Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Взаимодействие диполь-дипольное

Процессы спин-спиновой релаксации включают два основных типа диполь-дипольное магнитное и обменное электростатическое взаимодействия. Диполь-дипольное магнитное взаимодействие возникает из-за того, что каждый парамагнитный ион находится в магнитном поле, представляющем собой сумму внешнего стационарного поля и полей, наведенных соседними ионами. Вследствие хаотической ориентации ионов это суммарное поле отличается по величине от внешнего и резонанс наблюдается в некотором интервале полей (частот) около среднего значения. Ши-  [c.180]


Процессы спин-спиновой релаксации зависят от двух основных типов взаимодействия диполь-дипольного магнитного и электростатического взаимодействия. Спин-решеточная релаксация характеризуется двумя основными механизмами  [c.188]

II последующему их слиянию. Постепенно пузырьки газа достигают такой величины, что заметной становится действующая на них сила выталкивания (результирующая сил тяжести и Архимеда). Под действием этой силы большие газовые пузырьки движутся вверх. При этом благодаря диполь-дипольному или кулоновскому взаимодействию они захватывают мелкие пузырьки газа II еще больше увеличиваются в объеме.  [c.159]

Будем предполагать, что наиболее вероятны двойные соударения пузырьков газа. Электрическое поле будем считать однородным II квазистационарным. При помещении дисперсной газожидкостной системы в такое поле пузырьки газа будут поляризоваться II взаимодействовать друг с другом (диполь-дипольное взаимодействие). Касаясь одного из заряженных электродов, пузырьки могут приобрести собственный заряд, что приводит к кулоновскому взаимодействию.  [c.159]

Отметим, что, хотя в уравнении (4. 7. 1) интегрирование по размерам пузырьков ведется до бесконечности, из-за быстрого убывания константы коалесценции К (У, У) при У У . фактически учитывается коалесценция пузырьков с размерами меньше критического. Перемещение мелких пузырьков газа в жидкости происходит благодаря их тепловому (броуновскому) движению, а электрическое поле при этом только увеличивает вероятность коалесценции пузырьков в силу их диполь-дипольного взаимодействия. Поскольку такое взаимодействие является короткодействующим, электрическое поле не влияет на относительно большие перемещения пузырьков. Для больших пузырьков газа роль теплового движения сильно уменьшается, математически это отражается на быстром убывании К , У) при У, У оо.  [c.162]

Скорость уб определим из равенства силы сопротивления и силы диполь-дипольного взаимодействия  [c.170]

Для того чтобы найти явный вид функции распределения пузырьков газа по размерам (х, т), необходимо определить значение константы гравитационной коалесценции К У, V). Пусть большой пузырек газа с объемом V поднимается в жидкости со скоростью и. За счет диполь-дипольного (либо кулоновского) взаимодействия зтот пузырек может захватить малый газовый пузырек объемом У, поднимающийся в жидкости со скоростью и, Обычно константу гравитационной коалесценции записывают следующим образом  [c.174]

Перейдем к определению коэффициента захвата Для этого необходимо решить уравнение движения пузырьков газа с учетом их диполь-дипольного взаимодействия. Без учета мультиполей уравнение для силы диполь-дипольного притяжения имеет вид (ср. с (4. 7. 45))  [c.174]


Следовательно, при низкой температуре изменение температуры может быть велико обратно пропорционально четвертой степени температуры. Однако в соответствии с третьим началом термодинамики при температуре, близкой с О К, х перестает зависеть от температуры и магнитокалорический эффект исчезает. Предельно низкие температуры, которые можно получить методом адиабатного размагничивания парамагнитных солей, определяются силами взаимодействия между электронными спинами (диполь-дипольного, обменного и т. д.). Как только температура тела будет настолько понижена, что под действием сил взаимодействия возникнет упорядочение в расположении элементарных магнетиков, метод адиабатного размагничивания перестанет действовать. В настоящее время получена предельно низкая для этого метода температура 0,001 К. Вообще, чем более низкую температуру надо получить, тем более слабые взаимодействия необходимо использовать в рабочем веществе. Поэтому другой путь в приближении к О К лежит через использование ядерного магнетизма. В этом случае силы взаимодействия будут проявляться лишь при 10" К. Этим методом удается получить спиновые температуры порядка 10 К .  [c.195]

Причины неустойчивости кристаллич. решётки относительно смещений ионов, приводящей к спонтанной электрич. поляризации, сложны, т, к. связаны с учётом всех сил, действующих между ионами. Для ионных кристаллов особую роль играют кулоновские силы в частности, диполь-дипольные взаимодействия ионов могут давать отрицательный, дестабилизирующий вклад в суммарную потенциальную энергию кристаллич. ре-  [c.480]

