Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Явление переноса электронов

Рассмотрим теперь слабо ионизованный газ. Под слабой ионизацией здесь подразумевается состояние, в котором плотность электронов и ионов в газе достаточно мала, чтобы преобладающим механизмом столкновений являлся механизм рассеяния электронов на нейтральных атомах, а не рассеяние электронов ионами. Мы будем рассматривать только явление переноса электронов ввиду их большой подвижности.  [c.328]

Явление переноса электронов. Для иллюстрации общих положений, приведенных в двух предыдущих пунктах, рассмотрим явление переноса электронов в твердом теле. Феноменологические уравнения имеют вид  [c.393]


Направленное движение ионов и электронов в плазме может быть вызвано двумя причинами электрическим полем, создающим ток, или же разницей в концентрации частиц между различными участками плазмы. Кроме того, в неравномерно нагретой плазме обмен частицами между областями с различной температурой создает механизм плазменной теплопроводности, благодаря которому через плазму идет поток тепловой энергии. Перечисленные процессы объединяются общим названием—явление переноса. Они обеспечивают переход от неравновесного к равновесному состоянию.  [c.55]

Займан Дж. Электроны и фононы. Теория явлений переноса в твердых телах Пер. с англ./Под ред.  [c.363]

Из последних формул ясно, что величина т играет роль массы электрона поскольку она не совпадает с истинной массой электрона, хотя и характеризует меру инертности электрона в кристалле, т+ назвали эффективной массой электрона. Поскольку т — мера инертности электронов, анализ этой величины мы подробнее проведем, обсуждая явления переноса в твердых телах. Здесь же ограничимся общим ее определением.  [c.74]

Возникновение Ф. приводит к изменению электронных свойств кристалла в области фазового перехода. В окрестности точки фазового перехода в кристалле возникают новые локализованные электронные состояния — энерге-тич. уровни Ф. в запрещённой зоне фазы а. Эти уровни могут приводить к аномалиям в электропроводности и фотопроводимости. Они существенно влияют на кинетику процессов рекомбинации и захвата неравновесных электронов в области фазового перехода. В др. случаях Ф, можно рассматривать как невырожденный газ подвижных квазичастиц, дающий вклад в явления переноса.  [c.274]

Повышенный интерес у советского читателя должна вызвать гл. 6, в которой подробно, на высоком научно-теоретическом уровне описаны электронные свойства аморфных сплавов — энергетические состояния электронов и явления переноса. В отечественной монографической литературе до сих пор этому вопросу уделялось недостаточное внимание. Электронная структура металла (как аморфного, так и кристаллического)—это его визитная карточка. На основе изучения электронной структуры аморфных сплавов вырабатывается понимание не только особенностей физических свойств этого нового класса веществ (электросопротивления теплоемкости и затухания звука при низких температурах теплопроводности зонного магнетизма и сверхпроводимости), но и понимание роли электронного фактора в формировании аморфного состояния и его стабильности.  [c.18]


Перенос электронов осуществляется на поверхности металла, а перемещение ионов — в электролите. Явления, которые при этом происходят, изображены на рис. 4.7.  [c.84]

Явление теплопроводности во многих отношениях аналогично другому важнейшему кинетическому явлению— электропроводности. Однако следует отметить, что картина переноса энергии в твердых телах значительно сложнее явления переноса заряда. Дело в том, что электропроводность осуществляется только электронной системой, что же касается переноса энергии, то он может осуществляться и фононной  [c.5]

Классические эксперименты для твердого состояния, дающие сведения о поверхности Ферми (эффект де Гааза-ван-Альфена и Др.), к сожалению, неприменимы для жидкостей, так как средний пробег свободных электронов в них слишком мал. В гл. VI были рассмотрены явления переноса при постоянном токе, в частности удельное сопротивление и термо-э. д. с., которые, вероятно, зависят не от истинной плотности состояний п Е) в жидких металлах, а от плотности состояний свободных электронов По Е). Однако Мотт [75] доказал, что если п Е) очень мало, то соответствие теории практике должно быть полным, что имеет место, возможно, для жидкой ртути. Более того, доказательства, полученные опытным путем с помощью коэффициента Холла, показывают, что поведение электронов в жидкости подобно  [c.94]

Свойства электронов, ионов, атомов и других частиц характеризуются различными величинами, присущими данным частицам и описывающими отдельные акты взаимодействия этих частиц друг с другом, с квантами излучения И Т. д. К числу таких величин относятся, в частности, рассмотренные выше эффективные поперечные сечения. Однако в ряде случаев для описания явлений, в которых участвует большое число частиц, удобно пользоваться средними макроскопическими величинами. С подобным положением, например, приходится встречаться в кинетической теории газов при описании явлений переноса (диффузия, вязкость, теплопроводность)— явлений, характеризуемых макроскопическими коэффициентами, значения которых могут быть рассчитаны с помощью молекулярной теории. В настоящем параграфе мы приведем несколько подобных величин и их единиц применительно к движению заряженных частиц в газе.  [c.268]

