Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Система Гармонический анализ

Гармоники системы (первая, вторая,. . . ) 371 Гармонический анализ 74 Гармоническое движение 23, 32, 34 Гаусс 129, 131, 132, 133 Географическая широта 119, 159 Геодезическая линия 145, 340  [c.426]

Зная I и т], можно произвести гармонический анализ нагрузки, т. е. системы векторов тпф , разложив ее на группы,  [c.246]

Основное различие между гармоническим анализом и методами численного интегрирования заключается в том, что в первом периодичность решения используется для получения информации о движении системы в моменты времени до и после ij3 , тогда как в последних такая информация доступна лишь для предшествующих моментов времени. Отсюда следует, что проблемы точности и сходимости при определении переходных процессов более трудны, чем при получении периодического решения методом гармонического анализа. Преимущества методов Рунге — Кутта и прогнозирования с пересчетом объясняются использованием в них оценок движения не только при i )n, но и при г Зп+1. Объем вычислений часто может быть сокращен путем уменьшения частоты коррекции по некоторым параметрам (например, учет неравномерности поля индуктивных скоростей) при сохранении требуемой точности.  [c.698]


Критерий устойчивости А. В. Михайлова, основанный на применении методов гармонического анализа, по которому об устойчивости системы п-го порядка судят по характеристической кривой, полученной соединением плавной кривой всех концов вектора F (/<м) при различных значениях со, причем  [c.98]

При проектировании систем автоматического управления процессом обработки на металлорежущих станках система СПИД, являющаяся объектом управления, может быть представлена как некоторый комплекс типовых динамических звеньев, соединенных по той или иной схеме. Такое представление системы СПИД облегчает расчет системы автоматического управления в целом при использовании метода гармонического анализа для определения запаса устойчивости, синтеза системы, оценки качества переходного процесса. Опыт показывает, что, даже несмотря на целый ряд допущений, сделанных при аналитическом определении динамики системы СПИД, существенного искажения картины протекания переходных процессов при резании не наблюдается.  [c.435]

Для исследования процессов, протекающих при трении, применялся гармонический анализ спектра колебаний силы трения [30]. Было показано, что характеристики спектра колебаний зависят от процессов, возникающих на рабочих поверхностях при трении. Получаемая информация содержала также автоколебательные процессы в системе, зависящие от амплитудно-частотных характеристик. Чем шире диапазон частот.  [c.106]

Опирание фундамента на соседнее перекрытие вызвало повышение горизонтальной жесткости колебательной системы. Собственные частоты горизонтальных колебаний значительно возросли, явления резонанса со второй гармоникой возмущающих сил исчезли и влияние этих сил стало второстепенным, так как они много меньше, чем инерционные силы первой гармоники. Однако в противоположность приведенным рассуждениям по полученным осциллограммам горизонтальных колебаний в продольном направлении точек, расположенных на верхнем обрезе фундамента, создавалось впечатление, что колебания с частотой второй гармоники по прежнему преобладают. После проведения гармонического анализа записанных колебаний было получено отношение амплитуд первой и второй гармоник — 2 5. Это кажущееся противоречие было устранено после внимательного изучения параметров измерительной аппаратуры вторая гармоника потому так сильно проявлялась в записи, что ее частота находилась в непосредственной близости с частотой собственных колебаний измерительного тракта и, следовательно, коэффициент увеличения для нее был особенно высок. После установления действительных коэффициентов увеличения для каждой частоты оказалось, как и следовало ожидать, что главное значение имеют колебания с частотой первой гармоники.  [c.384]


Общая формулировка метода. Одним из основных аспектов приложения теоретико-группового подхода к изучению динамических систем является метод гармонического анализа на группе (или на однородном пространстве с данной группой движения). В качестве обобщения классического анализа Фурье он оказывается особенно полезным и эффективным применительно к квантовым системам, у которых основными объектами выступают волновые функции и разложения по ним. Эти функции задаются на группе С (или на однородном пространстве),  [c.101]

ГАРМОНИЧЕСКИМ АНАЛИЗ СИСТЕМЫ.  [c.65]

Целью гармонического анализа является определение резонансных частот и изучение динамического отклика системы на действие периодических нагрузок. Определение резонансных частот производится на основе анализа резонансной диаграммы амплитуда-частота.  [c.65]

