Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Процессы автоколебательные

Если замкнутая траектория на фазовой плоскости является изолированно , она называется предельным циклом. Наличие устойчивого предельного цикла на фазовой плоскости говорит о том, что в системе возможно установление незатухающих периодических колебаний, амплитуда и период которых в определенных пределах не зависят от начальных условий и определяются лишь значениями параметров системы. Такие периодические движения А. А. Андронов назвал автоколебаниями, а системы, в которых возможны такие процессы, — автоколебательными [ 1 ]. В отличие от вынужденных или параметрических колебаний, возникновение автоколебаний не связано с действием периодической внешней силы или с периодическим изменением параметров системы. Автоколебания возникают за счет непериодических источников энергии и обусловлены внутренними связями и взаимодействиями в самой системе. Одним из признаков автоколебательной системы может служить присутствие так называемой обратной связи, которая управляет расходом энергии непериодического источника. Из всего сказанного непосредственно следует, что математическая модель автоколебательной системы должна быть грубой и существенно нелинейной.  [c.46]


В плане качественного описания мы довольно много говорили об автоколебательных режимах работы ракетного двигателя. Этот эффект тесно связан с вопросами устойчивости процесса. Однако в данном случае мы допустили бы терминологическую небрежность, если бы неустойчивым назвали автоколебательный режим. Автоколебательный режим возникает как следствие неустойчивости номинального процесса. Это — только та яма , в которую срывается процесс, будучи неустойчивым. Так же, как и в задаче Эйлера, сжатый закритической силой стержень переходит от неустойчивой прямолинейной формы равновесия к некоторой новой, кстати говоря, устойчивой форме, так и неустойчивый процесс работы двигателя переходит к новому процессу — автоколебательному.  [c.360]

Определить амплитуду автоколебательного процесса, возникающего в системе исследовать его устойчивость.  [c.438]

Тример 2. Экстремальный регулятор с автоколебательным типом поиска [7]. Для регулирования параметров объекта, содержащего медленно изменяющиеся величины, которые характеризуют неконтролируемые процессы в объекте, применяют самонастраивающиеся системы автоматического регулирования. Одной из таких систем и является экстремальный регулятор, включающий в себя объект регулирования и управляющий автомат (рис. 4.17). Объект регулирования имеет входную управляемую переменную и и выходную переменную ср, величина которой должна поддерживаться наибольшей (экстремальной). Поэтому регулятор, выполняющий эту задачу, н называется экстремальным. Рассмотрим динамику простейшей системы, объект  [c.93]

Абсолютный нуль температуры 78 Абсолютная температурная шкала 78 Автоколебания 220 Автоколебательная система 220 Адиабата 100 Адиабатный процесс 39 Активное сопротивление 241 Акустика 223  [c.359]

Конечно, все сказанное здесь ограничивается лишь случаем существования функции рассеяния и отсутствия в системе внутренних источников энергии, как это, в частности, бывает при автоколебательных процессах, кратко рассмотренных ниже.  [c.261]

Если называть все колебания, происходящие при наличии притока энергии извне системы, вынужденными, то к ним принадлежат и автоколебания. От вынужденных колебаний, рассмотренных выше, автоколебания отличаются, прежде всего, тем, что они вызываются непериодической возмущающей силой. Точнее, следуя А. А. Андронову, можно охарактеризовать автоколебательную систему как такую, которая при непериодическом источнике энергии генерирует периодический колебательный процесс.  [c.276]


Все сказанное дает основание к выделению автоколебательных процессов в особую категорию.  [c.277]

Вместе с возникновением резонанса п-го рода в потенциально автоколебательной системе под действием возмущающей силы могут возникнуть интенсивные колебания с частотой, весьма близкой к частоте свободных колебаний системы, н слабо заметные вынужденные колебания. Весь колебательный процесс с физической стороны при этом будет квазипериодическим. Это явление называется асинхронным возбуждением.  [c.306]

