Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Эйлера энергии

Одним из первых высказал идею закона сохранения энергии М. В. Ломоносов. В работе Рассуждение о твердости и жидкости тел , в письме к Эйлеру от 5 июля 1747 г. Ломоносов писал Все перемены в натуре случающиеся, такого суть состояния, что сколько чего у одного тела отнимается, столько же присовокупляется к другому. Так, ежели где убудет несколько материи, то умножится в другом месте... Сей всеобщий естественный закон простирается и в самые правила движения ибо тело, движущее своей силой другое, столько же оныя у себя теряет, сколько сообщает другому, которое от него движение получает .  [c.10]


Эйлера формула 267 Эксцентриситет 247 Энергия деформации потенциальная 65  [c.360]

При стационарных связях кинетическая энергия системы является однородной квадратичной функцией обобщенных скоростей (129.2), а потому, на основании теоремы Эйлера об однородных функциях,  [c.370]

Задача 338. Вывести выражение кинетической энергии твердого тела, вращающегося вокруг неподвижной точки, пользуясь выражениями проекций скоростей точек твердого тела на оси декартовых координат, связанные с твердым телом (формулы Эйлера).  [c.293]

Если внешние силы, приложенные к твердому телу, постоянны либо зависят от положений точек твердого тела, то можно получить первый интеграл динамических уравнений Эйлера, применяя теорему об изменении кинетической энергии системы, материальных то-  [c.542]

Удобство применения общих теорем динамики заключается в возможности упростить интегрирование дифференциальных уравнений движения системы. Однако эти общие теоремы могут (как показано выше) применяться только в некоторых случаях. Удобно и то, что в формулировки общих теорем динамики не входят внутренние силы, определение которых обычно связано со значительными трудностями (это замечание о внутренних силах в равной мере относится к дифференциальному уравнению вращения твердого тела вокруг неподвижной оси, дифференциальным уравнениям плоского движения твердого тела и динамическим уравнениям Эйлера). Лишь в формулировку теоремы об изменении кинетической энергии системы материальных точек входят не только внешние, но и внутренние силы (в частном случае неизменяемой материальной системы, например абсолютно твердого тела, и в этой теореме фигурируют только внешние силы).  [c.544]

Так как в рассматриваемом случае кинетическая энергия Т является однородной функцией второй степени от скоростей q , то по известной теореме Эйлера об однородных функциях  [c.457]

Подстановка главного вектора количеств движения О (1.93) и кинетического момента (1.94), выраженных с помощью кинетической энергии, в равенства (1.85) и (1.86) приводит к уравнениям Эйлера — Лагранжа дня твердою тела  [c.41]

Эйлера формула 60 Эквивалентность пар 149 Энергия кинетическая 204, 231, 266  [c.303]


В некоторых случаях удобно выражать кинетическую энергию не с помощью квазикоординат, а непосредственно через производные от координат по времени. Тогда уравнения движения можно привести к специальной стандартной форме. Для конкретности обратимся к угловым координатам Эйлера <р, ф, гЗ. В этом случае имеем шесть координат, задающих положение тела в пространстве (лагранжевых координат, однозначно определяющих конфигурацию системы)  [c.450]

Кинетическая энергия не изменяется. Следовательно, и модуль ш угловой скорости тоже будет постоянным. Уравнения Эйлера примут вид  [c.471]

Составить в терминах угловой скорости и углового ускорения выражение для энергии ускорений свободного абсолютно твердого те.па. Выписать уравнения Аппеля и получить из них динамические уравнения Эйлера.  [c.520]

Чтобы найти кинетическую энергию твердого тела, вращающегося вокруг неподвижной точки, исходим из формулы (I. ЮЗЬ). Распределение скоростей в твердом теле, которое движется вокруг неподвижной точки, определяется известной формулой Эйлера ( 60 т. 1)  [c.89]

В конце 2 было указано, что полная система гидродинамических уравнений должна содержать пять уравнений. Для жидкости, в которой имеют место процессы теплопроводности и внутреннего трения, одним из этих уравнений является по-прежнему уравнение непрерывности уравнения Эйлера заменяются уравнениями Навье — Стокса. Что же касается пятого уравнения, то для идеальной жидкости им является уравнение сохранения энтропии (2,6). В вязкой жидкости это уравнение, разумеется, не имеет места, поскольку в ней происходят необратимые процессы диссипации энергии.  [c.270]

