Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Плоская задача теории упругости. Изгиб пластинок

В пятой главе описаны слоистые упругие трансверсально изотропные пластинки, имеющие симметричное относительно срединной плоскости строение пакета слоев. Выбор срединной плоскости в качестве плоскости приведения позволил отделить уравнения плоской задачи теории упругости от уравнений изгиба пластинки, которые и явились предметом исследования. Найден широкий класс решений этих уравнений, что позволило, в частности, решить задачу изгиба круговой пластинки, несущей поперечную нагрузку. В качестве примера рассмотрена задача осесимметричного деформирования круговой пластинки. Выполненное исследование, включающее в себя вычисление разрушающей, интенсивности нагрузки, определение механизма возникновения разрушения и определение зоны его инициирования, выявило принципиальную необходимость учета влияния поперечных сдвиговых деформаций на расчетные характеристики напряженно-деформированного состояния для пластин с существенно различными жесткостями слоев. Решена задача устойчивости пластинки, нагруженной силами, действующими в ее плоскости. Составлены общие уравнения устойчивости и подробно исследован тот случай, когда тензор докритических усилий круговой. Для этого случая найден широкий класс решений уравнений устойчивости. В качестве примера дано решение задачи устойчивости круговой пластинки, нагруженной равномерно распределенным по контуру сжимающим радиальным усилием. Эта же задача решена еще и на основе других неклассических уравнений, приведенных в третьей главе, а также на основе уравнений трехмерной теории устойчивости. Выполнен параметрический анализ полученных решений, что позволило указать границы применимости рассматриваемых уточненных теорий, оценить характер и степень влияния поперечных сдвиговых деформаций и обжатия нормали на критические интенсивности сжимающего усилия. Полученные результаты приводят к выводу о пригодности разработанных в настоящей моно-  [c.13]


Итак, система уравнений статики слоистой пластинки симметричного строения распалась на две независимые системы систему уравнений плоской задачи теории упругости и систему уравнений изгиба. Первая из них хорошо изучена [188] и здесь рассматриваться не будет. Обращаясь к системе уравнений изгиба  [c.133]

Плодотворное использование теории функций комплексного переменного для исследования плоской задачи теории упругости, а также в теории кручения и изгиба упругих стержней. В дальнейшем эти методы оказались полезными для теории пластинок и оболочек и осесимметричных, а также контактных задач теории упругости. Они нашли успешное применение для решения некоторых упруго-пластических задач, задач вязкоупругости и др.  [c.245]

Методы теории функций комплексного переменного, о которых выше шла речь в связи с плоской задачей теории упругости, были существенно развиты в исследованиях И. 1. Векуа применительно к более общим задачам теории дифференциальных уравнений в частных производных. В монографии И. Н. Векуа (1948) именно с этой точки зрения исследуется обширный класс эллиптических уравнений в случае двух независимых переменных и даются приложения развитого автором аппарата к различным вопросам теории упругости (стационарное колебание упругого цилиндра, изгиб тонких пластинок и др.).  [c.55]

Затем, представляет интерес электрическая аналогия, которая дает возможность исследования напряжений от кручения в валах переменного диаметра в выкружках и выточках. Аналогия между задачей изгиба пластинок и плоской задачей теории упругости также с успехом может быть использована при решении существенных задач техники.  [c.4]

Из этих уравнений легко могут быть получены уравнения как плоской задачи теории упругости (ш = 0), так и уравнения изгиба пластинки при 1 = оо, / 2=оо, и —О, v=0, а также изгиба балок.  [c.169]

В последней системе уравнений первые три аналогичны уравнениям плоской задачи теории упругости последние два сходны с уравнениями, полученными при чистом изгибе пластинки.  [c.164]

Система дифференциальных уравнений (10.54) обобщает две задачи теории упругости задачу об изгибе пластинки и плоскую задачу. Действительно, полагая главные кривизны оболочки равными нулю, получаем  [c.251]


