Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Теория Задача плоская для области одно

В заключение данного раздела, посвященного плоским деформациям, отметим, что даже для частного случая первоначально параллельных волокон или еще более частного случая прямолинейных волокон теория, в сущности, не разработана. Например, не было рассмотрено ни одной задачи для тел, границы которых не совпадают с волокнами или нормальными линиями. Не было решено также ни одной задачи при заданных на границе усилиях. Несомненно, что эти и другие классы задач доступны для исследования, некоторые из них обсуждаются в книге Спенсера [40], но пока что в этой области сделано весьма мало.  [c.330]


В работе изучается напряженное состояние брусьев в геометрически нелинейной постановке, но с линейной зависимостью между деформациями и напряжениями, т. е. рассматриваемая задача физически линейная, а геометрически нелинейная. Решение задачи сводится к граничным задачам плоской теории упругости (одной бигармонической функции) в области поперечного сечения бруса. Рассматривается частный пример, когда область поперечного сечения является кругом. В работе приведены. явные выражения компонентов напряжений и деформации для круглого сечения.  [c.433]

Эффективные решения граничных задач для двусвязных областей. ]Метод Д. И. Шермана. За последнее время был разработан способ эффективного построения решений граничных задач плоской теории упругости для некоторого класса двусвязных областей. Этот класс включает в себя конечные и бесконечные области, ограниченные двумя замкнутыми контурами специального вида. Условием, определяющим упомянутый класс областей, служит требование, чтобы для односвязной области, внешней либо внутренней по отношению к одному из замкнутых контуров, входящих в состав полной границы и содержащей внутри себя второй контур, изучаемая задача допускала эффективное решение.  [c.575]

В заключение остановимся еще на одном вопросе. Выше были сформулированы краевые задачи для бигармонического уравнения. В,отдельных случаях, например в случае второй основной задачи, при плоском состоянии, постоянные Ламе не входят в краевое условие. Это обстоятельство дает основание предположить, что они вообще не оказывают влияния на искомые напряжения. Однако такое утверждение является справедливым лишь для односвязной области. Дело в том, что в случае многосвязных областей для разрешимости соответствующих краевых задач необходимо ввести в решение определенные слагаемые, уже, как правило, содержащие эти постоянные. Поэтому окончательное решение все же оказывается зависящим от упругих постоянных. Подробно этот вопрос рассматривается далее на основе аппарата теории аналитических функций.  [c.283]

Как видно из изложенного выше, сингулярные интегральные уравнения антиплоских задач теории упругости для многосвязных областей с отверстиями и разрезами строятся аналогично, как и в плоских задачах (см. параграф 2 главы V). В частности, легко могут быть получены интегральные уравнения второй основной задачи, когда на всех контурах известны смещения, а также смешанной задачи, когда на одних контурах (замкнутых или разомкнутых) заданы напряжения, а на других — смеш.ения.  [c.213]


Как показано в [65], подход, основанный на применении интегралов типа Коши, может быть использован также при решении краевых задач линеаризованной плоской теории упругости для многосвязных областей. Для таких задач может быть применен метод, известный в литературе [41, 63, 65, 135] как метод последовательных приближений Шварца. Этот метод представляет собой итерационный процесс, на каждом шаге которого решается граничная задача для односвязной области, ограниченной одним из контуров, составляющих границу Г данной многосвязной области, причем от шага к шагу номер контура меняется. В более общем виде (без привязки к методу Колосова-Мусхелишвили) метод Шварца рассмотрен в приложении IV. Сходимость этого метода для плоских задач теории упругости доказана [85.  [c.80]