Если в отсутствие кулоновского диполь-дипольного взаимодействия устойчива симметричная конфигурация атомов, то потенциальная энергия, приходящаяся на элементарную ячейку, обусловлена др. короткодействующими силами  [c.480]

Уширение нейтральными частицами существенно зависит от типа радиац. перехода и сорта возмущающих частиц. Наиб, уширение, обусловленное резонансным диполь-дипольным взаимодействием, наблюдается у резонансных линий атомов в однородном газе, т. е. при возмущении излучающего атома атомами того же сорта. Такое же резонансное уширение имеет место в том случае, когда один из уровней, между к-рыми происходит переход, связан с основным состоянием оптически разрешённым переходом. В этом случае сечение уширения <т (1—5)х X 10 см , сдвиг линии мал по сравнению с шириной. Если возмущающими частицами являются атомы или молекулы постороннего газа, уширение атомных линий определяется ван-дер-ваальсовским взаимодействием К=йСв/Л. Характерные сечения уширения а 10 — 10 см , имеется сдвиг линии, к-рый обычно составляет 30% ширины.  [c.262]

Зависимость интегралов h и I2 от скорости 7 дефазировки ДУС определяется скоростью спадания в пространстве хромофор-туннелонного взаимодействия Д. Обычно берется взаимодействие диполь-дипольного типа. Выбирая  [c.275]

В работах [21] высказано предположение, что эффект ТМО в железо-никелевых ферритах обусловлен локальными искажениями типа Яна — Теллера (тетрагональное искажение в расположении ионов, окружающих ион Ni + в тетраэдрической позиции). Очевидно, что эта модель может объяснить возникновение наведенной магнитнай анизотропии лишь при низкотемпературных магнитных отжигах феррита, но не применима при объяснении аффекта ТМО при достаточно высоких температурах отжига. Таким образом, большинство экспериментов подтверждают предположения Танигу-чи, в соответствии с которыми источником наведенной магнитной анизотропии в ферритах при отсутствии ионов Со + является анизотропное магнитное взаимодействе (диполь-дипольное взаимодействие).  [c.177]

Если в смеси двух полимеров возникает сильное межмолекуляр-ное взаимодействие (диполь-дипольные, водородные или ионные связи), которого нет в каждом полимере, то вклад энтропийного  [c.143]

Мп(ЫН4)2(В04)2бН20, могут примсняться при более высоких температурах, чем ЦМН, поскольку первое возбужденное состояние для них соответствует очень высоким температурам. Ниже температуры перехода 164 К кубическая решетка ХМК перестраивается в орторомбическую. Магнитные свойства ХМК достаточно хорошо известны [34] в связи с простотой основного состояния, а ионы в узлах решетки расположены на относительно больших расстояниях, так что диполь-дипольное взаимодействие становится незначительным. Дюрье [23] для ХМК нашел значения 6 = 0,00279 К , 0=12 мК и показал, что при температурах выше 1 К членами вида 1/Р и более высоких порядков можно пренебречь. Таким образом, соль ХМК с успехом может применяться в магнитной термометрии для области температур выше 0,3 К. Теория магнитного состояния для МАС изучена значительно хуже ввиду гораздо более трудного для описания основного состояния, чем у ХМК. Пока не получено достаточно точных численных значении для 0 и б, каждое из которых определяется экспериментально для конкретного образца. Тем не менее поведение индивидуальных образцов МАС довольно точно описывается уравнением (3.88)  [c.126]


Если пузырьки газа являются незаряженными, то благодаря поляризующему эффекту внешнего электрического поля они начинают взаимодействовать друг с другом (диполь-дипольное ваа-имодействие). Энергия такого взаимодействия равна [11]  [c.167]

Общие вопросы. Явления, о которых говорилось выше, должны быть связаны с взаимодействиями между магнитными ионами, которые приводят к появлению кооператиипых эффектов. Единственным путем к удовлетворительному теоретическому объяснению этих явлений является внолне строгое рассмотрение как магнитного дипольного взаимодействия, так и обменного взаимодействия. Вообще говоря рассмотрение динольпого взаимодействия сопряжено с большими трудностями, чем анализ обменного взаимодействия, поскольку силы взаимодействия диполей обладают большим радиусом действия.  [c.517]

