Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Вихревой след лопасти

Из теории профиля следует, что пелена поперечных вихрей является важным фактором при определении нестационарных нагрузок, связанных с колебательным движением лопасти. В отличие от рассмотренной плоской пелены вихревой след лопасти винта представляет собой идущую зй ней спиральную поверхность. Однако наиболее существенное влияние оказывает часть этой поверхности, расположенная вблизи задней кромки лопасти. Одним из возникающих в этой связи вопросов является следующий каким способом элемент вихревой поверхности, сошедший при повороте лопасти на угол 15—45°, следует учитывать в численных методах расчета индуктивных скоростей и нагрузок Для ответа на этот вопрос и рассматривалась в предыдущем разделе плоская вихревая пелена.  [c.443]


ВИХРЕВОЙ СЛЕД ЛОПАСТИ  [c.649]

Для второго максимума динамических напряжений характерно наличие высокочастотных составляющих, обусловленных возмущениями, вызванными лопатками направляющего аппарата и колоннами статора. Это можно объяснить тем, что с ростом нагрузки взаимодействие направляющего аппарата и рабочего колеса проявляется сильнее кроме того, режим максимальной мощности соответствует полному открытию лопаток направляющего аппарата, при котором расстояние между лопатками и лопастями рабочего колеса минимально, т. е. наиболее сильно влияют вихревые следы, сходящие с лопаток.  [c.13]

Правильный учет влияния следа за пропеллером на аэродинамические характеристики сечения лопасти стал возможным после того, как Прандтль создал свою теорию крыла. Эта теория дала ясное понимание роли скорости, индуцируемой следом на крыле. Прандтль, Ланчестер и другие исследователи развили идею о том, что подъемная сила крыла обусловлена присоединенной завихренностью, порождающей в следе свободную завихренность, которая индуцирует скорость на крыле. Разработанная для крыла теория несущей линии включает в себя расчет индуктивной скорости, учитывающий особенности вихревого следа. Поэтому ученые, исследовавшие работу несущего винта, также обратились к рассмотрению вихревого следа за виНтом, чтобы найти скорости потока, обтекающего сечение  [c.61]

Это и есть искомая формула, описывающая неравномерное распределение скоростей протекания (ср. с формулой для равномерного распределения, выведенной в разд. 2.4.2.2). Если заданы угол установки лопасти, ее крутка и распределение хорд, то можно рассчитать скорость протекания как функцию г, а затем найти силу тяги и мощность несущего винта. Хотя рассчитанные таким образом аэродинамические характеристики винта лучше согласуются с экспериментальными данными, чем полученные в предположении о равномерности скоростей протекания, элементно-импульсная теория все же дает лишь приближенные результаты. Для дальнейшего уточнения расчета скоростей протекания нужно детально рассмотреть структуру вихревого следа за несущим винтом.  [c.69]

При полете вертолета вперед вихревой след винта сворачивается, причем сворачивание происходит в два этапа. Сначала отдельные вихри, сходящие с концевой части лопасти, быстро сворачиваются в вихревые жгуты, которые тянутся за каждой лопастью и образуют систему переплетающихся, заходящих одна в другую спиралей. Затем эти спирали, взаимодействуя, сворачиваются в дальнем следе в два вихря, похожие на вихри за круглым крылом. В наблюдавшейся экспериментально картине  [c.141]


При расчете нагрузок индуктивные скорости в месте расположения лопасти обычно определяются по теории несущей линии, т. е. в одной точке по хорде профиля. При этом из-за сложности формы вихревой пелены для определения индуктивных скоростей требуется весьма большой объем вычислений. При использовании же нестационарной теории обтекания профиля требуется знать распределение индуктивных скоростей по хорде. Так, для получения нестационарных подъемной силы и момента (разд. 10.2) нужно знать коэффициенты Хо, и в разложении индуктивной скорости в ряд по косинусам. При этом для уменьшения объема вычислений желательно обойтись без расчета индуктивной скорости в нескольких точках по хорде. Ниже строится такая модель ближнего вихревого следа, в рамках которой для приемлемого расчета нестационарных нагрузок достаточно вычислить индуктивную скорость по теории несущей линии лишь в одной точке по хорде.  [c.443]