Основные граничные плоские и антиплоские задачи теории упругости для многосвязной области, содержащей криволинейные разрезы и отверстия произвольной формы, сведены в работах [94—96] к системе сингулярных интегральных уравнений первого рода по замкнутым (контуры отверстий и внешняя граница) и разомкнутым (разрезы) контурам. При этом предполагалось, что контуры разрезов и отверстий не пересекаются между собой (см. параграф 3 данной главы). Краевые трещины рассматривались только в некоторых частных случаях граничного контура (окружность, прямая), когда удается построить модифицированные сингулярные интегральные уравнения, не содержащие искомых функций на этом контуре [70, 95]. В последнее время изучались также задачи в случае произвольной симметричной области с краевой трещиной, находящейся на оси упругой и геометрической симметрии [27, 53, 58, 104] (см. также параграфы 3—5 четвертой главы). Ниже, следуя работе [97], приводятся обобщения указанных выше результатов на общий случай многосвязной области с разрезами и отверстиями, когда разрезы одним или двумя концами могут выходить на внешнюю границу и контуры отверстий. Получены численные решения построенных интегральных уравнений при одноосном растяжении бесконечной плоскости с одним или двумя круговыми отверстиями, на контуры которых выходят радиальные трещины.  [c.33]

Относительно просто можно получить решения вспомогательной задачи и в том случае, когда после запрессовки всех дисков в области 5о остается одно отверстие. В этом случае остаются оба контурные условия (18) и (19), а решение поставленной задачи сводится к решению плоской задачи теории упругости для конечной двусвязной области.  [c.21]

В случае одной сосредоточенной силы, нормальной к границе полупространства оно может быть получено наложением особых решений, соответствуюш.их, во-первых, действию сосредоточенной силы в неограниченной упругой среде, во-вторых, линии центров расширения (элементарное решение второго типа). Решение для одной сосредоточенной силы далее легко обобщается с помощью принципа наложения на случай произвольной, распределённой по границе нормальной к ней нагрузки. Второй путь решения заключается в сведении рассматриваемой задачи к некоторой краевой задаче теории потенциала — оказывается (это можно получить, исходя из общего решения в форме П. Ф. Папковича), что задача теории упругости о разыскании напряжённого состояния в полупространстве при заданном значении нормального напряжения на границе полупространства и при отсутствии на ней касательных напряжений и сводится к разысканию одной гармонической функции, обладающей всеми характеристическими свойствами потенциала простого слоя, распределённого по плоской области загружения с плотностью, пропорциональной интенсивности нагрузки.  [c.90]

Шерман Д. И., Об одном методе решения статической плоской задачи теории упругости для многосвязных областей. Труды Сейсмологического ин-та АН СССР, 1935, Л" 54, 1—26,  [c.538]

Много дополнений было сделано в главе о механических свойствах материалов, и одна эта глава теперь содержит свыше 160 страниц. Цель такого расширения главы заключается в сосредоточении внимания на новейших достижениях в области экспериментального изучения свойств строительных материалов. Рассмотрены следующие вопросы 1) влияние несовершенств на предел прочности хрупких материалов и масштабный эффект 2) сравнение результатов испытаний образцов из монокристаллов и поликристаллов 3) испытание материалов в условиях плоской и пространственной задачи и различные теории прочности 4) сопротивление удару 5) усталость металлов при различных напряженных состояниях и методы повышения сопротивления усталости частей машин 6) сопротивление материалов при высоких температурах, явление ползучести и использование данных испытаний ползучести при проектировании. Для читателя, который желает расширить в дальнейшем свои познания в этих вопросах, будут полезны многочисленные ссылки на новейшую литературу. Наконец, в заключительном параграфе книги приводятся достаточно подробные сведения для надлежащего выбора рабочих напряжений.  [c.10]


Интегральные представления комплексных потенциалов Ф (г) и Y (г) (1.145) являются общим решением двумерной бигармони-ческой задачи, содержащим две произвольные комплексные функции g (/) и q (/) (или четыре действительные функции), что позволяет с их помощью изучать самые разные краевые задачи для областей с разрезали . В частности, удовлетворив с помощью представления (1.145) и формул (1.26), (1.30), (1.42) граничным условиям плоской задачи теории упругости для бесконечной плоскости с разрезами, когда на одном берегу разреза заданы смещения, а на другом — напряжения, найдем сингулярные интегральные уравнения второго рода. При использовании условий неидеального контакта упругих тел, когда напряжения и смещения берегов разреза связаны линейными зависимостями (см. [40, 172, 175, 261]), легко получить сингулярные интегро-дифференциальные уравнения типа Прандтля для тел с тонкостенными упругими включениями 238]. Интегральные представления могут быть использованы при решении различных смешанных задач для тел с разрезами, задач о полосах пластичности, моделируемых скачками перемещений [23], и др.  [c.38]

