Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Плоская задача и задача изгиба пластинок

ПЛОСКАЯ ЗАДАЧА И ЗАДАЧА ИЗГИБА ПЛАСТИНОК  [c.273]

Плоская задача и задача изгиба пластинок  [c.273]

Из изложенного следует, что между плоской задачей и задачей изгиба пластинок имеет место полная аналогия — и та и другая сводятся к бигармонической проблеме. В еще большей степени эта аналогия проявляется при обращении к аппарату комплексного переменного ( 2 гл. V). В этом случае имеет место и аналогия для краевых условий.  [c.283]


В библиотеку включены следующие конечные элементы плоские и пространственные стержни с различными вариантами прикрепления к узлам (жесткое, шарнирное, упругое) прямоугольные и треугольные плоские элементы для решения плоской задачи и задачи изгиба пластинок, эти же элементы используются и для расчета оболочек объемный элемент в виде параллелепипеда.  [c.197]

Система дифференциальных уравнений (10.47) обобщает две задачи теории упругости плоскую задачу и задачу об изгибе пластинки. Действительно, полагая главные кривизны оболочки равными нулю, получаем V = О, а система распадается на два независимых уравнения  [c.213]

В пятой главе описаны слоистые упругие трансверсально изотропные пластинки, имеющие симметричное относительно срединной плоскости строение пакета слоев. Выбор срединной плоскости в качестве плоскости приведения позволил отделить уравнения плоской задачи теории упругости от уравнений изгиба пластинки, которые и явились предметом исследования. Найден широкий класс решений этих уравнений, что позволило, в частности, решить задачу изгиба круговой пластинки, несущей поперечную нагрузку. В качестве примера рассмотрена задача осесимметричного деформирования круговой пластинки. Выполненное исследование, включающее в себя вычисление разрушающей, интенсивности нагрузки, определение механизма возникновения разрушения и определение зоны его инициирования, выявило принципиальную необходимость учета влияния поперечных сдвиговых деформаций на расчетные характеристики напряженно-деформированного состояния для пластин с существенно различными жесткостями слоев. Решена задача устойчивости пластинки, нагруженной силами, действующими в ее плоскости. Составлены общие уравнения устойчивости и подробно исследован тот случай, когда тензор докритических усилий круговой. Для этого случая найден широкий класс решений уравнений устойчивости. В качестве примера дано решение задачи устойчивости круговой пластинки, нагруженной равномерно распределенным по контуру сжимающим радиальным усилием. Эта же задача решена еще и на основе других неклассических уравнений, приведенных в третьей главе, а также на основе уравнений трехмерной теории устойчивости. Выполнен параметрический анализ полученных решений, что позволило указать границы применимости рассматриваемых уточненных теорий, оценить характер и степень влияния поперечных сдвиговых деформаций и обжатия нормали на критические интенсивности сжимающего усилия. Полученные результаты приводят к выводу о пригодности разработанных в настоящей моно-  [c.13]


Принцип Сен-Венана кроме задач кручения и изгиба используется также при построении теории для плоского напряженного состояния (см. 4), когда для пластинки распределение нагружения по боковой поверхности не учитывается, а сводится к результирующим характеристикам. Другой подход имеет место в задачах изгиба пластинок (и, более того, в теории оболочек). Здесь игнорирование распределения напряжений является следствием гипотез, положенных в основу той или иной теории (как, например, для гипотезы прямых нормалей). В этом случае краевые условия в напряжениях сводятся к изгибающим моментам, крутящему моменту и перерезывающим силам.  [c.265]

Плоская задача и пластинка при поперечном изгибе при заданных нагрузках и температурах Две геометрически подобных сетки, соединенных в узлах высокоомными сопротивлениями Непосредственно и подбором Потенциалы в узлах сетки 2-5  [c.599]

Плоская задача и расчет пластинок на изгиб. Задачи решают но заданным нагрузкам, массовым силам и распределениям температур граничные условия заданы в виде нагрузок или перемеш,е-ний [13], [32], [83], [84].  [c.605]

Затем, представляет интерес электрическая аналогия, которая дает возможность исследования напряжений от кручения в валах переменного диаметра в выкружках и выточках. Аналогия между задачей изгиба пластинок и плоской задачей теории упругости также с успехом может быть использована при решении существенных задач техники.  [c.4]

Система дифференциальных уравнений (10.54) обобщает две задачи теории упругости задачу об изгибе пластинки и плоскую задачу. Действительно, полагая главные кривизны оболочки равными нулю, получаем  [c.251]