Итак, расчет нагрузок на лопасти несущего винта по теории несущей линии связан с определением -индуктивных скоростей в сечениях от продольных и поперечных вихрей следа. Для определения скорости притекания потока к сечению лопасть заменяется присоединенным вихрем, расположенным вдоль линии четвертей хорд, а продольные свободные вихри, образующиеся вследствие изменения подъемной силы по размаху, продлеваются до присоединенного вихря. Индуктивная скорость подсчитывается в месте расположения присоединенного вихря. Простейшим и экономным в вычислительном отношении представлением сложной системы свободных вихрей лопасти является сетка из вихревых элементов конечной длины. Свернувшиеся концевые вихревые жгуты лопастей хорошо описываются сосредоточенным вихрем. На основе проведенного выше исследования обтекания профиля можно заключить, что модель несущей линии применима и при наличии в следе поперечных вихрей. При адекватном представлении расположенного близ лопасти участка пелены вихрей нестационарные аэродинамические эффекты могут быть рассчитаны достаточно верно, несмотря на то, что индуктивная скорость определяется лишь в одной точке по хорде (на присоединенном вихре). Для повышения точности результатов расчета пелену поперечных вихрей следует обрывать, не доходя до присоединенного вихря, на четверть хорды. Непрерывное распределение вихрей еле-  [c.448]

Итак, изменение скорости потока следующим образом влияет на нестационарные аэродинамические силы профиля появляются дополнительные бесциркуляционные составляющие подъемной силы и момента, связанные с производной d Ua)/dt возникает связь между гармониками квазистационарной и нестационарной циркуляции, вызванная влиянием вихревого следа функция уменьшения подъемной силы существенно изменяется вследствие разрежения и сгущения завихренности в следе. В соответствии с изменением скорости обтекания сечений лопасти при полете вперед все три эффекта имеют периодический характер с основной частотой, равной частоте вращения винта. Выра-.жения членов, соответствующих бесциркуляционным подъемной силе и моменту, справедливы для любых изменений U. Простая аппроксимация Сц(/г, ijj) л С(й) при приведенной частоте, определяемой по местной скорости, дает хорошие результаты до значений (х/г = 0,7. При малых значениях ц/г можно воспользоваться более грубой аппроксимацией Сц(п, j) = С(/гй/г), в оторой приведенная частота построена по средней скорости. Эта аппроксимация не учитывает влияния переменной скорости потока при построении вихревого следа.  [c.454]

Даже для расположенных вблизи лопастей элементов такой поверхности можно надеяться получить удовлетворительную аппроксимацию посредством использования сетки дискретных вихрей с большим радиусом ядра (для уменьшения скорости вблизи вихря). Представление непрерывной вихревой пелены сеткой дискретных вихрей наиболее экономно в отношении объема вычислений. Однако возможны случаи, когда для повышения точности расчета скоростей требуется использование не сеток, а площадок с непрерывно распределенными вихрями. Такое представление желательно, например, для участков пелены, непосредственно примыкающих к задней кромке лопасти, и для сходящих с впереди идущей лопасти участков пелены, вблизи которых проходит следующая лопасть. Одним из конечных элементов, для которых интегрирование определяемых формулой Био — Савара скоростей имеет смысл выполнить аналитически, является плоская прямоугольная вихревая площадка.  [c.495]


В работе [D.14] выполнено экспериментально-теоретическое исследование флаттера лопастей несущего винта вертолета, выведены уравнения махового и установочного движений жесткой лопасти, а также уравнения с учетом изгиба лопасти в плоскости взмаха. В случае квазистационарной гипотезы С = = 1) было отмечено хорошее соответствие теоретических и экспериментальных данных по параметру Me/Q и частоте флаттера. С использованием функции уменьшения подъемной силы было получено такое же или несколько лучшее согласие по частоте флаттера, однако расчетные значения ме/Q оказались заниженными. Флаттер, вызванный вихревым следом, был исследован для случая нулевого общего шага, когда нестационарные аэродинамические явления играют наиболее важную роль. С исполь-  [c.596]