Ф ( ), О <С t а Т, воздействующий на механическую колебательную систему. Детальный анализ такой задачи сложен и мало надежен, так как требует учета люфтов и нелинейного характера потерь, т. е. введения ряда параметров, которые априорно неизвестны и подлежат экспериментальному определению. К тому же временная зависимость должна быть такой, чтобы не только обеспечить необходимое уменьшение амплитуды колебаний, но и позволить простую реализацию ее в системе управления. Это указывает на целесообразность применения гармонического анализа, основанного на аппроксимации механической колебательной системы упрощенной эквивалентной системой, передаточная функция которой вычисляется по амплитудно-частотной характеристике координаты, полученной экспериментально (рис. 45). При этом нелинейные эффекты будут учтены, поскольку измерения дают эквивалентную гармоническую функцию что касается фазовой информации, которая теряется, и неучитываемых высших гармоник, то ни первый, ни второй фактор в нашем случае несуществен, так как обратных связей по рабочему органу в промышленном роботе нет.  [c.103]

Получение АЧХ и ФЧХ возможно на основе уравнений, сформированных для анализа объекта во временной области, т. е. ММС в виде системы дифференциальных уравнений, при подаче на вход объекта гармонического воздействия. Но такой подход связан с большими затратами машинного времени, поскольку необходимо решать ММС для ряда частот входного воздействия из заданного частотного диапазона. Поэтому для получения АЧХ и ФЧХ разрабатываются специальные модели и методы.  [c.140]

В этой вводной главе прежде всего необходимо ввести основные определения и охарактеризовать свойства рассматриваемых волн оптического диапазона. Изложение начинается с анализа уравнений Максвелла и вытекающего из них волнового уравнения. При этом отмечается, что система уравнений Максвелла является следствием законов электрического и магнитного полей, обобщенных и дополненных гениальным создателем этой теории. Таким образом, сразу вводится понятие электромагнитной волны, возникающей в качестве решения волнового уравнения, и проводится рассмотрение ее свойств. При этом выявляется кажущееся противоречие между результатами экспериментальных исследований и решением волнового уравнения в виде монохроматических плоских волн. Данная ситуация может быть понята с привлечением принципа суперпозиции и спектрального разложения, базирующегося на теореме Фурье. В рамках этих представлений можно истолковать особенности распространения свободных волн в различных средах и определить понятия энергии и импульса электромагнитной волны, формулируя соответствующие законы сохранения. Рассмотрение излучения гармонического осциллятора, которым заканчивается глава, позволяет принять механизм возникновения излучения, облегчает модельные представления о законах его распространения и открывает возможность рассмотрения более сложных условий эксперимента, которое проводится в последующих главах.  [c.15]

Наличие на фазовой плоскости замкнутых фазовых траекторий (например, эллипсов в окрестностях рассмотренной особой точки) указывает на существование периодических движений. Из нашего анализа следует, что в окрестностях особой точки, отвечающей минимуму потенциальной энергии, происходят периодические движения с эллиптическими фазовыми траекториями, соответствующими гармоническим колебаниям. Реальное движение тем ближе к гармоническому, чем меньше превышение запаса энергии системы над запасом энергии в точке равновесия, т. е. чем меньше величина Л —Л . В системах, в которых потенциальная функция  [c.19]


Метод медленно меняющихся амплитуд является весьма мощным средством анализа движений в исследуемых системах, обладает большой общностью, может давать непрерывное решение для любых временных интервалов и позволяет изучать общие свойства движений, процессы установления и стационарные режимы, но в полной мере применим лишь к ограниченному (правда широкому и весьма важному) классу колебательных систем, а именно, к системам с малой диссипацией и малой нелинейностью, в которых колебания мало отличаются от гармонических.  [c.46]

С учетом всех этих оговорок можно сформулировать задачу следующим образом требуется найти параметры (амплитуду и фазу) приближенно гармонического колебания, возбуждаемого в слабо нелинейной колебательной системе с малым затуханием, при заданной гармонической внешней силе. С подобной задачей мы встречаемся не только при рассмотрении механических систем, но и при анализе различных колебательных цепей в радиотехнических устройствах при наличии нелинейных диссипативных элементов (полупроводниковые приборы, радиолампы), а также при использовании ферромагнитных или сегнетоэлектрических материалов в катушках индуктивности и конденсаторах этих цепей.  [c.113]