Подобное исследование приводит к необходимости решения краевой задачи теории упругости в сложной области, которое может быть осуществлено в точной постановке лишь для некоторых идеализированных случаев. Одной из традиционных идеализаций является предположение о неограниченности области, в которой расположены дефекты. Методы определения напряжённого состояния упругих тел вблизи внутренних концентраторов напряжений в виде систем трещин, разрезов и тонких включений изложены в монографиях Н.И. Мусхелишвили [107], Г.Я. Попова [115], Т.Н. Савина [125]. Случаи, когда дефекты расположены вблизи границы упругого тела, не могут рассматриваться в рамках упомянутой выше идеализации. В.В.Можаров-ским и В.Е. Старжинским [104] предложен метод решения плоской контактной задачи для полосы, дискретно спаянной с основанием (имеющей конечное число разрезов на границе их раздела). Система круговых отверстий, расположенных вблизи границы полуплоскости, рассмотрена в [125]. Однако алгоритмы решения задач, развитые в [104, 125] и некоторых других работах, достаточно сложны для конкретных реализаций (особенно в случае исследования смешанных задач теории упругости) и, кроме того,  [c.205]

Полученные в первой главе сингулярные интегральные уравнения основных граничных задач плоской теории упругости справедливы как для гладких, так и для ломаных и ветвящихся разрезов и кусочно-гладких граничных контуров. Однако в случае упругих областей с угловыми точками свойства интегральных уравнений усложняются, что требует их дополнительного исследования. Если для областей, ограниченных гладкими контурами, с гладкими криволинейными разрезами сингулярные части ядер интегральных уравнений содержат только ядро Коши, то в них также имеются слагаемые с неподвижными особенностями. При этом искомые решения имеют в угловой точке две различные осо-бенности степенного типа, соответствующие симметричному и антисимметричному распределению напряжений относительно бис- сектрисы клиновидной области. Это обстоятельство очень усложняет численное решение интегральных уравнений. Поэтому в численном анализе часто используют приближенные подходы, не учитывающие особенности в угловых точках или же учитывающие только одну особенность высшего порядка (см., например, работы 95, 146, 156]). Обзор исследований по решению задач теории упругости для областей с угловыми точками имеется в работах [47, 75].  [c.60]

Среди приближенных методов решения задач математической физики особую роль играет теория возмуш,ений, позволяющая построить асимптотические разложения при малых и больших значениях тех или иных характерных параметров. Применению такого подхода к контактным задачам теории упругости для изотропной полосы и изотропного слоя был посвящен специальный параграф в монографии [7]. При этом в качестве малых и больших параметров принимались, как правило, относительные геометрические размеры штампа (отношение ширины штампа к ширине полосы (слоя) или обратная величина). Между тем, в случае анизотропного и, в частности, ортотропного материала появляется еще одна возможность. Обычно некоторые жесткости композитов, моделируемых анизотропными однородными средами, отличаются по порядку величины, и, следовательно, их отношения могут рассматриваться как малые параметры. В последние десятилетия был развит асимптотический метод, основанный на построении разложения по таким параметрам. Этот метод отражен, помимо статей [1, 3, 5], в монографиях [4] и [6]. Первое его применение к контактным задачам содержится в статье Л. И. Маневича и А. В. Павленко [5], где рассмотрено вдавливание в упругую ортотропную полосу жестких штампов при наличии сил трения. В этой работе было показано, что использование малого параметра, характеризующего отношение жесткостей ортотропной среды, позволяет свести смешанную краевую задачу плоской теории упругости к последовательно решаемым задачам теории потенциала. Статья С. Г. Коблика и Л. И. Маневича [3] посвящена контактной задаче для ортотропной полосы при наличии области контакта зон сцепления и скольжения. В этой сложной задаче предложенный метод оказался особенно эффективным бьши получены явные аналитические выражения для нормальных и касательных напряжений в обеих областях, а также для заранее неизвестной границы между этими областями. В работе Н. И. Воробьевой,  [c.55]