Самой сильной в смысле влияния на упрощение расчета является гипотеза о характере перемещений или деформаций, когда пренебрегают второстепенными особенностями в кинематической картине рассматриваемого явления. В каждой характерной задаче такая кинематическая гипотеза формулируется особо. Так, при изгибе балок имеется закон плоских сечений, при изгибе пластинок средней толщины и тонких оболочек — гипотеза прямых нормалей, т. е. предположение, что совокупность точек, лежавших до деформации пластинки на какой-либо прямой, нормальной к упругой срединной плоскости, остается на прямой, нормальной к упругой поверхности деформированной пластинки.  [c.132]

Вначале на пленку 3 фотографируется отражение растра от ненагруженной пластинки (сетка-свидетель). При нагружении пластинка 4 изгибается и нормали Л/ к ее поверхности (как и касательные к ней) во всех точках отклоняются. Отражение растра становится искаженным. Оно фотографируется снова на ту же пленку 3. После проявления негатива получается совмещение полосок свидетеля с искаженными от изгиба пластинки полосками растра, что и дает муаровую картину. Но она получается иначе и от других деформаций, нежели в случае плоской задачи (работа 28).  [c.147]

В заключение рассмотрим с точки зрения статико-геометрической аналогии предельный случай, когда оболочка превращается в пластинку. Тогда в уравнениях теории оболочек надо положить Ri = R.j. = оо, и оболочки, как будет показано в 10.20, распадутся на две самостоятельные системы. Одна из них представляет собой уравнения изгиба пластинок, а другая — уравнения обобщенного плоского напряженного состояния, для которых роль функции Эри играет функция напряжений с. Статико-геометрическая аналогия в этом случае объясняет хорошо известный факт, что для функции Эри в плоской задаче и для нормального прогиба в теории изгиба пластинок получается одинаковое уравнение (бигармоническое).  [c.78]

Итак, система уравнений статики слоистой пластинки симметричного строения распалась на две независимые системы систему уравнений плоской задачи теории упругости и систему уравнений изгиба. Первая из них хорошо изучена [188] и здесь рассматриваться не будет. Обращаясь к системе уравнений изгиба  [c.133]


Применение энергетического метода. Энергетический метод, примененный нами ранее при исследовании изгиба пластинки поперечной нагрузкой (см. 80, стр. 380), может быть также использован и в тех случаях, когда поперечная нагрузка сочетается с силами, действующими в срединной плоскости пластинки. Чтобы вывести выражение для энергии деформации, соответствующей этим последним силам, положим, что силы эти приложены сначала к неизогнутой пластинке. Таким путем мы придем к плоской задаче, допускающей  [c.426]

Плодотворное использование теории функций комплексного переменного для исследования плоской задачи теории упругости, а также в теории кручения и изгиба упругих стержней. В дальнейшем эти методы оказались полезными для теории пластинок и оболочек и осесимметричных, а также контактных задач теории упругости. Они нашли успешное применение для решения некоторых упруго-пластических задач, задач вязкоупругости и др.  [c.245]

Из трех рассматриваемых проблем задача об изгибе пластинок является наиболее важной по сравнению с задачей-о плоском напряженном состоянии. Для малых перемещений в случае исследования колебаний и изгиба пластинок от действия распределенной по поверхности поперечной нагрузки можно учитывать только изгибные напряжения, в то время как при исследовании устойчивости пластинок учитываются как изгиб, так и плоское напряженное состояние. Исследование устойчивости сплошных пластинок в ряде случаев может быть выполнено с учетом только изгиба, а для пластинок с вырезами для достаточно точного определения критических нагрузок необходимо рассматривать как тангенциальные, так и изгибные напряжения, хотя изгиб по-прежнему является определяющим фактором.  [c.192]

Как известно, задачи об изгибе и плоском напряженном состоянии для сплошных пластинок весьма похожи. Поскольку дифференциальное уравнение для плоского напряженного состояния и однородная часть в уравнении для изгиба при действии распределенной по поверхности поперечной нагрузки идентичны, то для соответствующих граничных условий их решения будут одинаковыми. Например, задача Тимошенко о плоском напряженном состоянии прямоугольной пластинки при действии в ее плоскости нагрузки [1]. распределенной по параболическому закону, аналогична задаче об изгибе защемленной прямоугольной пластинки от действия равномерно распределенной по поверхности поперечной нагрузки [2]. В работе [2] при исследовании пластинок с одним или несколькими вырезами наибольшее внимание было уделено определению плоского напряженного состояния, а не изгиба пластинок. Трудность решения задач второго класса зачастую обусловливается требованием удовлетворения граничным условиям на краях вырезов.  [c.192]