Рассмотрим колебания массы, соединенной упругой связью с неподвижной опорой. При движении массы, кроме упругих сил, могут возникать силы вязкого сопротивления, пропорциональные скорости массы или скорости деформации упругой связи. Хотя решение этой задачи излагается во всех курсах теории колебаний, используем его с целью введения основной терминологии и анализа физических закономерностей, присущих также и сложным колебательным системам. Уравнение движения при возбуждении массы гармонической силой с амплитудой имеет вид  [c.18]

Нагруженное зубчатое соединение создает в системе нелинейности, которые вызывают негармонические колебания элементов муфты при возбуждении ее гармонической силой. При увеличении силы возбуждения до 0,5 кгс смещения изменяются непропорционально силе, а разности отношений сил и смещений достигают примерно 39%. Спектральный анализ ускорений, возбуждаемых гармонической силой на частоте 340 Гц, показывает, что амплитуды ускорений первой, второй и даже третьей гармоник соизмеримы (рис. 36).  [c.87]

В гл. 1 уже обсуждались некоторые способы исследования динамических перемещений конструкции. Здесь сначала будет довольно подробно рассмотрена простейшая конструкция с демпфированием, а именно системы с одной степенью свободы, различными вариантами демпфирования и различными типами возмущающих воздействий. Поскольку демпфирование лишь изредка можно измерять непосредственно п оценивать его приходится по параметрам динамического отклика, определяемым в экспериментах (например, по динамическим перемещениям или ускорениям), то отсюда следует, что необходимо извлечь максимум информации из анализа динамических перемещений системы с одной степенью свободы с демпфированием. Полученные таким путем сведения можно с успехом применять для существенно более сложных систем. Кроме того, изучение простых гармонических колебаний при установившемся состоянии важно не только потому, что многие проблемы, возникающие  [c.136]

Система уравнений (334) и (341) с граничными условиями у = О, ы = и = О, Т — Тд-, у — оо, ы = О, Г = Тех, будет определять поведение ламинарного пограничного слоя на вертикальной пластине при поперечных гармонических колебаниях последней в условиях естественной конвекции. Анализ уравнения (341) показывает, что в отличие от стационарного случая движение жидкости в пограничном слое происходит как под действием сил, обусловленных полем земного притяжения, так и под действием подъемных массовых сил, вызванных колебаниями [первый. член в правой части уравнения (341)].  [c.151]

Возникающие при работе рассматриваемой системы автоколебания значительно отличаются от гармонических и имеют вид почти разрывных колебаний силы, действующие в системе, изменяются во времени настолько быстро, что при анализе явлений справедливо изменение скоростей считать скачкообразным.  [c.338]

СТИНЫ экрана при измерении фаз. После фильтра сигнал, проходя усиление и ограничение, поступает на частотомер, по которому можно делать непосредственный отсчет-частоты. Специально устроенная система четырех фильтров позволяет в диапазоне 1 200— 12 000 об1мин выделить основную гармонику, а также низкочастотные составляющие, что в некоторых случаях позволяет производить гармонический анализ измеряемой вибрации.  [c.22]

Крутильные колебания системы коленчатого вала, происходя- щпе под действием момента М, можно рассматривать как сул лг. гармонических крутильных колебаний, возникающих под действием отдельных гармоник. Процесс разложения сложной кривой мо асн-та М на гар.мон 1ческие составляющие называют гармоническим анализом. Для четырехтактного двигателя периодом изменения Г ь рутящего момента М является время двух оборотов коленчатого вала. При средней угловой скорости вращения коленчатого вала (и = лл/30 j eK получаем [сек)  [c.81]

Исследование напряжений второго рода и определение размеров областей когерентного рассеяния при износе роликов проведены методом гармонического анализа кривых интенсивности интерференционных линий рентгенограмм [8, 9]. Исследовались ролики из стали 18ХВНА. Рент-генографировались те же образцы, на которых определялись величины износа, микротвердость и изменение фазового состава при изнашивании. Исследования проводились на острофокусной трубке системы Б. Я. Пинаса.  [c.141]