Остановимся еще на одном, казалось бы парадоксальном, примере. Из решения плоской задачи теории упругости для бесконечной области (безразлично — бесконечной или полубеско-нечной) будет следовать, что при неравенстве нулю главного вектора внешних сил перемещения оказываются бесконечными. В этом нет ничего удивительного, поскольку при рассмотрении плоской задачи (допустим, в случае плоской деформации) с позиций пространственной задачи оказывается, что суммарное усилие обращается в бесконечность. Следует заметить, что переходы к бесконечному телу при решении задачи в напряжениях и перемещениях не эквивалентны друг другу. Если в напряжениях переход и возможен, то в смещениях он может и быть ошибочен, что и подтверждается приведенным примером. Для устранения же бесконечных смещений можно предложить, например, такой спосЪб. После того как решение в деформациях определено достаточно точно из решения для бесконечного тела, находят по ним смещения в истинном теле, исходя из его фактических размеров и краевых условий. Разумеется, строгое обоснование предлагаемого подхода затруднительно для общего случая, но в частных задачах, по-видимому, оно может быть достигнуто.  [c.304]

Займемся дальнейшим развитием, нестационарной теории профиля с тем, чтобы приспособить ее к анализу обтекания вращающейся лопасти. Хотя основы теории уже излагались в предыдущих разделах, приложение ее к лопасти несущего винта требует учета целого ряда дополнительных факторов. Применение схемы несущей линии разделяет задачу расчета нестационарных аэродинамических нагрузок при пространственном обтекании на две части внутреннюю, в которой исследуются аэродинамические характеристики профиля, и внешнюю, состоящую из расчета индуктивных скоростей, создаваемых в сечении лопасти вихревым следом винта. Что касается внутренней задачи, то при стационарном обтекании плоского профиля аэродинамические нагрузки могут быть получены из эксперимента и представлены в виде табулированных зависимостей их от угла атаки и числа Маха. При нестационарном досрывном обтекании применимы результаты теории тонкого профиля. Решение внешней задачи затруднено тем, что система вихрей винта имеет весьма сложную конфигурацию. За каждой из вращающихся лопастей тянутся взаимодействующие винтовые вихревые поверхности, деформирующиеся в поле создаваемых ими индуктивных скоростей с возникновением областей сильной завихренности в виде концевых вихревых жгутов. Аналитическое определение индуктивной скорости на лопасти без весьма существенных упрощений модели вихревого следа (например, представления винта активным диском) оказывается невозможным. На практике неоднородное поле индуктивных скоростей определяют численными методами, подробно обсуждаемыми в гл. 13. Ввиду сказанного ниже не предполагается отыскивать зависимость между индуктивной скоростью и нагрузкой путем введения функции уменьшения подъемной силы. Напротив, сами индуктивные скорости являются фактором, учитываемым явно в нестационарной теории профиля. Для построения схемы несущей линии желательно, чтобы вычисление индуктивных скоростей производилось лишь в одной точке по хорде. Проведенное выше исследование обтекания профиля на основе схемы несущей линии указывает способ, который позволяет аппроксимировать нестационарные нагрузки с достаточно полным отображением влияния пелены вихрей. Применительно к лопасти достаточно рассмотреть лишь часть пелены, расположенную вблизи ее задней кромки. При построении нестационарной теории обтекания вращающейся лопасти надлежит учесть влияние обратного обтекания и радиального течения. Теоретические нагрузки должны быть скорректированы таким образом, чтобы они отражали влияние  [c.480]

В том же 1940 г. вышла еще одна пионерская работа по численному решению ГИУ для плоской задачи теории упругости [15]. В ней Ц. О. Левина и С. Г. Михлин рассмотрели плоскость с двумя вырезами. Эта область конформно отображается на круговое кольцо, для которого известна функция Грина. В результате получено ГИУ, решенное численно путем предварительного разложения его ядра в ряд и перехода к близкому уравнению с вырожденным ядром, а последнее решалось сведением к алгебраической  [c.267]