Например, для свободного выреза граничные условия в случае плоского напряженного состояния имеют более простой вид, чем при изгибе. Кроме того, во многих случаях при плоском напряженном состоянии с достаточной степенью точности пластинку можно рассматривать бесконечной или полу-бесконечной. С другой стороны, при исследовании изгиба обычно достаточно определить только общую жесткость системы без определения концентрации напряжений. Поэтому если сравнивать задачи об определении концентрации напряжений при плоском напряженном состоянии и определении общей жесткости при исследовании устойчивости и динамических характеристик пластинки, то задачи первого класса обычно бывают более трудными.  [c.193]

В настоящей работе изложены различные методы получения численных решений желаемой точности для задач изгиба, но аналогичные общие процедуры решения могут быть применены, как правило, с меньшими трудностями и при исследовании плоского напряженного состояния. Хотя в работе будут рассматриваться только однородные изотропные пластинки при малых перемещениях, используемые методы могут иметь более широкое применение. Из всех методов, которые могли бы быть применены в решении рассматриваемых задач, детально будут обсуждаться только два.  [c.193]

Мы получили ряд решений плоской задачи для случая пластинки, ограниченной прямоугольным контуром. Каждому найденному решению соответствуют вполне определенные условия закрепления и вполне определенное распределение усилий по контуру. Например, в случае изгиба балки силой, приложенной на конце, мы предполагали закрепление одной точки и одного линейного элемента, проходящего через эту точку на левом конце балки, и нашли распределение напряжений в том предположении, что касательные усилия, приложенные к правому концу балки, изменяются по высоте балки по параболическому закону. Если способ закрепления балки будет отличаться от принятого нами или изгибающая сила Q будет распределена по какому-либо иному закону, то полученное нами решение не будет точным решением соответствующей задачи теории упругости. Однако во многих технически важных задачах им можно будет пользоваться для приближенного определения напряжений. Например, его можно применить к тому случаю, когда все точки опорного сечения балки закреплены и сила Q распределена любым образом по плоскости нагруженного концевого сечения балки. При этом погрешности будут тем меньше, чем меньше высота балки по сравнению с ее пролетом.  [c.83]

Заметим, что распределение напряжений для рассматриваемого случая изгиба прямоугольной пластинки сосредоточенной силой можно получить при помощи общего решения плоской задачи для полосы ( 35) следующим образом. Исходим из решения (72), полученного для пластинки бесконечно больших размеров. Этому решению соответствует вполне определенное распределение-касательных и нормальных напряжений по СО (рис. 45) и по концевым поперечным сечениям пластинки. Приложим теперь по СО усилия, равные и пряма  [c.111]


Первые два уравнения системы (202) связывают между собой силы, лежащие в срединной плоскости пластинки. Это те самые уравнения, с которыми мы имели дело при решении плоской задачи (см. ч. 1). Соответствующие им деформации не сопровождаются искривлением срединной плоскости пластинки. Изгиб пластинки определяется величинами, входящими в третье из уравнений (202) и в уравнения. (203).  [c.380]

Таким образом, все силы разделились на две группы. Первой группе соответствуют деформации в плоскости пластинки, второй — изгиб пластинки. Каждая группа уравнений решается особо и полные напряжения получатся путем сложения напряжений соответствующей плоской задачи с напряжениями изгиба. Такое разделение уравнений на две группы явилось следствием того, что мы при составлении уравнений равновесия пренебрегали теми изменениями в направлениях сил Т ,. .., которые являются следствием изгиба пластинки. В дальнейшем мы учтем это обстоятельство и выясним влияние сил и  [c.380]

Имеет место замечательная аналогия между теорией плоского установившегося движения вязкой жидкости и теорией изгиба упругой пластинки >). Если W обозначает нормальное смещение в последней названной задаче, то имеем )  [c.762]

Глава II. Плоская задача. Общие формулы и простейшие приложения. Здесь на 100 страницах изложены как постановка плоской задачи, так и главные методы решения ее. Решение достигается при помощи функции напряжений и комплексного представления ее, причем сперва излагается общая теория методов, а затем они развиваются практически на ряде примеров. Из этих примеров отметим а) растяжение пластинки, ослабленной круговым отверстием б) действие сосредоточенной силы, приложенной в точке неограниченной плоскости в) действие сосредоточенной пары г) рассмотрение напряжений в кольце, вызываемых заданными силами д) изгиб кругового бруса е) общая теория температурных деформаций и вызываемых ими напряжений.  [c.9]