Если в эту формулу подставить выраженные в виде линейных комбинаций компонент то упругая энергия будет представлена как квадратичная функция величин Снова применяя теорему Эйлера, будем иметь  [c.24]

Вместе с тем появились и существенные дополнения, среди которых следует отметить написанную К. А. Лурье новую (тридцать первую) главу, содержащую изложение основ специальной теории относительности. В заново написанных параграфах получили освещение вопросы полета ракеты простейшей схемы, теории колебаний систем с произвольным конечным числом степеней свободы, применения общих теорем динамики систем материальных точек к сплошным средам (теоремы Эйлера, Бернулли, Борда), а также к выводу общих дифференциальных уравнений динамики сплошных сред и выражения мощности внутренних сил в сплошной среде. Последнее в случае сред с внутренним трением позволяет глубже судить о важном для механики понятии потерь (диссипации) механической энергии при движении среды.  [c.7]

Теорему Бернулли совместно с теоремой Эйлера, изложенной в 110, можно применить для вывода теоремы Борда (1733—1792)—Карно о потере механической энергии потока жидкости при внезапном его расширении (рис. 328). Теорема эта служит аналогом теоремы Кар-  [c.250]

Решение. Положение стержня I определяется радиусом-вектором центра масс R и углами Эйлера. Потенциальная энергия стержня в неоднородном поле тяжести  [c.229]

Внутренняя энергия системы [см. (5.41)] является функцией только аддитивных (экстенсивных) независимых переменных, и так как это однородная функция первого порядка, то по теореме Эйлера об однородных функциях имеем  [c.117]

Теорема о равнораспределении кинетической энергии по степеням свободы (12.30) позволяет определить среднюю кинетическую энергию любой классической системы, теорема же о равнораспределении вириала по степеням свободы (12.34) дает возможность вычислить среднюю потенциальную энергию только таких систем частиц, потенциальная энергия /лг(Чь , 4n) взаимодействия которых является однородной функцией координат. Так, если степень однородности функции f/Ar(qi,..., Ялг) равна V, тО по теореме Эйлера об однородных функциях  [c.202]


Для упрощения теоретических исследований и выводов Л. Эйлер ввел понятие идеальной жидкости, т. е. такой воображаемой жидкости, которая абсолютно подвижна, несжимаема и не обладает вязкостью, т. е. при движении в ней не возникают силы внутреннего трения. Следовательно, при перемещении идеальной жидкости по трубам отсутствуют потери энергии на трение. Так как силы трения в покоящейся реальной жидкости равны нулю, то ее свойства близки к идеальной.  [c.260]

М. В. Ломоносов опубликовал несколько работ по гидравлике, наиболее известная из них Рассуждение о твердости и жидкости тела , где изложил закон сохранения массы и энергии, являющийся основой современной гидравлики. Л. Эйлер ввел понятие  [c.7]

Эвольпеита круга 428, 432, 433 Эвольвенты радиус кривизны 433 Эволюта 433 Эйлера формула 238 Элемент кинематической пары 20 Энергия кинематическая звоиа с переменной массой 369  [c.639]

Если подвижное звено соединено с источником (или потребителем механической энергии --- в зависимости от направления потока энергии) посредством муфты (рис. 5.5, а), то внешним силовым фактором является неизвестный момент М. Если же подвод (или отвод) энергии осуществляется через зубчатую или фрикционную передачу (рис. 5.5, б,в), то внешним силовым фактором будет не известная но модулю сила f. Расположение линии действия силы f определяется либо геометрией зубчатой передачи (углом зацепления (t,.), либо проходит через точку соприкосновения фрикционных катков касательно к их рабочим поверхностям. При ременной передаче (рис. 5.5, г) внешний силовой фактор представлен уже не одной, а двумя неизвестными по модулю силами fi и F2, связанными между собой формулой Эйлера [1]. Поэтому внешний силовой фактор по-прежнему один раз неизвестен. Линии действия сил fi и / > определяются положением ведущей и ведомой ветвей ременной передачи. Если же подвижное звено первичного механизма совершает прямолинейно поступательное движение (рис. 5.5, д), то внешним силовым фактором является неизвестная по модулю сила F, действующая обычно вдоль направляющей поверхности. Таким образом, и здесь внешний силовой фактор один раз неизвестен.  [c.185]