Еслп усиление превосходит затухание упругих волн в кристалле, наступает самовозбуждение системы, сопровождающееся генерацией когерентных фононов. Увеличение мощности распространяющихся через образец акустич. импульсов в условиях АИР позволило обнаружить ряд новых явлений, имеющих место в когерентной оптике, — ультразвуковые спиновое ахо и самоиндуцироваиную прозрачность. Значительно большее время прохождения акустич. импульса через среду но сравнению с онтич. импульсом даёт возможность получить в этих случаях более точную информацию о механизмах взаимодействия волн ра-зл. природы со средой, При исследовании АПР в кристаллах с нараэлектрич. центрами обнаружено взаимодействие гиперзвука с нараэлектрич, центрами — модуляция диполь-дипольных связей.  [c.44]

ДИПОЛЬ-ДИПОЛЬНОЕ ВЗАИМОДЕЙСТВИЕ — взаимодействие между диполями электрическими или ди-полями магнитными. Каждый электрич. (магн.) диполь создаёт в окружающем пространстве электрич. (магн.) поле, воздействующее на др. диполи. Напря-жёппость поля электрич. диполя  [c.630]

Исследования спектральных, темп-рных и полевых зависимостей магнитооптич. анизотропии парамагршт-пых сред с локализованными магн. момеитами позволяют идентифицировать тип магнитооптич. активности, получить информацию о природе и магн. свойствах состояний, ответственных за оптич. переходы, о симметрии парамагн. центров в твёрдых телах, о характере электронно-колебательного и электронно-ядерного взаимодействия в системе (атоме, ионе) и т. д. При этом вклад парамагнитного типа несёт информацию о магн. свойствах осн. состояния системы, диамагнитного типа — и об основном, и о возбуждённом состоянии. Зависимость вапфлековского вклада от поля в малых магн. полях применяется для исследований сверхтонких взаимодействий взаимодействий кристаллич. поля, межиоиного диполь-дипольного, обменного и т. д.  [c.702]

Основные представления. М. в. обусловлено тем, что осп. взаимодействия магн. моментов атомов или ионов в веществе, напр. обменное взаимодействие, магн. диполь — дипольное взаимодействие, взаимодействие магн. моментов с внутрикристаллическим полем, зависят от расстояния между ними. Намагничивание кристалла изменяет характер этого взаимодействия, что проявляется в изменении рассто.чвий между частицами, а макроскопически — в деформации образца (магнитострикции). В свою очередь изменение расстояния между частицами, т. е. деформация образца, изменяет силу взаимодействия. между магн. частицами, а следовательно, и их ср.. магн. моменты, т. е. намагниченность образца, темп-ру Кюри, магн. анизотропию и т. д.  [c.18]

В ф-ле (1) магнитоупругие константы рассматриваются как феноменологнч. параметры, к-рые определяются экспериментально. В микроскопия, теории М. в. эти параметры и их зависимость от темп-ры и магн. ноля определяются для данного материала, исходя из его кристаллич. структуры и квантовомеханич. характеристик магн. ионов. Выделяют М. в., основанное на магн. диполь-дипольном взаимодействии, на анизотропном обмене и на комбинированном с участием спин-орбитального, обменного взаимодействия и на внутри1фисталлич. полях.  [c.19]

В вырожденных электронных состояниях важное значение имеют взаимодействия электронного спина с ядерными спинами, энергия к-рых в больше энергии чисто ядерных спин-спиновых взаимодействий, где ge л g — электронный и ядерный g -фак-торы, Цв — магнетон Бора, рд — ядерный магнетон. Электрон-ядерные спин-спиновые взаимодействия бывают двух видов 1) классич. диполь-дипольное взаимодействие (анизотропное), энергия к-рого в общем случае произвольной М. определяется тензором второго ранга с 9 компонентами 2) не имеющее классич. аналога изотропное контактное взаимодействие Ферми aSI, обусловленное наличием электронной спиновой плотности в месте расположения ядра. В отличие от анизотропного спин-спинового взаимодействия контактное взаимодействие имеет место только в состояниях с Л = о, аналогичных -состояниям атомов, т. к. только атомные s-орбитали создают спиновую плотность в мосте расположения ядра. Константы обоих видов взаимодействий зависят от электронной плотности М. и дают ценную информацию об электронных волновых ф-циях М.  [c.190]

Эксперименты при Н = О и Н 1 a ,. На рис. 4 показан вид зависимости P tJ, измеренной в сверхпроводящем состоянии сплава NbзAl при диполь-дипольном взаимодействии мюонов с ядрами решётки в отсутствие диффузии мюонов. Внеш. поле Н в образце полностью отсутствует из-за Мейснера эффекта. Релаксация обусловлена взаимодействием мюонов с магн. моментами ядер кристаллич. решётки. Эксперим. зависимость описывается ф-цией Кубо — Тоябэ  [c.228]

Существование О. л. и. может быть обусловлено диполь-дипольным взаимодействием или анизотропией элек-трич. поля кристалла, ориентирующего орбитальные моменты электронов относительно кристаллографич. осей. Спин-орбитпалъное взаимодействие стремится рас-положить спиновые моменты коллинеарно орбитальным.  [c.486]