В последние годы появились работы [2.66—2.69] и [3.14, 3.16, 3.36], свидетельствующие об интенсивных разработках, проводимых А. С. Космодамианским и его сотрудниками в области многосвязных и периодических задач растяжения и изгиба пластин в различных аспектах. В частности, здесь рассмотрена периодическая плоская задача для внешности подкрепленных [2.67] и не подкрепленных [3.14] эллиптических отверстий, упругое равновесие плоскости с периодической системой упругих ) включений [3.15] и т. д. В статье [3.36] рассмотрена периодическая задача о растяжении изотропной пластинки с квадратными вы-peзa пl, подкрепленными жесткими кольцами. В работе [2.66] доказывается квазирегулярность систем алгебраических уравнений, получаемых при рассмотрении напряженного состояния  [c.266]

В 4 гл. Ш указывалось, что задача изгиба пластинок сводится к решению, вообще говоря, неоднородного бигармониче-ского уравнения. Если тем или иным путем найдено частное решение неоднородного уравнения, то приходим к решению уже однородного уравнения. Аппарат комплексного переменного, естественно, полезно привлечь для решения соответствующих краевых задач. Приведем необходимые формулы (их вывод практически аналогичен соответствующим построениям в плоской задаче). Для силовых параметров Мх, Му, Мг, Qx и Qy имеют место формулы  [c.377]

Далее представляет интерес электроаналогия, которая дает способ исследования напряжений при кручении в валах переменного диаметра у закруглений и вырезов. Аналогия между задачей изгиба пластинок и плоской задачей теории упругости также может с успехом использоваться при решении важных технических задач.  [c.16]

Смешанные задачи плоской теории упругости и теории изгиба пластинок. Как было уже упомянуто в 103 настоящей книги, Д. И. Шерман [17] дал способ решения основной смешанной плоской задачи теории упругости для многосвязной области. Г. Ф. Манджавидзе [1, 2] подробно исследовал сингулярное интегральное уравнение Д. И. Шермана, построенное для решения указанной задачи. Это же уравнение позволило Г. Ф. Манджавидзе [2] решить смешанную задачу изгиба нормально нагруженной тонкой изотропной пластинки, когда часть края пластинки заделана, а остальная — свободна. Если область, занятую пластинкой, можно отобразить конформно на круг при помощи полинома, то эту задачу, как и основную смешанную задачу (см. 127), можно решить эффективно. Это сделано в статьях М. Е. Карапетяна [1] и Станеску (Stanes u [1]).  [c.600]

Поскольку по граничным значениям функции ш и ее нормальной производной всегда можно найти граничные значения частных производных этой функции ио X ж у, задача I об изгибе пластинки вполне равносильна первой основной задаче плоской теории упругости граничные условия задачи I в точности совпада)ют с условием (5.4), без какого-нибудь произвола в задании правой части последнего.  [c.44]

Неортогональные системы функций были получены П. Ф. Папковнчем при исследовании плоской задачи теории упругости и задачи об изгибе пластинки [78, 79]. Дальнейшее исследование функций Папковича и формальное обоснование полученного им решения содержится в работах [49, 82].  [c.121]

Этот результат представляет собой случай изгиба пластинок, исиользоваиный впоследствии А. Надаи для экспериментального подтверждения приближенной теории изгиба ), предложенной Кирхгоффом. О другой интересной краевой задаче упоминается н Натуральной философии Томсона—Тэйта. Здесь сообщается по этому поводу До сих пор, к сожалению, математикам не удалось решить, а возможно, что они даже и не пытались решать, прекрасную задачу об изгибании широкой, весьма тонкой полосы (подобной, например, часовой пружине) в круговое кольцо ). Лэмб исследовал антикластический изгиб по краю тонкой полосы ) и достиг большого прогресса в решении задачи о балке ). Рассматривая бесконечно длинную балку узкого прямоугольного сечения, нагруженную через равные интервалы равными сосредоточенными силами, действующими поочередно вверх и вниз, он упростил решение двумерной задачи а для некоторых случаев получил уравнения кривых прогиба. Таким путем было показано, что элементарная теория изгиба Бернулли достаточно точна, если высота сечения балки мала в сравнении с ее длиной. При этом было также показано, что поправка на поперечную силу, даваемая элементарной теорией Рэнкина и Грасхофа, несколько преувеличена и должна быть снижена до 75% от рекомендуемого этой теорией значения. Надлежит упомянуть также и о труде Лэмба, посвященном теории колебаний упругих сфер ) и распространению упругих волн по поверхности полубесконечного тела ), а также в теле, ограниченном двумя плоскими гранями ). Он изложил также и теорию колебаний естественно искривленного стержня ). Особый интерес для инженеров представляет его и Р. В. Саусвелла трактовка колебаний круглого диска ).  [c.407]