Система дифференциальных уравнений (10.47) обобщает две задачи теории упругости плоскую задачу и задачу об изгибе пластинки. Действительно, полагая главные кривизны оболочки равными нулю, получаем V = О, а система распадается на два независимых уравнения  [c.213]

Мы получили ряд решений плоской задачи для случая пластинки, ограниченной прямоугольным контуром. Каждому найденному решению соответствуют вполне определенные условия закрепления и вполне определенное распределение усилий по контуру. Например, в случае изгиба балки силой, приложенной на конце, мы предполагали закрепление одной точки и одного линейного элемента, проходящего через эту точку на левом конце балки, и нашли распределение напряжений в том предположении, что касательные усилия, приложенные к правому концу балки, изменяются по высоте балки по параболическому закону. Если способ закрепления балки будет отличаться от принятого нами или изгибающая сила Q будет распределена по какому-либо иному закону, то полученное нами решение не будет точным решением соответствующей задачи теории упругости. Однако во многих технически важных задачах им можно будет пользоваться для приближенного определения напряжений. Например, его можно применить к тому случаю, когда все точки опорного сечения балки закреплены и сила Q распределена любым образом по плоскости нагруженного концевого сечения балки. При этом погрешности будут тем меньше, чем меньше высота балки по сравнению с ее пролетом.  [c.83]

Из этого перечня видно, что книга не претендует на освещение всех вопросов теории упругости анизотропного тела, а излагает только некоторые, наиболее изученные, но еще не приведенные в систему. В ней не содержится исследований по изгибу и устойчивости анизотропных пластинок, так как эти вопросы достаточно полно разработаны в нашей книге <Анизотропные пластинки . Задача о плоской деформации и обобщенном плоском напряженном состоянии изложена сжато (в связи с более общей задачей), причем из частных случаев рассмотрены только наиболее важные. В книге не затронуты проблемы равновесия и устойчивости анизотропных оболочек, а также динамики упругого тела (за исключением общих уравнений движения) Во всех случаях предполагается, что деформации являются упругими и малыми, а материал следует обобщенному закону Гука. В конце имеется перечень литературы, куда, кроме работ, излагающих специальные вопросы, включены также некоторые основные курсы теории упругости.  [c.12]

Имеет место замечательная аналогия между теорией плоского установившегося движения вязкой жидкости и теорией изгиба упругой пластинки >). Если W обозначает нормальное смещение в последней названной задаче, то имеем )  [c.762]

Далее представляет интерес электроаналогия, которая дает способ исследования напряжений при кручении в валах переменного диаметра у закруглений и вырезов. Аналогия между задачей изгиба пластинок и плоской задачей теории упругости также может с успехом использоваться при решении важных технических задач.  [c.16]

Неортогональные системы функций были получены П. Ф. Папковнчем при исследовании плоской задачи теории упругости и задачи об изгибе пластинки [78, 79]. Дальнейшее исследование функций Папковича и формальное обоснование полученного им решения содержится в работах [49, 82].  [c.121]

Смешанные задачи плоской теории упругости и теории изгиба пластинок. Как было уже упомянуто в 103 настоящей книги, Д. И. Шерман [17] дал способ решения основной смешанной плоской задачи теории упругости для многосвязной области. Г. Ф. Манджавидзе [1, 2] подробно исследовал сингулярное интегральное уравнение Д. И. Шермана, построенное для решения указанной задачи. Это же уравнение позволило Г. Ф. Манджавидзе [2] решить смешанную задачу изгиба нормально нагруженной тонкой изотропной пластинки, когда часть края пластинки заделана, а остальная — свободна. Если область, занятую пластинкой, можно отобразить конформно на круг при помощи полинома, то эту задачу, как и основную смешанную задачу (см. 127), можно решить эффективно. Это сделано в статьях М. Е. Карапетяна [1] и Станеску (Stanes u [1]).  [c.600]