Усиление спонтанного излучения в активном резонаторе и в конечном счете его превращение в генератор когерентного излучения имеет глубокую аналогию с процессами, развивающимися в автоколебательных системах, при самовозбуждении в них генерации. В таких системах важнейшую роль играет положительная обратная связь колебательной системы с источником энергии, поддерживающим в ней колебания. Сравнительно простой механизм индуктивной положительной обратной связи можно проследить на примере генератора колебаний с электронной лампой.  [c.783]

Если в автоколебательной системе потери энергии на трение малы по сравнению с общей энергией колебаний, то и энергия, необходимая для компенсации потерь, также мала. Поступающая в систему малыми порциями энергия компенсирует потери энергии, происходящие при колебаниях, но при этом очень мало изменяет ход всего процесса. Колебания происходят почти так, как если бы отсутствовали и потери энергии в системе, и поступление энергии в систему. В этом случае автоколебания по форме близки к гармоническим. Вместе с тем и период автоколебаний близок к периоду тех собственных колебаний, которые совершала бы система, если бы потери энергии не компенсировались. Если же потери на трение велики, а значит, велика И энергия, поступающая от источника, то автоколебания могут по форме заметно отличаться от гармонических, и их период может заметно отличаться от периода собственных колебаний. Поэтому, например, в хороших часах, в которых потери на трение малы, маятник совершает колебания, по форме почти не отличающиеся от гармонических и с частотой, почти точно совпадающей с частотой собственных колебаний маятника (этим и обеспечивается точность хода часов). В простых ходиках, в которых потери на трение велики, колебания маятника даже на глаз отличаются от гармонических, и период этих колебаний уже заметно отличен от периода свободных колебаний маятника.  [c.603]

ВОЗМОЖНОСТЬ существования бесконечно быстрых скачков тока в рассматриваемой системе, получим для с (О и с (<) стационарные автоколебательные процессы, показанные на рис. 5.9 и 5.10.  [c.193]

Аналогичные автоколебательные процессы возможны и в системах с неоднозначной зависимостью напряжения от тока (вольт-амперная характеристика Л -типа), например в системе, изображенной на рис. 5.11. В этой системе возможно возбуждение и поддержание автоколебаний со скачками напряжения. Условием скачка в данном случае будет непрерывность тока, т. е. непрерывность изменения величины магнитного потока в индуктивности Ь, определяющей запас энергии в системе. В момент скачка =  [c.193]

При малом г, что соответствует большим С , изоклины близки к прямым, и такую автоколебательную систему можно считать близкой к линейной консервативной с фазовыми траекториями, близкими к эллипсам. При большом е (С мало) изоклины сильно отличаются от прямых, и фазовые траектории содержат быстрые изменения производной от координаты. В пределе при = 0 процесс описывается уравнением первого порядка, и на фазовой плоскости останется одна-единственная фазовая траектория. В этом случае периодические движения возможны лишь при наличии скачков производной при сохранении непрерывности изменения X, т. е. напряжения на емкости, определяющего запас энергии системы.  [c.196]

Доказано, что при определенных условиях, накладываемых на вид диссипативной функции ф(х, у), такие предельные циклы существуют, и они описывают автоколебательные процессы. При представлении автоколебательных систем на фазовой плоскости наряду с предельными циклами необходимо рассматривать также особые точки, соответствующие состояниям равновесия.  [c.197]


Для автоколебательной системы, для которой функцию [ у нельзя считать малой, фазовый портрет системы имеет вид, показанный на рис. 5.16. В такой системе колебания заметно отличаются от гармонических, процесс установления стационарных автоколебаний происходит значительно быстрее, чем в случае, показанном на рис. 5.15. Энергообмен в системе значительно больше, чем в системах томсоновского типа. Автоколебательная система такого типа занимает промежуточное положение между системами томсоновского и релаксационного типов.  [c.199]

В укороченных уравнениях (5.4.10), (5.4.11) отсутствуют члены с коэффициентом р, откуда следует, что квадратичные члены при усреднении не влияют на процессы установления и стационарные амплитуды в таких автономных автоколебательных режимах работы.  [c.207]