Д Ж. Г. Дарвин, Приливы и родственные им явления в солнечной системе, перев. с англ., Наука , 1965. Популярная классическая книга, написанная в 1898 г. Увлекательное описание сейш в Женевском озере, приливного бора , методов гармонического анализа приливов и вопросов космологии, связанных с явлением приливов.  [c.520]

Таким образом, для эффективного использования в приложениях метода гармонического анализа необходимо знать в явном виде основные ингредиенты формул (5.1) — (5.4), т. е. матричные элементы конечных преобразований основных серий унитарных представлений О, инвариантную меру Хаара на Ь и меру Планшереля. В ряде случаев для информации об отдельных свойствах физической системы оказывается достаточной формулировка метода, в которой зависимость от квантовых чисел Ж) просу.ммирована, в частности, — спектральный состав разложения единицы , т. е. (5.3) в виде  [c.103]

С точки зрения космогонии важно как можно дета.пьнее описать такой путь развития. Было бы интересно, конечно, представить эту эволюционную проблему как можно полнее, но литература по этому предмету очень разнообразна и, к тому же, носит в основном исследовательский характер. Поэтому едва ли в одном отдельном издании можно осветить эту задачу во всей полноте. П всё-таки имеет смысл дать полное математическое описание тех частей предмета, которые необходимы для обоснования достоверности упомянутой выше эволюции. Для этого сначала мы рассмотрим проблему устойчивости с главным акцентом на вращающиеся системы. За этим следует обсуждение сферических, сфероидальных и эллипсоидальных фигур равновесия и тех их свойств, которые можно вывести с помощью простых методов динамической теории. Далее мы излагаем элементы эллипсоидального гармонического анализа и доказываем некоторые важнейшие свойства функций Ламэ. Затем, используя этот математический аппарат, перейдём к изложению результатов исследования Пуанкаре вековой устойчивости последовательностей Маклорена и Якоби. После этого мы уделим внимание исследованию Картаном обыкновенной устойчивости эллипсоидов Якоби. В заключении рассматриваются этапы эволюции системы и обсуждаются возможные применения в космогонии.  [c.20]

Величине У можно дать либо одно основное значение, по которому оценивается качество изучаемой оптической системы, либо ряд значений, позволяющий строить ЧКХ для большого диапазона частот. В последнем случае может оказаться выгодным использование приема, занмствованиого нз гармонического анализа и  [c.648]

В общем виде анализ процессов затруднен сложностью корректного представления подматриц 2(+ .) и 2( + ), характеризующих в 2 есим взаимодействие полей прямого и обратного вращения и подматриц вида 2 , выражающих взаимное влияние гармонических питания А -го и н-го порядка в нелинейной системе ЭД. Однако при линеаризации ЭД, полагая, что он сам по себе не генерирует высших гармонических, можно считать, что матрицы вида 2 " обращаются в нулевые, и тогда кесин преобразуется в диагональную матрицу, отражающую возможность независимого рассмотрения влияния каждой к-й гармонической. Это позволяет применить принцип суперпозиции.  [c.109]

Важной практической задачей является разработка алгоритмов анализа электромеханических объектов с учетом возможной несинусоидаль-ности и несимметрии питающего напряжения. Как было показано в 5.1, исследование несинусоидальности может быть проведено на основе гармонического метода. При этом несинусоидальное напряжение может быть разложено в ряд Фурье по тригонометрической системе функций, и расчет показателей производится по каждой гармонической составляющей. Анализ несимметричных режимов проводится методом симметричных составляющих, в соответствии с которым несимметричная система векторов разлагается на симметричные системы прямой, обратной и нулевой последовательностей. Расчет показателей также производится по каждой составляющей независимо.  [c.237]

Искомые переменные системы уравнений - это элементы вектора узловых перемещений П, которые в любой момент времени должны удовлетворять условиям равновесия системы при наличии сил инерции и рассеяния энергии. Решение этой системы уравнений вьшолняется либо прямым методом Ньюмарка, либо методом суперпозиции форм колебаний. К такому типу анализа относятся динамика переходных процессов, модальный анализ, отклик на гармоническое воздействие, спектральный анализ и отклик на случайную вибрацию.  [c.59]