Уравнение Больцмана лежит в основе кинетической теории газов и находит широкое применение при изучении таких математически родственных явлений, как перенос электронов в твердых телах и плазме, перенос нейтронов в ядерных реакторах, перенос фононов в сверхтекучих жидкостях, перенос излучения.  [c.4]

Явление электролюминесценции — люминесценции, возбуждаемой электрическим полем, — в полупроводниковых диодах было открыто в начале 50-х годов прошлого столетия [53-55]. Было сразу же обнаружено, что энергия самых коротковолновых фотонов превышает прилагаемую электрическую энергию в расчёте на один привносимый электрон. В работе [56] был сделан вывод, что эта разница в энергиях возникает благодаря высвобождению внутренней энергии решётки полупроводника. Возможность использования этого эффекта для охлаждения была отмечена в работе [57]. В этой работе в пренебрежении джоулевым нагревом и явлениями переноса было получено выражение для мощности охлаждения в виде Eg eV — )1У, где I — величина силы электрического тока, V — напряжение смещения диода, Eg — энергия запрещённой зоны (квантовый выход люминесценции принимался равным единице).  [c.36]

В предыдущих трех главах вещество рассматривалось как сплошная среда и на основе этой простой модели были описаны некоторые явления. В настоящей главе приводятся основные характеристики молекул, атомов, электронов и фотонов, определяющих микроскопические свойства вещества. В последующих главах на основе этих результатов будут представлены микроскопические характеристики среды. При этом многие понятия, рассмотренные в гл. 1—3, окажутся с этой точки зрения нулевым приближением, зависящим не от самих микроскопических характеристик вещества, а от их средних величин. Будет показано, что явления переноса, которые представляют собой следствия малых отклонений от равновесия, зависят от атомных и молекулярных свойств через ряд определенных осреднений. Зависимость от микроскопических свойств с увеличением отклонения от равновесия резко возрастает. Конечной целью настоящей главы является описание специфических микроскопических свойств, относящихся к вопросам, излагаемым в последующих главах книги.  [c.80]


В следующих параграфах будут описаны различные микроскопические взаимодействия между фотонами, электронами, атомами и молекулами, которые вызывают различные макроскопические явления переноса. Как можно ожидать, существует большое число взаимодействий, возможных для этих частиц и их внутренней структуры ). В большинстве макроскопических задач многие взаимодействия происходят совместно, хотя обычно имеются два или три взаимодействия, которые преобладают в данном явлении. Определение доминирующих реакций часто затруднительно, а пренебрежение несущественными на вид реакциями может привести и ведет к серьезным ошибкам.  [c.133]

Выражения для а выводятся в теории явлений переноса. Наиболее общее выражение для термоэдс металлов (т. е. сильно вырожденного электронного газа)  [c.172]

Что касается измерений других свойств (не связанных с электронными явлениями переноса), то ситуация для них еще более неясна в основном из-за недостатка экспериментальных данных. Поскольку вполне возможно, что измерение  [c.97]

Могут возникнуть различные вопросы относительно обоснованности метода Больцмана—Фукса при рассмотрении поверхностных эффектов в явлениях переноса электронов. Прежде всего, граничное условие Фукса является простым и правдоподобным предположением, но, конечно, было бы лучше вывести граничные условия переноса из основных представлений, используемых в теории отражения и рассеяния электронов на поверхности кристалла. Такая задача обсуждается в этом и следующем параграфах. На более глубоком, квантовом уровне может встать вопрос [74] о законности использования вблизи поверхности классической функции распределения /(г, р) ввиду того,, что г и р для электрона являются некоммутирующими переменными и потому не могут быть одновременно точно определены. Эти вопросы обсуждены в 9.  [c.116]

Минимум сопротивления при низких температурах. Среди вопросов, связанных с переносом электронов в металлах, основной проблемой, требующей теоретического объяснения, до сих пор является проблема сверхпроводимости, хотя многие считают, что Фрёлиху и Бардину удалось недавно показать, в чем заключается механизм этого явления. Однако существует и другое явление, которое до сих пор также не поддается удовлетворительному теоретическому объяснению—это впервые обнаруженный примерно 20 лет назад в Лейденскогг лаборатории минимум сопротивления, который появляется при низких температурах у некоторых металлов (фиг. 41). Постепенное возрастание сопротивления с понижением температуры кажется, на первый взгляд, гораздо менее поразительным, чем внезапное исчезновение сопротивления при переходе в сверхпроводящее состояние, однако для теоретического объяснения минимума сопротивления, по-видпмому, необходим такой же новый шаг в развитии теории, который нужен для полного объяснения явления сверхпроводимости.  [c.210]

Итак, в качестве физической модели твердого тела для описания механохимических явлений при коррозии металла под напряжением можно принять модель упругого континуума. (имеющего квазисвободные электроны) с дефектами структуры типа дислокаций. В этой модели потенциал деформации, обусловленный средней дилатацией упругодеформированного металла или средним нелинейным расширением дислокаций, реализуется в значениях, практически не влияющих на работу выхода иона металла, но оказывающих воздействие на электромагнитные явления переноса в металле и работу выхода электрона.  [c.14]