Кривая АВ характеризует зависимость амплитуды автоколебания от амплитуды внешнего воздействия Q (Р). При увеличении амплитуды внешнего воздействия до значения 0 В в автоколебательной системе прекращаются автоколебания и заштрихованной области соответствует чисто вынужденный процесс с частотой р.  [c.220]

Таким образом, в определенной области амплитуд внешнего воздействия ( >В) в системе будет существовать синхронный автоколебательный процесс с частотой, точно вдвое меньшей ча-  [c.220]

В заключение еще раз следует подчеркнуть, что в рассмотренных системах при внешнем воздействии происходит гашение, подавление автоколебаний и сохранение (в полосе синхронизации) только вынужденных колебаний. Поэтому общепринятый термин синхронизация не отражает физических процессов, происходящих в подобных автоколебательных системах с термисторами под действием внешней силы.  [c.224]

Метод итераций и другие методы рассмотрения процессов установления колебании в колебательных и автоколебательных системах в литературе иногда объединяются под общим названием метода точечных преобразований.  [c.230]

Таким образом, рассмотрение процессов в автоколебательных системах с запаздыванием с использованием аппарата метода итераций позволяет объяснить только периодичность и условия возбуждения колебаний в системах с запаздыванием. Уже из качественного анализа поведения реальных систем можно сделать  [c.232]

Рассмотрим приближенно, как будет развиваться процесс колебаний в таких системах. Известно, что в автоколебательной системе с определенной фазочастотной характеристикой будут нарастать амплитуды тех колебаний, для которых выполняются условия баланса фаз в системе. Если принять, что усилитель изменяет фазу колебаний на я, то удовлетворяют условию фазового баланса компоненты, у которых результирующий сдвиг фаз равен 6 = (2л-Р + 1)я. На рис. 5.48 приведена типичная дисперсионная кривая, т. е. нелинейная фазо-частотная характеристика системы.  [c.234]

Однако процессы возбуждения в такой широкополосной системе могут существенно измениться, если создать в ней начальные условия, обеспечивающие преимущественное нарастание отдельной, например высокочастотной, колебательной компоненты. Для этого достаточно в момент включения автоколебательной системы  [c.236]

При 0н < 4 сказывается тепловыделение при 7 = Гн и процесс начинает терять автоколебательный характер. В этом случае, строго говоря, уже нельзя говорить о распространении фронта горения, поскольку его толщина сильно увеличивается (фронт размазывается).  [c.342]

При достаточно больших значениях т амплитуда таких колебаний становится постоянной и возникает автоколебательный процесс распространения пламени.  [c.343]

Процесс образования вихрей является автоколебательным процессом, обусловливаемым размерами тела, величиной и направлением вектора скорости обтекающего потока, а также вязкостью среды. На некотором расстоянии от препятствия вихревой слой распадается на отдельные вихри, срывающиеся поочередно с двух сторон тела и образующие за препятствием вихревую дорожку Кармана. Образование вихрей зависит от лобового сопротивления препятствия, так как при обтекании его возникает переменная по знаку сила, перпендикулярная направлению основного потока.  [c.150]

Если на фазовой плоскости имеется несколько предельных циклов, то это означает, что в автоколебательной системе может иметь место соответствующее количество установившихся процессов, у каждого из которых своя амплитуда. Устанавливается тот процесс, в области тяготения которого находятся начальные условия.  [c.227]

При исследовании автоколебательных систем характерны следующие задачи определение частот и размахов установившихся автоколебаний, исследование устойчивости последних, установление характера приближения к установившемуся режиму при рассмотрении переходных процессов.  [c.229]

Спусковые регуляторы действуют периодически и применяются при малой частоте вращения оси, угловая скорость которой регулируется. На рис. 31.12 показан спусковой регулятор с автоколебательной системой, состоящий из маятника-регулятора 7 и жестко связанного с ним анкера 3. Анкер вместе с маятником совершает колебания вокруг неподвижной оси 2. На анкере укреплены палетты I 4, которые удерживают ходовое колесо 5 от вращения. Движущий мо.мент на валу 6 колеса создается силой тяжести О гири. При переходе через среднее положение палетты позволяют колесу повернуться на один зуб. При повороте зуб толкает анкер и сообщает колебательной системе импульс, необходимый для поддержания ее непрерывных колебаний, затем в крайнем положении маятника происходит остановка ходового колеса, после чего этот процесс повторяется. Период собственных колебаний маятника Гм связан с параметрами регулятора формулой  [c.399]