На режиме висения концевой вихрь до подхода следующей лопасти успевает лишь ненамного сместиться вниз и к оси винта. Поэтому вихрь приближается к концевой части лопасти, а расстояние между ними мало. В результате сильно изменяется нагрузка на конце лопасти, что оказывает заметное влияние на аэродинамические характеристики винта на режиме висения (см. также разд. 2.7.4). При полете вперед вихревой след винта уносится потоком, так что концевые вихри перемещаются вдоль всего диска винта, а не остаются лишь вблизи концевых сечений лопастей. Взаимодействие лопастей с вихрями происходит главным образом на боковых частях диска винта, где вихри оказываются в непосредственной близости от лопастей. Поэтому на режиме полета вперед индуктивные скорости распределяются по азимуту крайне неравномерно, что порождает высшие гармоники нагрузок, амплитуды которых велики. Таким образом, при полете вперед неоднородность поля индуктивных скоростей существенно влияет на нагрузки, вибрации вертолета и шум винта. Довольно велико влияние этого поля и на первую гармонику нагрузки, а следовательно, и на эффективность циклического управления винтом. С изменением режима полета влия-  [c.652]

Были опробованы различные модели вихревого следа. Интенсивные концевые вихри хорошо описываются с помощью прямолинейных вихревых отрезков, имеющих вязкое ядро конечных размеров (см. разд. 10,8), причем криволинейная форма вихревых нитей хорошо описывается ломаной из прямолинейных отрезков, соответствующих изменению азимута на 15—30°, Модель следа, в которой пелена вихрей, сходящих с внешней части лопасти, сворачивается в концевой вихрь, используется почти всеми авторами некоторые различия возникают при описании ядра вихря с целью устранения особенности индуктивной скорости в центре вихря. Моделирование же пелены продольных и поперечных вихрей, сходящей с внутренних сечений лопасти, отличается разнообразием. Эта часть пелены влияет гораздо слабее, чем концевые вихри, что открывает большие возможности выбора удовлетворительной по точности модели. Чаще всего применяется модель пелены в виде сетки дискретных вихрей, т. е. прямолинейные отрезки вихря используются, для моделирования не только концевых вихрей, но и пелены вихрей, сходящих с внутренних сечений лопасти (рис. 13.4). Такая модель пелены соответствует ступенчатому изменению циркуляции присоединенных вихрей лопасти как по радиусу, так и по ази-  [c.655]

В работе [Р.68] рассмотрен метод расчета неоднородного поля индуктивных скоростей, в котором пелена моделировалась недеформируемой сеткой вихревых отрезков. На начальной стадии расчета маховое движение полагалось известным из эксперимента и вычислялись лишь аэродинамические нагрузки. Единственной неизвестной была циркуляция присоединенного вихря лопасти, которая определялась в конечном числе точек диска винта на различных азимутах и радиусах. С помощью теории тонкого профиля эта циркуляция выражалась через углы атаки, определяемые индуктивными скоростями и движением лопасти. Индуктивная скорость вычислялась по формуле Био — Савара и зависела от интенсивности элементов вихревого следа, определяемой в свою очередь циркуляцией присоединенного вихря лопасти. Таким образом, задача сводилась к решению системы линейных алгебраических уравнений для циркуляции присоединенного вихря в ряде точек диска винта. Поскольку таких точек требуется от 100 до 200, число уравнений в этой системе оказывается весьма значительным.  [c.666]

При приближении вращающейся лопасти несущего винта к вихревому следу предыдущей лопасти аэродинамические нагрузки на ней сильно меняются в зависимости от относительного положения следа и лопасти. Поэтому для определения переменных индуктивных скоростей и аэродинамических нагрузок в первую очередь нужно установить форму системы вихрей. При вращении лопасти с нее сходят как продольные, так и поперечные вихри. Далее элементы этих вихрей переносятся с местной скоростью воздушного потока, складывающейся из скорости невозмущенного потока и скорости, которую индуцирует на соответствующем элементе система вихрей винта. В предположении постоянства индуктивной скорости сходящая с вращающейся лопасти пелена вихрей имеет вид скошенной винтовой поверхности. На самом деле индуктивные скорости в разных точках пелены вихрей (как и на диске винта) существенно различны. Поэтому действительная форма пелены вихрей, определяемая путем интегрирования перемещений ее точек в неоднородном поле местных скоростей, существенно отличается от упомянутой идеальной пелены. На большом расстоянии вниз по потоку система вихрей винта стремится свернуться в два вихревых жгута, подобных концевым вихрям кругового крыла. Однако для определения нагрузок существенны деформации пелены только вблизи диска винта, и в особенности положение элементов концевых вихрей нри первом приближении их к последующей лопасти. Явление взаимодействия свободного вихря с лопастью не исчерпывается возникновением на лопасти соответствующих аэродинамических нагрузок. Лопасть в свою очередь влияет на вихрь, вызывая значительное изменение скорости  [c.671]