Понятие Д. с. п. удобно для качеств, рассмотрения явлений переноса в газах, оно обобщено на случай систем слабовааимодействующих частиц электронный газ в металлах и полупроводниках, нейтроны в слабо-поглощающих средах и т. и.  [c.704]

Особой разновидностью Э.-в. п. является вторично-электронная проводимость в пористых диэлектрич. слоях, в основе к-рой лежит явление вторичной электронной эмиссии. Перенос заряда в этом случае о( есгвляется вторичными электронами, выбиваемыми из зёрен пористого слоя и перемещающимися под действием электрич. поля по вакуумным порам.  [c.556]

Однако теоретическое рассмотрение явлений переноса в металлических сплавах [69—71] с точки зрения термодинамики необратимых процессов сущесувенно поколебало правомочность выводов о знаке заряда частиц водорода на основании миграции под действием электрического поля к положительному или отрицательному полюсу. Только при отсутствии взаимодействия между частицами мигрирующего комлонента и носителями заряда в металле (электронами и электронными дырками) эффект переноса будет определяться зарядом частиц  [c.20]

Явления, характеризующиеся общностью закономерностей протекающих процессов по переносу массы, количества движения и энергии, получили название явлений переноса. Явления переноса в газах изучаются с помощью кинетической теории газов, кинематического уравнения Больцмана, в металлах - с помощью кинетической энергии электронов в металле, а переноса энергии в непроводящих кристаллах - с помощью кинетического уравнения для фононов решетки. Общую фемено-логическую теорию явлений переноса, применимую к произвольной системе (газообразной, жидкой или твердой), дает термодинамика необратимых процессов. Из нее следует, что наиболее быстро при сравнимых условиях явления переноса протекают в газах, медленнее -в жидкостях и еще медленнее - в твердых телах.  [c.82]

Все три модели ведут к плотности состояний Ы Е), имеющей провал вблизи энергии Ферми, как показано сплошной кривой на рис.- 5.1, а. Этот провал грубо соответствует щели между валентной зоной и зоной проводимости в кристаллическом полупроводнике или полуметалле. Этот провал в М Е) часто называют псевдощелью. Важной дополнительной характеристикой является пространственное поведение волновых функций. Состояния в псевдощели могут быть локализованными, а не распространенными по всему объему системы, и э.то обстоятельство важно при рассмотрении их вклада в явления переноса. Этот аспект электронной структуры обсуждается в последнем параграфе.  [c.83]


До сих пор мы рассматривали данные, относящиеся лишь к одной температуре 800 К. Если предположить, что п то же самое, что По в (7.7), то уравнения (7.3), (7.4) и (7.5) описывают влияние температуры Г на 5 и а. Теоретические и экспериментальные кривые сравниваются на рис. 7.5 и 7.6. Видно, что имеются небольшие расхождения, которые возрастают с температурой и при х- 2/3. Этого и следовало ожидать из качественных соображений в результате возбуждения электрон-дыроч-ны-х пар через запрещенную зону. Если вкладом дырок в явления переноса можно пренебречь (вследствие захвата дырок в локализованных состояниях между краем валентной зоны о и порогом подвижности Evi в ней), то а и S по-прежнему будут связаны соотношениями (7.4) и (7.5), но вместо зависимости для о нужно строить зависимость для 800а/Г. Оказывается, что это действительно так, за исключением области Т 1000 К. Поэтому оказалось возможным определить концентрацию дырок р = = п — о как функцию Т с помощью уравнений (7.3) и (7.4), и эта зависимость была проанализирована в рамках простой двухзонной модели с псевдощелью. Предполагая несколько произвольно, что край валентной зоны имеет параболическую форму, так что плотность состояний в валентной зоне —  [c.128]

Численные методы решения имеют большие потенциальные возможности, однако до последнего времени их широкое применение к решению уравнений переноса сдерживалось большим объемом вычислительной работы. Быстрое развитие и распространение счетнорешающей техники кардинально меняет их роль в исследовании явлений переноса. Если новые электронно-вычислительные устройства дискретного типа предназначены для выполнения трудоемких вычислительных операций, то некоторые устройства непрерывного типа могут также выполнять роль физических моделей.  [c.66]


Смотреть страницы где упоминается термин Явление переноса электронов : [c.214]    [c.367]    [c.36]    [c.83]    [c.98]    [c.99]    [c.586]    [c.131]    [c.121]    [c.28]    [c.55]    [c.87]    [c.87]    [c.102]    [c.97]    [c.98]    [c.400]    [c.36]    [c.24]    [c.552]    [c.479]   
Смотреть главы в:

Термодинамика необратимых процессов  -> Явление переноса электронов



ПОИСК



Переносье

Ток переноса

Явление

Явления переноса

Явления переноса в электронном газе



© 2025 Mash-xxl.info Реклама на сайте