Связь нелинейных колебаний с самоорганизующимися процессами объясняется тем, что самоорганизующимися считаются любые автоколебательные процессы, обусловленные образованием устойчивых незатухающих колебаний независимо от начальных условий. В линейной области колебания всегда носят хаотический характер, а в нелинейной возможны автоколебания (упорядоченные колебания). Автоколебания отвечают условию, при котором отклик системы на внешнее воздействие не пропорционален воздействующему усилию. Эта ситуация математически описываегся одними и теми же нелинейными уравнениями независимо от среды и условий, при которых возникают автоколебания [ 13].  [c.253]


Нелинейный харш<тер взаимодействия наиболее свойственен топо-химическому процессу, особо важным примером которюго в сложных газовых средах является случай, когда продукты взаимодействия твердое тело-газ могут быть инициаторами [репных стадий в автоколебательных окислительных углеводородных системах. Это позволяет достичь высоких локальных зночений давления, что дает возможность разработать периодические процессы синтеза сверхтвердых соединений.  [c.6]

В отношении ППС дольней зоны возможны хорошо описанные в литературе механизмы интерференции поля наведенных ЭМ волв проводимости в металле с полем лазерного излучения. Тем не менее возникновение самого поля лазерного Излучения на удалениях от линии гравировки В несколько раз превышающих размеры фокильною пятна связывается с рассеянием на фронте УВ, описанной выше. Ссы-падение же периодов этих ППС с периодами ближней зоны позволяет предполагать, что и в этих условиях действует автоколебательный процесс рассеяния. Но рассеянию подвергается более интёнсивыяк часть пучка излучения, а само рассеяние имеет более простую кольцевую геометрию. Таким образом ППС становятся более регулярными и теряют какую-либо корреляцию с трещинообразованием.  [c.97]

Анализ эволюции таковых сигналов, регистрируемых осциллографом, позволил изучить специфику формирования МДО-покрытий в анодно-катодном режиме в различные стадии формовки. Отмечается, что при выходе на фина.льную стадию процесса формирования покрытия создаются условия, благоприятные для так называемого мягкого режима МДО, когда микродуговые разряды локализуются в области некоторого пятна площадью порядка 3—4 см , которое начинает блуждать по всей обрабатываемой поверхности в некотором автоколебательном режиме. При этом характерные шум и треск от микродуго-вых разрядов заметно снижаются, а покрытие формируется наиболее равномерно и с высоким качеством. Поверхностный слой покрытия при этом ощущается на ощупь будто бы осыпанный мелким шлаком.  [c.167]

Вследствие принципиальной новизны исследования Б. П. Белоусова своевременно не были поняты его статьи не принимались к опубликованию ни в 1951, ни в 1957 г. редакциями двух научных журналов ввиду теоретической невозможности описываемых в них реакций >. Исследования Б. П. Белоусова были продолжены и детально развиты А. М. Жаботинским. В 1980 г. группе авторов — Б. П. Белоусову (посмертно) и А. М. Жаботинско-му с сотрудниками была присуждена Ленинская премия за открытие нового класса автоволновых и автоколебательных процессов.  [c.35]

Книга знакомит чнтате.мя с общими свойствами колебательных процессов, происходящих в радиотехнических, оптических, механических и других системах, а также с различными качественными и количественными методами их изучения. Значительное внимание уделено рассмотрению параметрических, автоколебательных и других нелинейных колебательных систем.  [c.2]

Совери енно ясно, что в линейной и нелинейной диссипативных системах невозможен автоколебательный процесс. Для осуществления автоколебательного процесса необходимо, чтобы функция днсснпацин F (t) была знакопеременной. При этом в течение одной части периода происходит пополнение колебательной энергии (что можно описать с помощью известного нам понятия отрицательного сопротивления R ), в течение другой его части — уменьшение колебательной энергии. Тогда можно обеспечить энергетический т  [c.187]