Теорема об изменении кинетической энергии или, как ее ранез называли, теорема живых сил была сформулирована Иваном Бернулли (1667— 1748) и Даниилом Бернулли (1700— 1782). Теорема об изменении момента количества движения установлена почти одновременно (1746) Эйлером и Даниилом Бернулли.  [c.5]

Динамика твердого тела изучается на основе общих теорем об изменении кинетической энергии, кинетического момента и количества движения, а также с помощью основных понятий геометрии масс. Показывается, что аппарат динамики системы материальных точек применим для описания движения твердого тела и систем твердых тел. Проясняется вычислительная экономность использования уравнений Эйлера. Традиционно анализируются случаи Эйлера-Пуансо, Лагранжа-Пуассона, Ковгияевской [24]. В качест)зе примера методики по.чучения частных случаев интегрируемости приводятся случаи Гесса и Бобылева-Стеклова [6]. С целью демонстрации приложения развитых методов к практике даются основы элементарной теории гироскопов [14, 41], достаточные для качественного анализа действия гироскопических приборов.  [c.12]

Для расчета кинетической энергии воспользуемся теоремой 5.2.2 Кёнига Вычислим скорость с центра масс кузова. Относительно точки D кузов вращается вокруг вертикальной оси с угловой скоростью i . По теореме Эйлера  [c.535]

Рассмотрим некоторые свойства движения тела в общем случае Эйлера. Интеграл энергии можно получить исходя из того, что работа силы веса в данном случае равна нулю. Так как точка ее приложения не перемещается, а связь идеальная, то очевидно, что из общей теоремы динамики об изменении кинетической энергии Т можно получить интеграл энергии в виде Т = onst, т. е.  [c.458]

Теорема Эйлера ( Пуансо, Кориолиса, Дирихле, Гюйгенса, Гюльдена, Кёнига, Резаля, Даламбера - Эйлера, Кастильяно, Эйлера -Шаля, Кронекера - Капелли, Штейнера). Теорема живых сил (-кинетической энергии, количества движения, моментов, сохранения механической энергии. ..). Теорема о трёх центрах ( о движении центра масс, об изменении количества движения, об изменении момента количества движения, о работе сил, об изменении кинетической энергии, о моментах инерции...). Теоремы сложения.  [c.88]

Предположим, что исследуется движение изображающей точки на отрезке М1М2 основной траектории. Выберем траекторию сравнения так, чтобы концы ее отрезка, соответствующего отрезку М М2 основной траектории, совпадали с точками М и М2. Так как постоянные энергии А при движении изображающей точки по основной траектории и траектории сравнения одинаковы, можно утверждать, что промежуток времени, соответствующий переходу изображающей точки из положения М в положение М2 по основной траектории, не равен промежутку времени, необходимому для перехода этой же точки из положения М в положение М2 по траектории сравнения. Поэтому для доказательства принципа Эйлера — Лагранжа следует применять неизохронные (полные) вариации. Рассмотрим общее уравнение динамики  [c.201]

Чтобы прийти к принципу Эйлера — Лагранжа, исключим время из равенства (11.147), использовав интеграл энергии (а). Это избавляет от усложнений, связанных с введением иеизо-хронных вариаций. Заметим, что в случае стационарных связей  [c.202]


Мы видели, что диссипация энергии при турбулентном движении связана с наиболее мелг омасштабными пульсациями крупномасштабные движения заметной диссипацией не сопровождаются, с чем и связана возможность применения к ним уравнения Эйлера. Ввиду сказанного выше мы приходим к су-ш,ественному результату, что диссипация энергии происходит в основном лишь в области вихревого турбулентного движения и практически не имеет места вне этой области.  [c.209]

Приведем еще полезную форму выражения для свободной энергии деформированного тела, получающуюся непосредственно из квадрэтичности F по тензору деформации. Согласно теореме Эйлера имеем  [c.24]

Определение величины и направления подъемной силы сводится к нахол<дению главного вектора сил давления, в случае обтекания замкнутого контура идеальной жидкостью перпендикулярных к поверхности контура, что можно сделать с помощью теоремы количества движения (теорема Эйлера, ПО) и кинетической энергии (теорема Бернулли).  [c.248]