В работе А. И. Каландия [10] предлагается способ, позволяющий находить приближенное решение некоторых задач об изгибе тонких пластинок, а также плоских задач теории упругости, когда упругая среда занимает полукруг. Задача решается приведением к некоторому сингулярному интегральному уравнению и последующим применением к этому уравнению численного метода решения в работе способ изложен применительно к задаче изгиба пластинки, имеющей форму полукруга, когда пластинка заделана но полуокружности и свободна по диаметру.  [c.600]

Под плоской задачей теории упругости понимают плоскую деформацию упругой среды, параллельную заданной плоскости (деформация длинного цилиндра со свободными основаниями), либо плоское ее напряженное состояние (деформация тонкой пластинки силами, лежащими в ее плоскости). Определение упругого равновесия в этих случаях сводится к решению краевых задач для бигармонического уравнения. К бигармоничес-скому же уравнению сводятся задачи равновесия упругих пластинок, подверженных нормальной нагрузке. Плоские задачи и задачи об изгибе пластинок в математической их формулировке весьма сходны между собой, сходны и методы их решений. Поэтому целесообразно совместное рассмотрение этих двух типов задач.  [c.40]

Поскольку по граничным значениям функции ш и ее нормальной производной всегда можно найти граничные значения частных производных этой функции ио X ж у, задача I об изгибе пластинки вполне равносильна первой основной задаче плоской теории упругости граничные условия задачи I в точности совпада)ют с условием (5.4), без какого-нибудь произвола в задании правой части последнего.  [c.44]

Он получил дальнейшее развитие в известных работах И. Б. Бубнова [67], С. П. Тимошенко [235], Б. Г. Галеркина [82], П. Ф. Папковича [186], А. Н. Крылова [133, 134] и других. Методы рядов и интегралов Фурье широко используются при решении плоских и пространственных задач теории упругости в работах Л. В. Канторовича и В. И. Крылова [122], А. И. Лурье [146], Я. С. Уфлянда [245], Снеддона [229], П. М. Оги-балова [176] и других. Так, в работах Б. Г. Галеркина [82], выполненных в течение 1915—1933 гг., был рассмотрен изгиб пластинок различных очертаний прямоугольной, в виде кругового и кольцевого секторов, в форме прямоугольного равнобедренного треугольника — при различных граничных условиях на контуре. При рассмотрении прямоугольных пластинок решение неоднородного бигармонического уравнення выбиралось в виде суммы частного решения и рядов Фурье по одной и второй переменной с неизвестными коэффициентами. Б. Г. Галеркин указал на выбор наиболее удачной формы частного решения.  [c.143]

Этот результат представляет собой случай изгиба пластинок, исиользоваиный впоследствии А. Надаи для экспериментального подтверждения приближенной теории изгиба ), предложенной Кирхгоффом. О другой интересной краевой задаче упоминается н Натуральной философии Томсона—Тэйта. Здесь сообщается по этому поводу До сих пор, к сожалению, математикам не удалось решить, а возможно, что они даже и не пытались решать, прекрасную задачу об изгибании широкой, весьма тонкой полосы (подобной, например, часовой пружине) в круговое кольцо ). Лэмб исследовал антикластический изгиб по краю тонкой полосы ) и достиг большого прогресса в решении задачи о балке ). Рассматривая бесконечно длинную балку узкого прямоугольного сечения, нагруженную через равные интервалы равными сосредоточенными силами, действующими поочередно вверх и вниз, он упростил решение двумерной задачи а для некоторых случаев получил уравнения кривых прогиба. Таким путем было показано, что элементарная теория изгиба Бернулли достаточно точна, если высота сечения балки мала в сравнении с ее длиной. При этом было также показано, что поправка на поперечную силу, даваемая элементарной теорией Рэнкина и Грасхофа, несколько преувеличена и должна быть снижена до 75% от рекомендуемого этой теорией значения. Надлежит упомянуть также и о труде Лэмба, посвященном теории колебаний упругих сфер ) и распространению упругих волн по поверхности полубесконечного тела ), а также в теле, ограниченном двумя плоскими гранями ). Он изложил также и теорию колебаний естественно искривленного стержня ). Особый интерес для инженеров представляет его и Р. В. Саусвелла трактовка колебаний круглого диска ).  [c.407]