Если теперь предположить, что коэффициент при первой производной в уравнении (5.2.7) останется малым для всех возможных значений х в процессе колебаний, то такое уравнение описывает автоколебательный процесс, бли.зкий к гармоническому. Условие малости этого коэффициента можно реализовать, если обеспечить на линейном участке падающей характеристики следующее слабое неравенство 1 <5 (0) 1 1/г - - 1/Я 4 С /СЯ.  [c.194]

Из физических определений известно, что если система является автоколебательной, то в ней должен существовать стационарный колебательный процесс, который на фазовой плоскости соответствует замкнутой фазовой траектории, так как автоколебательную систему можно рассматривать как квазиконсервативную. Если автоколебания в системе устойчивы, то и замкнутая фазовая траектория также должна быть устойчива, т. е. к ней должны сходиться все фазовые траектории в близкой ее окрестности. Подобные предельные фазовые траектории называют предельными циклами.  [c.197]

Если 26 = onst, т. е. потери не являются инерционными, то реализация стационарного автоколебательного процесса в системе возможна только при условии 2б = я ) (х) (ijj (х) — усредненная крутизна падающей вольт-амперной характеристики), что означает обязательный выход мгновенных значений тока х за пределы линейного участка падающей характеристики нелинейного элемента.  [c.212]

В действительности синхрг.нный режим возникает за счет совместного действия двух процессов. Во-первых, за счет подавления собственных автоколебательных движений в системе, причем внутри области синхронного режима сохраняется только чисто вынужденный колебательный процесс с частотой внешнего воздействия р. Во-вторых, при внешнем воздействии синхронный режим может возникать за счет принудительного изменения частоты автоколебаний путем воздействия вынужденных колебаний на форму генерируемых автоколебаний. В томсоновских автоколебательных системах, работающих в мягком режиме, главную роль играет первый процесс. При достаточно малых расстройках вынужденные коле-  [c.218]

Для анализа автоколебательных систем неосцнлляторного типа с запаздывающей обратной связью можно применить метод переходных характеристик. Этот метод основан на использовании функции отклика ц ( ), физический смысл которой заключается в том, что если на вход линейной системы подать единичный скачок напряжения, то на ее выходе появится отклик Функция отклика, представляющая реальное значение выходного напряжения, позволяет найти переходный процесс и напряжение на выходе четырехполюсника с помощью интегрального соотношения Дюамеля  [c.233]

При достаточно длинной трубе (газохода), соединяющей камеру сгорания с сопловым аппаратом, в массе газа можно осуществить автоколебательный процесс. Использование этого процесса для периодического заполнения объема воздуха и для сжатия топливновоздушной смеси позволяет отказаться от компрессора. Схема подобного пульсирующего двигателя, который использовался на немецких самолетах-снарядах V-1, изображена на рис. 6.16, в. Воздух поступает в камеру сгорания при атмосферном давлении через автоматически действующие пластинчатые клапаны, которые открываются при возникновении разрежения в камере. Истечение газов продолжается в силу инерщ[и их массы в длинной трубе 6 и после достижения в камере атмосферного давления, что и создает разрежение. В газах, выходящих из трубы, под действием атмосферного давления возникает волна повышенного давления, которая перемещается в сторону камеры сгорания и сжимает свежий заряд. Частота процесса сгорания соответствует частоте колебания газа в трубе. Подобный двигатель может использоваться в качестве генератора газа для турбины для уменьшения длины двигателя трубу навивают вокруг него.  [c.209]


Смотреть страницы где упоминается термин Процессы автоколебательные : [c.179]    [c.192]    [c.201]    [c.213]    [c.220]    [c.341]   
Термодинамика (1991) -- [ c.286 ]



ПОИСК



Вибровозбудители с автоколебательным процессом

Вибровозбудители с автоколебательным процессом в. потоке сжатого воздуха



© 2025 Mash-xxl.info Реклама на сайте