поверхности стекла к действию воды, тем не менее она оказывается полезной при раосмотре-нии связи между жесткими полимерами и гидрофобным волокном, подобным графиту. Свойства композита, состоящего из графита и твердого полимера, ухудшаются в основном под действием термических напряжений, так как графит имеет очень низкий коэффициент линейного Теплового расширения. В данном случае невозможно гидролитическое равновесие на поверхности раздела, которое способствовало бы снятию напряжений по химическому механизму. В то же время благодаря наличию деформируемого слоя возможна меканиЧёскАя релаксация напряжений, так как связь органических. полимеров с графитом не чувствительна к воздействию воды.  [c.38]

Согласно новой рабочей гипотезе относительно механизма адгезии полимеров к минеральным наполнителям, силановые аппреты обеспечивают релаксацию напряжений на поверхности раздела  [c.210]


Смотреть страницы где упоминается термин Релаксации механизмы : [c.661]    [c.580]    [c.67]    [c.59]    [c.190]    [c.134]    [c.151]    [c.365]    [c.403]    [c.752]    [c.132]    [c.588]    [c.79]    [c.133]    [c.285]   
Введение в нелинейную оптику Часть1 Классическое рассмотрение (1973) -- [ c.114 , c.154 ]



ПОИСК



Другие механизмы релаксации в жидкостях

Кислицын С. Г., Чебышевская релаксация как один из методов расчета механизмов для приближенного воспроизведения функций нескольких переменных

Механизм релаксации внутренних напряжений при отжиге

Механизмы и динамика процессов релаксации растворителей

Образование новых границ - механизм структурообразования и релаксации напряжений. Роль границ в формировании прочностных свойств металла

Релаксация

Физический механизм молекулярного поглощения. Время релаксации



© 2025 Mash-xxl.info Реклама на сайте