Клебш первый занялся исследованием задачи плоского напряженного состояния и дал решение для круглой пластинки (см. с тр. 310). Другой случай, имеющий большое практическое значе-лие, был решен Харлампием Сергеевичем Головиным (1844— 1904) ). Он заинтересовался деформациями и напряжениями круговых арок постоянной толщины. Рассматривая задачу как двумерную, он сумел получить решения для систем, представленных на рис. 170. Он находит, что в условиях чистого изгиба (рис. 170, а) поперечные сечения остаются плоскими, как это обычно и принимается в элементарной теории кривого бруса. Но найденное им распределение напряжений не совпадает с тем, которое дается элементарной теорией, поскольку последняя предполагает, что продольные волокна испытывают лишь напряжение о, простого растяжения или сжатия, между тем как Головин доказывает существование также и напряжений а , действующих в радиальном направлении. При изгибе же, производимом силой Р, приложенной к торцу (рис. 170, б), в Киждом поперечном сечении возникают не только нормальные напряжения, но также и касательные, причем распределение последних не следует параболическому закону, как это предполагается в элементарной теории. Головин вычисляет не только напряжения для такого кривого бруса, но также и его перемещения. Имея формулы перемещений, он получает возможность решить и статически неопределенную задачу арки с защемленными пятами. Проделанные им вычисления для обычных соотношений размеров арок показывают, что точность элементарной теории должна быть признана для практических целей вполне достаточной. Исследования Головина представляют собой первую попытку применения теории упругости в изучении напряжений в арках.  [c.419]


В выводе уравнений элементарной теории пластинок принимается, что каждый тонкий слой пластинки, параллельный ее срединной плоскости а г/, находится в плоском напряженном состоянии, в силу чего отличными от нуля остаются только три компоненты напряжения Оу и Тху. Для более толстых пластинок полезно иметь полное решение задачи с учетом всех шести компонент напряжения. Несколько решений этого рода было предложено Сен-Венаном в его переводе книги Клебша ). Некоторые элементарные строгие решения для круглых пластинок были найдены А. П. Коробовым ), опыт же построения общей строгой теории пластинок был предложен Дж. Мичеллом ) и получил дальнейшее развитие в книге А. Лява ) по теории упругости. В последнее время строгая теория, пластинок обратила на себя внимание инженеров и некоторые ее задачи были полностью решены. Особого упоминания заслуживают труды С. Войновского-Кригера ) и Б. Г. Галер-кина ). Возрастающий успех, который находят в настоящее время в разнообразных технических применениях тонкостенные конструкции, привлек большое внимание к теории оболочек. Приемлемое для практики решение во многих, относящихся к тонким оболочкам, задачах становится достижимым, если пренебречь изгибом и допустить, что напряжения распределяются по толщине  [c.492]

Исследование упругой устойчивости пластинок под нагрузками различных типов и при различных краевых условиях было введено в практику судостроительного проектирования впервые при сооружении русских дредноутов ). Постановка линейного корабля в док на одном лишь вертикальном киле предъявляет высокие требования прочности и упругой устойчивости к поперечным переборкам, В связи с этим была разработана теория устойчивости пластинок, усиленных ребрами жесткости, о которой мы упоминали выше (см. стр. 495), а также поставлена серия испытаний на моделях размерами 4,5 X 2,1 м. В расчете на изгиб плоских перекрытий из соединенных между собой продольных и поперечных балок был использован метод Рэлея—Ритца ), позволивший получить для этой задачи достаточно точные решения.  [c.526]