Схемотехническое проектирование радиотехнических (RF) схем отличается рядом особенностей математических моделей и используемых методов, прежде всего в области СВЧ-диапазона. Для анализа линейных схем обычно применяют методы расчета полюсов и нулей передаточных характеристик. Моделирование стационарных режимов нелинейных схем чаще всего выполняют с помощью метода гармонического баланса, основанного на разложении неизвестного рещения в ряд Фурье, подстановкой разложёния в систему дифференциальных уравнений с группированием членов с одинаковыми частотами тригонометрических функций, в результате получаются системы нелинейных алгебраических уравнений, подлежащие решению. Сокращение времени в случае слабо нелинейных схем достигается при моделировании СВЧ-устройств с помощью рядов Вольтерра. Анализ во временной области для ряда типов схем выполняют с помощью программ типа Spi e путем интегрирования систем обыкновенных дифференциальных уравнений.  [c.136]

Маркировка - распределение меток по позициям в сети Петри Маршрутизация транспортных средств - задача определения маршрутов движения транспортных средств для выполнения заказов на перевозки грузов Математическое обеспечение ALS - методы и алгоритмы создания и использования моделей взаимодействия различных систем в ALS-технологиях Метод гармонического баланса - метод анализа нелинейных систем в частотной области, основанный на разложении неизвестного решения в ряд Фурье, его подстановкой в систему дифференциальных уравнений с группированием членов с одинаковыми частотами тригонометрических функций, в результате получаются системы нелинейных алгебраических уравнений, подлежащие решению Метод комбинирования эвристик - метод определения оптимальной последовательности эвристик для выполнения совокупности шагов в многошаговых алгоритмах синтеза проектных решений  [c.312]

На рис..6, а nii — масса, приве денная к свободному концу иснытуе мого образца с перемещением Xi l — жесткость испытуемого образца — неупругое сопротивление мате риала образца и трение в соединитель ных элементах. Колебания рассма триваемой системы возбуждаются ста тическпм биением образца, зависящим от точности изготовления образца, захвата и его опор. Анализ сводится к расчету одномассной колебательной системы с возмущением колебаний путем гармонического перемещения свободного конца образца. Если нагружение рычага 7 (см. рис. 1, б) происходит через пружину, в динамической схеме необходимо учесть приведенную жесткость С2 (рис. 6, б) механизма нагружения и внешнее и внутреннее трение 2 в элементах соединения механизма нагружения. Если силовая схема машины содержит демпфер, сочлененный с рычагом 7 (см. рис. 1,6), то / 2 — неупругое сопротивление демпфера. Во время работы машины захват участвует в колебательном движении, описывая некоторую замкнутую кривую в плоскости, перпендикулярной оси образца. Так как жесткость упругой системы определяется главным образом жесткостью образца, которая обычно значительно  [c.140]


Пытаясь учитывать тот или иной вид демпфирования, следует иметь в виду, что формальный анализ вынужденных колебаний рассматриваемой системы сравнительно просто удается выпслнить лишь в случае линейного трения. Только в этом случае, как мы увидим дальше, система будет двигаться строго гармонически под воздействием гармонической внешней силы.  [c.100]

Результаты выполненного анализа устойчивости периодических режимов нашли подтверждение в опытах, выполненных по следующей схеме (рис. 8.11). На столике I впбро-стенда, совершающего гармоническое движение, установлены два стальных упора 2, расстояние между которыми может регулироваться столик вибростенда вместе с упорами моделировал массу trii рассматриваемой системы. Роль второй части системы играл стальной шарик 3, подвешенный на капроновой нити, верхний конец нити снабжен колечком, свободно надетым на стальную синцу 4. Спица 4 укреплена в неподвижных стойках 5. Такая конструкция была выбрана с целью свести к нулю силы сопротивления, действующие на шарик. Выше было показано, что при этом соотношение масс частей системы не влияет на распределение областей устойчивости.  [c.280]