Решение. Положение тела определяется радиусом-вектором центра масс R и углами Эйлера а относительно референционной системы отсчета. Потенциальная энергия взаимодействия тела с Землей  [c.230]

Систематическое и последовательное применение методов анализа бесконечно малых к задачам механики было осуществлено впервые великим математиком и механиком Леонардом Эйлером (1707—1783), который большую часть своей творческой жизни провел в России, будучи членом открытой по указу Петра I в 1725 г. в Петербурге Российской Академии наук. В России механика начала развиваться со времен Эйлера. Творческая сила Эйлера и разносторонность его научной деятельности были поразительны. В работе Теория двилщния твердых тел Эйлер вывел в общем виде дифференциальные уравнения движения твердого тела вокруг неподвижной точки. В гидродинамике ему принадлежит вывод дифференциальных уравнений движения идеальной жидкости. Применяя метод анализа бесконечно малых, Эйлер развивает полную теорию свободного и несвободного движения точки и впервые дает дифференциальные уравнения движения точки в естественной форме. Им дана формулировка теоремы об изменении кинетической энергии, близкая к современной. Эйлером было положено начало понятию потенциальной энергии. Ему принадлелщт первые работы по основам теории корабля, по исследованию реактивного действия струи жидкости, что послужило основанием для развития теории турбин.  [c.15]

Гидромеханика (гидравлика) как наука сформировалась в XVIII веке в Российской академии наук работами Д. Бернулли (1700—1782), Л. Эйлера (1707—1783) и М. В. Ломоносова (1711 — 1765). М. В. Ломоносов открыл закон сохранения вещества в движении, который является физической основой уравнений движения жидкости. В своих работах О вольном движении воздуха, в рудниках примеченном , Попытка теории упругой силы воздуха , а также разработкой и изготовлением приборов для измерения скорости и направления ветра М. В. Ломоносов заложил основы гидравлики как прикладной науки. Л. Эйлер составил известные дифференциальные уравнения относительного равновесия и движения жидкости (уравнения Эйлера), а также предложил способы описания движения жидкости. Д. Бернулли получил уравнение запаса удельной энергии в невязкой жидкости при установившемся движении (уравнение Бернулли), являющееся основным в гидравлике.  [c.4]

Другая вариационная постановка задачи кручения бруса базируется на принципе минимума потенциальной энергия системы (см. гл. V, 5). В этом случае приходим к функционалу /7, уравнением Эйлера—Остроградского которого является уравнение Лапласа (7.54) для функции кручения ф (оно получено из уравнений равновесия Ламе), естественными граничными условиями — граничные условия (7.55) для функции ф. Читателю, желаю1Цему ознакомиться с такой постановкой вариационной задачи кручения, можно рекомендовать книгу [35].  [c.179]

Из выражения (17.6) следует, что число Эйлера жляется мерой отношения перепада статических давлений в потоке (гидравлического сопротивления) к кинетической энергии потока.  [c.179]


Смотреть страницы где упоминается термин Эйлера энергии : [c.80]    [c.294]    [c.6]    [c.5]    [c.246]    [c.400]    [c.188]    [c.82]    [c.192]    [c.258]   
Гидравлика Основы механики жидкости (1980) -- [ c.0 ]



ПОИСК



Вывод дифференциальных уравнений газодинамики (уравнений Эйлера) из интегральных законов сохранения массы, импульса, энергии

Зависимость кинетической энергии от обобщенных скоростей Теорема Эйлера об однородных функциях

Теорема об изменении кинетической энергии. Работа и мощность внутренних сил. Эйлерова форма уравнения изменения кинетической энергии

ЭЙЛЕРА 556 Химические соединения — Образование — Свободные энергии

Эйлер

Эйлера эйлеров

Эйлера энергии жидкости во вращающемся колесе

Эйлерова (L.Euler) освобождения потенциальной энергии

Эйлерова (L.Euler) освобождения упругой энергии

Эйлерова форма законов сохранения массы и энергии, теоремы количеств движения н момента количеств движения при стационарном движении идеальной жидкости



© 2025 Mash-xxl.info Реклама на сайте