Совершенно аналогйчно прямоугольной пластинке исследуется и вопрос об устойчивости плоской формы равновесия круглой пластинки. Кто придает большое значение точным решениям, тот в случае круглой пластинки будет чувствовать себя удовлетворенным в большей степени, чем в случае прямоугольной пластинки, так как мы можем совершенно аналогично тому, как это оказалось возможным в третьей главе при рассмотрении изгиба круглых пластинок, симметрично нагруженных силами, перпендикулярными к их поверхности, вывести сравнительно просто точное выражение для критической нагрузки. Но для практических целей это не имеет никакого значения, и потому мы предпочитаем вывести формулу для критической нагрузки круглой пластинки совершенно таким же способом, как и для прямоугольной. Для этой цели нам нужно лишь составить выражение работы деформации при изгибе для такой возможной формы изогнутой поверхности со стрелою прогиба /, которая не очень отличалась бы от получающейся при потере устойчивости плоской формы. В третьей главе такого готового выражения, мы непосредственно не имеем, так как там задачу, относящуюся к круглой пластинке, мы решали на основании диференциального уравнения упругой поверхности, а не на основании теорем о работе упругих сил. Но мы легко можем его вывести дополнительно. По формуле (103), найденной нами в 27, стрела прогиба /круглой пластинки, нагруженной в центре сосредоточенной силой Р и свободно опертой по контуру, выражается следующим образом  [c.319]

Первый достаточно общий подход к плоским задачам содержится в трактате А. Кдебша Теория упругости твердых тел S где он рассмотрел, в частности, плоскую задачу для круглой пластинки. Решение весьма интересной задачи об изгибе кривого (очерченного по дугам концентрических окружностей) бруса было дано в 1881 г. X. С. Головиным С другой стороны, еще в 1862 г. Дж. Эри обнаружил существование функции, получившей впоследствии его имя, вторые производные от которой определяют компоненты напряжений в плоской задаче при отсутствии объемных сил. Дж. Максвелл указал что эта функция удовлетворяет бигармоническому уравнению. Глубокие исследования плоских задач были проведены в 1899—1900 гг. Дж. Мичеллом который продолжил исследование Максвелла о зависимости решений от упругих констант материала и дал, в частности, решение для клина, нагруженного сосредоточенной силой в вершине.  [c.57]

Как было уже сказано в 79а, задача об изгибе пластинки под влиянием нормальной нагрузки сводится в случае, когда края пластинки заделаны, к основной бигармонической задаче, т. е. к такой же граничной задаче, что и первая основная задача плоской теории упругости, а в случае, когда края с в о б о д н ы,— к такой же задаче, чта вторая основная задача. А. И. Каландия [1] и М. М. Фридман [2] (приблизительно одновременно) показали, что случай, когда края пластинки оперты, приводит к задаче, аналогичной некоторой задаче плоской теории упругости, а именно той, которая упомянута в предыдущем пункте (см. также 128 и замечание к нему).  [c.334]

Г. Н. Савин и Н. П. Флейшман [1] рассмотрели общую задачу о подкреплении края пластинки весьма тонким стержнем переменного сечения, работающим на изгиб (при иагибе пластинок) или растяжение (в случае плоского напряженного состояния). Устанавливается некоторое прибли-я<енное условие на подкрепленном крае пластинки, обобщающее известные граничные условия основных задач плоской теории упругости и задач теории изгиба тонких пластинок.  [c.593]