Весьма обилий подход к решению плоских задач теории движения грунтовых вод был развит в цикле работ С. Н. Нумерова (1939 и сл.), который сводил гидродинамические задачи к соответствующ.им смешанным краевым задачам для полуплоскости и строил их решения с помош,ьн> интегралов типа Коши. Этот метод прило5ййм к задачам, область движения для которых заранее известна на плоскости комплексного потенциала f или функции Жуковского G. Впоследствии (1953, 1954) Нумеров обобщил свой подход применительно к задачам, область движения для которых заранее не известна ни на одной из этих плоскостей. При этом задачи сводятся к фредгольмовым интегральным уравнениям второго рода (вооб-ш,е говоря, сингулярным).  [c.610]

Если теперь, исходя из известных уравнений теории малых деформаций криволинейных стержней, выразить смещения г о и через внешнюю нагрузку Хп, Уп ж подставить соответствующие значения в упомянутое выше граничное условие сопряжения, то для определения функций ф и -ф, голоморфных в области пластинки, получим два комплексных условия, содержащие в правых частях одни неизвестные усилия X и У . Для задач иизгиба пластинки с подкреплением указанного вида неизвестные функции в правой части можно вообще исключить, и мы будем иметь всего одно граничное условие, правда несколько более сложное, нежели обычное условие основной плоской задачи.  [c.65]

Хациревич И. Х.,Об одном методе решения плоской задачи теории упругости для бесконечной многосвязной области, Учен. Зап. Чкаловского Гос. Пед. ин-та, 1Э57, № 11.  [c.171]

Шерман Д. И. Об одном методе решения некоторых задач кручения, изгиба и плоской теории упругости для неодносвязных областей (на укр. языке) Прикла на механ1ка , т. Ill, в. 4, 1957.  [c.171]

Решение плоской задачи теории упругости зависит от двух координат и может быть выражено через две произвольные (с точки зрения выполнения уравнений равновесия и условий неразрывности) двухмерные гармонические функции, определяющиеся путем подчинения решения двум краевым условиям на плоском граничном контуре. То обстоятельство, что ортогональные преобразования координат на плоскости и теория двухмерных гармонических функций тесно связаны с теорией функций комплексного переменного, позволило разработать общий метод решения плоской задачи, основанный на аппарате теории аналитических функций (Г. В. Колосов [10], Н. И. Мусхелишвили [20] и его школа). Этот путь в принципе позволяет подойти к решению любой плоской задачи, но наиболее эффективен для односвязных и (в меньшей мере) для двухсвязных областей. Основная идея, которой при этом руководствуются, состоит в отображении рассматриваемой области на одну из канонических областей (на полуплоскость, круг единичного радиуса или круговое кольцо) с последующим использованием аппарата интегралов типа Коши для нахождения двух неизвестных функций по заданному краевому условию. Если ограничиться только односвязными областями (каковые по существу главным образом и рассматриваются [20], [27]), то можно обойтись и без аппарата интегралов типа Коши, оперируя лишь самыми элементарными представлениями теории аналитических фунщий. В нашей книге, носящей общий характер, мы даем только этот наиболее простой и в то же время достаточно эффективный способ, отсылая читателя за более полным и общим изло-  [c.292]


Когда Л>Л, область В совпадает с М л В, <, >) — обычное риманово многообразие. Это замечание позволяет применить топологические теоремы на римановых миогообразиях к изучению механических задач. Так, например, рассмотрим тор Г с некоторой римановой метрикой. Среди всех замкнутых кривых на Р, делающих т обор<т)1в по параллели и п по меридиану, существует кривая минимальной длины. Эта кривая — замкнутая геодезическая. С другой стороны, тар Г является пространством положений плоского двойного маятника. Отсюда вытекает, что для любых целых т, п существует периодическое движение двойного маятника, при котором одно звено делает т оборотов за время, за которое второе звено делает п оборотов. Более того, такие пер нодические движения существуют при любом достаточно большом значении постоянной энергии. С вариационной теорией замкнутых геодезических можно познакомиться по книгам [161], [173].  [c.43]