Другим важным фактором, влияющим на работу винта в условиях срыва, является аэроупругая реакция лопастей при больших нагрузках, выражающаяся в характере вибраций вертолета и нагрузок в цепи управления. Движение лопастей в свою очередь приводит к изменению углов атаки, а следовательно, и аэродинамических сил. В частности, большие пикирующие моменты профиля при срыве вызы-вают сильное закручивание лопасти, что непосредственно изменяет углы атаки сечений. Поскольку жесткость цепи управления лопастью обычно невелика, крутильные колебания лопасти в основном состоят из ее поворота как твердого тела за счет упругих деформаций цепи управления. Таким образом, расчет характеристик несущего винта в условиях срыва не может ограничиваться рассмотрением лишь аэродинамических сил, а требует полного анализа, включающего аэроупругие колебания лопастей. При этом углы атаки сечений должны определяться для неоднородного поля скоростей, индуцируемых вихревым следом винта с учетом упругого кручения лопасти. Игнорирование неравномерности скорости протекания и упругого кручения лопасти ведет к большим погрешностям при расчете характеристик винта в условиях срыва.  [c.798]

Зависимость результата от Ст/о с учетом разброса точек, характерного для исходных экспериментальных данных, вполне просматривается. Таким образом, установлено, что при типичных для вертолетных винтов нагружениях звуковое давление подчиняется зависимости (Сг/ст) . Для сильно нагруженных винтов шум нарастает с увеличением Ст/о сильнее, тогда как у слабо нагруженных винтов шум постоянен или даже вновь уменьшается с увеличением Ст/о, что, вероятно, связано с приближением вихревого следа к лопастям.  [c.830]

Предпринимались попытки построения, более строгой теории широкополосного шума, создаваемого случайными нагрузками на движущейся лопасти. Проведено исследование шума изолированного профиля, возникающего вследствие турбулентности пограничного слоя и вихревого следа, а также шума крыльев и вращающихся лопастей при обтекании их турбулентным потоком. Установлено, что широкополосный шум несущего винта  [c.832]

Хлопки лопастей представляют собой импульсные возмущения звукового давления, происходящие с частотой прохождения лопастей NQ. Воспринимаемый как звуки периодических ударов, такой шум доминирует над всеми остальными источниками шума и ощущается как весьма неприятный. Хлопки лопастей повышают общий уровень шума вследствие увеличения его спектра в широком диапазоне высоких частот, а импульсный характер хлопков усиливает беспокоящее действие шума. Хлопки лопастей можно рассматривать как предельный случай шума вращения, что обнаруживают зависимости звукового давления от времени, демонстрирующие резкие импульсы. Причиной хлопков лопастей может быть любое аэродинамическое явление, при котором происходят быстрые изменения нагрузки на лопасти, такие, как влияние сжимаемости и толщины конца лопасти, пересечение лопастями вихрей следа, а возможно, и срыв потока на лопасти. Возникновение хлопков лопастей зависит от конструктивных параметров и режима работы винта. При больших концевых скоростях или больших скоростях полета основными причинами хлопков являются, по-видимому, сжимаемость воздуха и влияние толщины лопасти. В тех случаях, когда лопасти подходят близко к вихревым следам своего или соседнего винта, важной причиной хлопков лопастей становится взаимодействие их с вихрями.  [c.865]

В работе [С.98] найдено, что имеется связь между возникновением хлопков лопастей и значительными изменениями нагрузок вследствие влияния вихрей. На этом основании сделан вывод, что хлопки лопастей при малых скоростях полета, по-видимому, вызваны взаимодействием вихря с наступающей лопастью. Зависимость хлопков лопастей от условий полета при этом объясняется изменением структуры вихревых следов. При больших скоростях полета хлопки лопастей, по-видимому, связаны с образованием местного скачка уплотнения на конце наступающей лопасти. Эти вопросы исследовались также в работе [С.94].  [c.865]