Отметим прежде всего работы Б. Г, Галеркина (1932, 1935) по применению к анализу толстых плит общих решений уравнений теории упругости, выраженных через бигармонические функции, а также монографии Б. Г. Галеркина (1934) и Ю, А. Шиманского (1934), посвященные расчету пластинок разного очертания по классической теории изгиба. Метод асимптотического интегрирования для расчета оболочек вращения впервые был применен И. Я, Штаерманом (1924) он же указал на аналогию между статическими расчетами оболочки вращения и кривого (плоского) стержня на упругом основании. Решение ряда интересных задач безмоментной теории куполов дано в монографии В. Э. Новодворского (1932), с именем которого связано одно из условий применимости безмоментной теории тангенциальные краевые условия не должны допускать изгибания срединной поверхности (В. Э. Новодворский, 1933),  [c.228]

Клебш з) заимствовал из теории Геринга-Кирхгофа приближенные выводы относительно напряжений и деформаций в малой части пластинки, ограниченной вертикальными плоскими сечениями, и получил уравнения равновесия пластинки, выраженные в проекциях упругих усилий и моментов. Его уравнения распадаются на две группы одна группа содержит растягивающие и гори, зонтальные перерезывающие упругие усилия, а другая группа — упругие пары и вертикальные упругие усилия. Уравнения второй группы относятся к изгибу пластинки, и их форма такова, что если соотношения, при помощи которых упругие пары выражаются через деформацию срздней поверхности, известны, то можно определить вертикальные перерезывающие силы и получить уравнение для прогиба пластинки. Выражения для упругих пар можно получить из теории Кирхгофа. Клебш нашел решение своего уравнения для случая круглой пластинки, защемленной по краям и нагруженной произвольным образом. Кельвин и Тэт сделали невозможными какие-либо дальнейшие сомнения по поводу теории, относящейся к уравнениям равновесия, выраженным в проекциях упругих усилий и пар. Эти ученые отметили, что в случае чистого изгиба выражения для упругих пар могли бы быть получены из теории изгиба балки Сен-Венана объединение двух граничных условий Пуассона в одном условии Кирхгофа они объяснили с т чки зрения прин ципа упругой равнозначности статически эквивалентных систем нагрузок Позднейшие исследования содействовали устранению последних затруднений, связанных с теорией Кирхгофа - ). Одно из препятствий к дальнейшему прогрессу состояло в отсутствии точных решений задач об изгибе пластинок, аналогичных тем, которые были получены fH-Венаном для балок. Те немногие решения, которые были получены подтверждают основной вывод теории, который не был строго доказан, а именно, вид выражений для упругих пар через кривизну средней поверхности.  [c.41]


В работе М. П. Шереметьева [4] рассмотрена растянутая в двух направлениях бесконечная плоскость с подкрепленным отверстием. Подкрепляющее кольцо постоянного сечения принимается за плоский упругий стержень, работающий на изгиб и растяжение. Выводятся соотношения общего вида, характеризующие деформации такого стержня, после чего в соответствии с изложенной выше схемой задача ставится в терминах теории функций комплексного переменного. Полученная задача решается для случая кругового отверстия методом рядов. Следует отметить, что та же задача с той же полнотой была решена немного позже Радоком (Кас1ок [1]), который, по-видимому, не был знаком с работой М. П. Шереметьева. В другой работе М. П. Шереметьева [5] изучается изгиб бесконечной тонкой пластинки, подкрепленной кольцом постоянного сечения,  [c.592]


Смотреть страницы где упоминается термин Плоская задача теории упругости. Изгиб пластинок : [c.304]    [c.292]    [c.243]   
Смотреть главы в:

Методы математической теории упругости  -> Плоская задача теории упругости. Изгиб пластинок



ПОИСК



336 —-задачи об изгибе с задачей

350 — Упругость при изгибе

Задача упругости

Задачи теории упругости

Задачи теории упругости плоская

Изгиб пластинки

Изгиб плоский

Пластинка упругая

Пластинки Теория

Плоская задача

Плоская задача и задача изгиба пластинок

Теории Задача плоская

Теория изгиба

Теория пластинок с.и. пластинки

Теория упругости

Упругость Теория — см Теория упругости



© 2025 Mash-xxl.info Реклама на сайте