На рис. 6 приведены резонансные кривые уравнения (3) при р/ш = 2, л = 0,1 (рис. 6, а) и резонансная кривая уравнения (3) при = О (рис. 6, б). Сравнение максимальных отклонений кривых, приведенных на рис. 6, показывает, что величина максимальной амплитуды колебаний системы в зоне, где при X = О имеет место параметрический резонанс, значительно больше, чем амплитуда колебаний той же системы при (д. = 0. Это еще раз подтверждает наличие эффекта компенсации потерь на трение за счет периодического изменения жесткости. Наряду с анализом особенностей вынужденных колебаний системы, жесткость которой изменяется до гармоническому закону, с помощью АВМ были исследованы вынужденные колебания системы, жесткость которой измзняется по закону прямоугольного косинуса кос pt. Результаты моделирования уравнения  [c.64]

В ряде исследований делались попытки создания механической модели тела челове-ка-оператора при работе с пневматическим отбойным молотком. В работе Д. Дик-мана [25] на основании измерения механического импеданса предлагается механическая колебательная модель системы кисть — рука (рис. 6) при гармоническом возбуждении. Для определения демпфирующих и упругих свойств системы кисть — рука вводится упрощенная одномассовая модель. На основе анализа экспериментальных данных по определению механического импенданса системы кисть — рука при указанном ВЫ1 допущении автор чаключает, что упругие свойства мягкой ткани руки имеют значе- >  [c.24]

Второй способ определения частот собственных колебаний (обычно низшей частоты) заключается в том, что в исследуемой системе возбуждаются свободные колебания, по записи которых, устанавливаются их частоты. Декремент системы определяется по убыванию--амплитуды последующих циклов. Свободные колебания могут быть возбуждены посредством удара или внезапной разгрузки, Одиако вследствие недостаточной определенности в задании начальных условий при ударе начальная часть процесса затухания свободных колебаний обычно искажается. Целесообразнее поэтому при измерении декрементов возбуждать свободные колебания следующим образом. Система вводится в резонанс с помощью внешней гармонической силы, а затем возбуждение отключается Начальные условия при. этом могут быть получены строго определенные, и запись свободных колебани легко поддается анализу.  [c.383]

МЕТАЛЛОФИЗИКА — раздел физики, в котором изучаются структура и свойства металлов МЕТОД [аналогии состоит в изучении какого-либо процесса путем замены его процессом, описываемым таким же дифференциальным уравнением, как и изучаемый процесс векторных диаграмм служит для сложения нескольких гармонических колебаний путем представления их посредством векторов встречных пучков используется для увеличения доли энергии, используемой ускоренными частицами для различных ядерных реакций Дебая — Шеррера применяется при исследовании структуры монохроматических рентгеновских излучений затемненного поля служит для наблюдения частиц, когда направление наблюдения перпендикулярно к направлению освещения Лагранжа в гидродинамике состоит в том, что движение жидкости задается путем указания зависимости от времени координат всех ее частиц ин1 ерференционного контраста служит для получения изображений микроскопических объектов путем интерференции световых воли, прошедших и не прошедших через объект меченых атомов состоит в замене атомов исследуемого вещества, участвующего в каком-либо процессе, их радиоактивными изотопами моделирования — метод исследования сложных объектов, явлений или процессов на их моделях или на реальных установках с применением методов подобия теории при постановке и обработке эксперимента статистический служит для изучения свойств макроскопических систем на основе анализа, с помощью математической статистики, закономерностей теплового движения огромного числа микрочастиц, образующих эти системы совнадений в ядерной физике состоит в выделении определенной группы одновременно происходящих событий термодинамический служит для изучения свойств системы взаимодействующих тел путем анализа условий и количественных соотношений происходящих в системе превращений энергии Эйлера в гидродинамике заключаегся в задании поля скоростей жидкости для кинематического описания г чения жидкости]  [c.248]


Смотреть страницы где упоминается термин Система Гармонический анализ : [c.33]    [c.336]    [c.276]    [c.216]    [c.75]    [c.35]    [c.25]    [c.125]    [c.202]   
Машиностроение Энциклопедический справочник Раздел 1 Том 1 (1947) -- [ c.147 ]



ПОИСК



Анализ гармонический

Механические системы линейные Анализ гармонический

Применение метода медленно меняющихся амплитуд к анализу поведения слабо нелинейных систем с малыми потерями при гармоническом силовом воздействии

Ряд гармонический

Система анализ



© 2025 Mash-xxl.info Реклама на сайте