Соотношения между изгибающими момеитамя и кривизнами при чистом изгибе пластинки. Точное решение задачи о распределении напряжений в случае чистого изгиба призматического стержня получается на основе той гипотезы, что поперечные сечения стержня остаются во время изгиба плоскими и лишь поворачиваются  [c.50]


В основном, добавления и некоторые более серьезные исправления текста выносились в форме примечаний. Так, например, в задаче о кручении круглого кольца с тонкий стенкой постоянной толщины (стр. 94), в задачах об устойчивости круглой пластинки, об устойчивости плоской формы изгиба двутавровых балок и др., изменения вынесены из текста. Лишь в двух случаях в 72 о кручении многосвязных тонкостенных контуров и в 74 о точном решении задачи о кручении секториального сечения, изменения сделаны в самом тексте с соответственными оговорками. При этом в последней задаче (в 74), в целях придания большей строгости изложению работы академика А. Н. Динника, сделанному авторами книги, нам пришлось переработать большую часть этого параграфа, дополнив его также некоторыми но ыми результатами, полученными В. С. Лысковым. Мы стремились также по возможности держаться блйже к оригинальному тексту и ближе передать самый характер его.  [c.6]

Совершенно аналогйчно прямоугольной пластинке исследуется и вопрос об устойчивости плоской формы равновесия круглой пластинки. Кто придает большое значение точным решениям, тот в случае круглой пластинки будет чувствовать себя удовлетворенным в большей степени, чем в случае прямоугольной пластинки, так как мы можем совершенно аналогично тому, как это оказалось возможным в третьей главе при рассмотрении изгиба круглых пластинок, симметрично нагруженных силами, перпендикулярными к их поверхности, вывести сравнительно просто точное выражение для критической нагрузки. Но для практических целей это не имеет никакого значения, и потому мы предпочитаем вывести формулу для критической нагрузки круглой пластинки совершенно таким же способом, как и для прямоугольной. Для этой цели нам нужно лишь составить выражение работы деформации при изгибе для такой возможной формы изогнутой поверхности со стрелою прогиба /, которая не очень отличалась бы от получающейся при потере устойчивости плоской формы. В третьей главе такого готового выражения, мы непосредственно не имеем, так как там задачу, относящуюся к круглой пластинке, мы решали на основании диференциального уравнения упругой поверхности, а не на основании теорем о работе упругих сил. Но мы легко можем его вывести дополнительно. По формуле (103), найденной нами в 27, стрела прогиба /круглой пластинки, нагруженной в центре сосредоточенной силой Р и свободно опертой по контуру, выражается следующим образом  [c.319]

Первый достаточно общий подход к плоским задачам содержится в трактате А. Кдебша Теория упругости твердых тел S где он рассмотрел, в частности, плоскую задачу для круглой пластинки. Решение весьма интересной задачи об изгибе кривого (очерченного по дугам концентрических окружностей) бруса было дано в 1881 г. X. С. Головиным С другой стороны, еще в 1862 г. Дж. Эри обнаружил существование функции, получившей впоследствии его имя, вторые производные от которой определяют компоненты напряжений в плоской задаче при отсутствии объемных сил. Дж. Максвелл указал что эта функция удовлетворяет бигармоническому уравнению. Глубокие исследования плоских задач были проведены в 1899—1900 гг. Дж. Мичеллом который продолжил исследование Максвелла о зависимости решений от упругих констант материала и дал, в частности, решение для клина, нагруженного сосредоточенной силой в вершине.  [c.57]


Смотреть страницы где упоминается термин Плоская задача и задача изгиба пластинок : [c.46]    [c.243]    [c.304]    [c.62]    [c.311]    [c.292]   
Смотреть главы в:

Методы математической теории упругости  -> Плоская задача и задача изгиба пластинок



ПОИСК



336 —-задачи об изгибе с задачей

Задачи устойчивости (устойчивость пластинок, устойчивость плоской формы изгиба)

Изгиб пластинки

Изгиб плоский

Плоская задача

Плоская задача теории упругости. Изгиб пластинок



© 2025 Mash-xxl.info Реклама на сайте