ПЕРЕНОС ЭНЕРГИИ — безызлучательная передача энергии электронного возбуждения при эл.-магн. взаимодействии двух частиц (молекул, ионов, комплексов), находящихся на расстоянии, меньшем длины волны излучения. В результате П. э. молекула — донор энергии переходит в состояние с меньшей энергией, а молекула — акцептор энергии — в состояние с большей энергией. Взаимодействие частиц, вследствие к-рого происходит П. э., может быть мультипольыым (в частности, диполь-дипольным) или обменным. Характерные расстояния, при к-рых осуществляется П. э., достигают при диполь-дипольном взаимодействии 5—  [c.568]


Условия, необходимые для П. э., реализуются в осп. в конденсиров. средах (в газах взаимодействие частиц при их соударении приводит к уширению спектральных линий). П. э. играет существ, роль для процессов люминесценции. Взаимодействие при П. э, обычно предполагается настолько слабым, что спектры поглощения и люминесценции взаимодействующих частиц практически не меняются, г. е. остаются такими же, что и в отсутствие взаимодействия. В соответствии с законом сохранения энергии П. э. происходит только при условии, что спектры поглощения акцептора и спектры люминесценции донора перекрываются, т. е. в условиях резонанса. Если электронные переходы в доноре и акцепторе разрешены правилами отбора, то П. э. происходит в результате диполь-дипольного взаимодействия. Для этого случая теория П. э. была развита Т. Фёрстером (ТЬ. Роегз1ег, 1948). Она рассматривает процесс П. э. между молекулами в адиабатическом приближении и предполагает, что после переноса происходит быстрая колебат. релаксация в молекуле акцептора, что обеспечивает необратимость П. э. Скорость П. э. (вероятность переноса в единицу времени) выражается ф-лой  [c.568]

Из ф-лы (13) видно, что диполь-дипольное взаимодействие даёт дестабилизируюпщй вклад и, если а < то центр, положение подрешётки рассмат-  [c.480]

К проявляющимся в этих веществах конкурирующим взаимодействиям, влияющим на установление разл. видов магн. упорядочения, относятся обменное взаимодействие и косвенное обменное взаимодействие ферро-п антиферромагн. характера зависящее от взаимной ориентации магн. моментов диполь-дипольное взаимодействие, осциллирующее РККИ-обменное взаимодействие. В регулярных кристаллич. структурах такие взаимодействия могут приводить к появлению сложной неколлинеарной магнитной атомной структуры (в т. ч. несоизмеримой). В нерегулярных твердотельных системах (аморфных веществах, неупорядоченных двух-или многокомпонентных сплавах и твёрдых растворах) благодаря конкуренции и хаотич. взаимному расположению магн. а примесных ионов (вызывающих иногда случайное изменение локальной оси маги, анизотропии) возникает фрустрация магн. моментов, приводящая к образованию состояния С. с. В этом случае для расчёта наблюдаемых физ, величин кроме обычного термодвнамич. усреднения по ансамблю систем е Гиббса распределением вероятности (обозначаемого <...)) необходимо дополнит, усреднение (обозначаемое чертой сверху) по всем возможным реализациям хаотич. расположения маги, моментов или набора взаимодействий между ними при этом в качестве ф-цНи распределения обычно выбирается комбинация дельтафункций или Гаусса распределение. Полное (но математически сложное) решение задачи усреднения по случайным конфигурациям для свободной энергии С. с, даёт т. н. метод реплик (от франц. replique — копия, образ).  [c.634]

В электронных парамагнетиках С.-с. в. между парамагн. центрами в значит, степени определяет форму и ширину линий ЭПР. В этом случае принято понимать термин С.-с. в. более широко кроме магнитной (диполь-дипольной) энергии к нему относят и обменное взаимодействие, к-рое также зависит от взаимной ориентации спинов н формально рассматривается как псевдодипольное .  [c.646]


Смотреть страницы где упоминается термин Взаимодействие диполь-дипольное : [c.579]    [c.275]    [c.147]    [c.13]    [c.80]    [c.128]    [c.128]    [c.124]    [c.168]    [c.170]    [c.175]    [c.160]    [c.21]    [c.112]    [c.133]    [c.32]    [c.459]    [c.558]    [c.646]   
Компьютерное материаловедение полимеров Т.1 (1999) -- [ c.79 , c.120 ]



ПОИСК



Взаимодействие диполей

Диполь

Диполь-дипольиое взаимодействие

Дипольное взаимодействие



© 2025 Mash-xxl.info Реклама на сайте