ШИ относительных перемещений точек при деформации можно пренебречь. Остальные гипотезы, к-рыми пользуется С. м., здесь устранены первоначально в развитии теории упругости они или подтверждаются вполне, или частью, с известным приближением, или отвергаются в связи с анализом отдельных деформаций. Элементарные теории растяжения, кручения круглых брусков, чистого изгиба вполне согласуются с теорией упругости. Изгиб в присутствии срезывающих сил, как оказывается, подчиняется закону прямой линии гипотеза Навье), но не закону плоскости (гипотеза Бернулли). Касательные напряжения при изгибе распределяются по закону параболы, но только в тех сечениях, которые имеют незначительную толщину при большой высоте (узкие прямоугольники). В других сечениях закон распределения касательных напряжений совершенно иной. Для балок переменного сечения, к к-рым в элементарной теории прилагают закон прямой линии и параболы, теория -упругости дает другие решения в этих решениях значения напряжений и деформаций гораздо выше, чем по элементарной теории следует. Общепринятый способ расчета пластин по Баху как обыкновенных балок не оправдывается теорией упругости. Ф-лы С. м. для кручения некруглых стержней не соответствуют таковым в теории упругости. Теория изгиба кривых стержней решительно не совпадает с элементарной теорией Баха-Баумана, но результаты расчета по строгой теории и на основании гипотезы плоских сечений достаточно близки. Поставлена и разрешена для ряда случаев задача о распределении местных напряжений (в местах приложения нагрузки или изменения сечения), к-рая совершенно недоступна теории С. м. Вопрос об устойчивости деформированного состояния, элементарную форму которого представляет в С.м. продольный изгиб, получил в теории упругости общее решение Бриана (Bryan), Тимошенко и Динника. Помимо многочисленных форм устойчивости стержня, сжатого сосредоточенной силой, изучены также явления устойчивости стержней переменного сечения под действием равномерно распределенных сил и другие явления устойчивости балок при изгибе, равномерно сжатой трубы, кольца, оболочек, длинного стержня при скручивании и пр. Теория упругого удара— долевого, поперечного—занимает большое место в теории упругости и включает все большее и большее чис-чо технически важных случаев. Теория колебаний получила настолько прочное положение в теории упругости и в практи-тсе, что методы расчета на ко.чебания проникают область С. м., конечно в элементарном виде. Изучены распространение волны в неограниченной упругой среде (решение Пуассона и Кирхгофа), движение волны по поверхности изотропной среды (решение Релея), волны в всесторонне ограниченных упругих системах с одной, конечно многими и бесконечно многими степенями свободы. В связи с этим находятся решения, относящиеся к колебаниям струн, мембран и оболочек, различной формы стержней, пружин и пластин.  [c.208]

Как указывалось выше, оказалось возможным для вычисления коэффициента интенсивности напряжений Куд применять широко известный в строительной механике метод сечений [3]. Так как студенты знакомы с этим методом и достаточная точность его в решении задач прочности тел с трещинами доказана эксперимен- I тально, целесообразно рассмотреть его подробно. Суть метода I сечений в теории трещин состоит в следующем. Пусть плоская пластина единичной толщины содержит трещину и нагружена в своей плоскости. Выделим воображемым сечением часть тела, проходящего через трещину в направлении ее предполагаемого 1 распространения (рис. 9.12). Отбрасываем мысленно одну часть. Далее записываем условия равновесия внешних и внутренних сил, действующих на оставшуюся часть тела. Смысл дополнительного условия равновесия состоит в том, что усилие, передававшееся через область, занятую теперь трещиной Р, уравновешивается дополнительным усилием от концентрации напряжений Р  [c.204]


Смотреть страницы где упоминается термин Теория Задача плоская для области одно : [c.304]    [c.243]    [c.264]    [c.249]    [c.250]    [c.225]    [c.163]    [c.146]    [c.106]    [c.689]    [c.672]    [c.279]    [c.380]    [c.531]   
Прочность, устойчивость, колебания Том 1 (1966) -- [ c.0 ]



ПОИСК



Область плоская

Плоская задача

Теории Задача плоская



© 2025 Mash-xxl.info Реклама на сайте