При положительных углах атаки может произойти срыв потока с тыльной стороны почти у входной кромки без дальнейшего прилипания его. Обычно такое состояние наступает около 20° при острой кромке и около Др 40° при хорошо спрофилированной входной кромке. Наличие такого вихревого участка способствует увеличению потерь не только в своей лопастной системе, но и в следующей за нею. При отрицательных углах атаки срыв потока с лицевой стороны получается местным — с прилипанием к профилю лопасти около середины длины лопасти, поэтому величина потерь будет меньше, чем при положительном угле атаки.  [c.58]

Этот же результат можно получить по теории Лоуи, если при использовании бесселевых функций сохранить лишь члены нулевого порядка относительно k. Миллер показал, что такие аппроксимации достаточно хорошо описывают функцию Лоуи при k 0,5 для любых расстояний между вихревыми поверхностями. Наибольшая погрешность имеет место в представлении мнимой части (т. е. в сдвиге фаз) при малых h/b. Отсюда был сделан вывод, что теория несущей линии удовлетворительно описывает вли-яние повторных приближений к лопасти как поперечных, так и продольных вихрей, и только ближний вихревой след лопасти требует специального рассмотрения.  [c.468]

Выходную кромку лопастей желательно делать зв как можно тоньше. Но по условиям прочности и технологии изготовления кромка не может выпол-няться острой. При толстой выходной кромке ло пасти за ней образуется вихревой след, а это свя- д2 зано с увеличением потерь. На рис. 18 дана зависимость к. п. д. неподвижной решетки от относительной толщины выходной кромки [25]. В нашем случае толщина отнесена к длине линии тока в меридиональном сечении. Из рис. 18 видно, что  [c.53]

Предлагаемая вниманию читателей монография известного американского специалиста по вертолетам представляет собой наиболее полное на сегодняшний день изложение теории вертолета, включающее целую иерархию математических моделей аэродинамики, динамики, аэроупругости, управляемости и устойчивости движения вертолета. При изложении аэродинамики несущего винта много места отведено классическим схемам импульсной теории винта. Рассмотрены модели вихревой теории, которые допускают аналитическое решение, хотя бы приближенное. Впервые так полно излагаются теория обтекания лопасти нестационарным потоком с учетом повторного влияния вихревого следа и методы расчета шума, создаваемого вертолетом. Вопросы динамики лопастей несущего винта рассмотрены в книге весьма подробно вгОють до использования наиболее сложного представления движения дифференциальными уравнениями с периодическими коэффициентами. При исследовании динамики несущего винта и вертолета в целом автор, отступая от традиционной формы изложения, широко пользуется весьма уместным здесь математическим аппаратом теории автоматического управления.  [c.5]

В 1919 г. А. Бетц подробно исследовал систему вихрей, образующих след пропеллера, и на базе вихревой теории определил минимум потребной мощности и наивыгоднейшее распределение нагрузок винта. Л. Прандтль в приложении к статье Бетца указал способ введения приближенной поправки, которая в рамках дисковой теории учитывает концевой эффект— влияние числа лопастей на распределение нагрузок винта. Около 1920 г. Р. Вуд и Г. Глауэрт, а также Э. Пистолези выполнили работы, ставшие дальнейшим развитием вихревой теории. В 1929 г. С. Голдстейн более строго рассмотрел вихревой след пропеллера с конечным числом лопастей.  [c.84]


Дженни, Олсон и Лендгриб [J.10] сравнили несколько методов расчета аэродинамических характеристик на режиме висения а) простые формулы с равномерной скоростью протекания и постоянным коэффициентом сопротивления, б) элементно-импульсную теорию, в) вихревую теорию Голдстейна — Локка, г) численное решение с неравномерной скоростью протекания без учета и с учетом поджатия следа (в последнем случае структура следа была заранее задана по экспериментальным данным). Обнаружилось, что классические методы и численное решение без учета поджатия следа завышают величину потребной мощности на висении, причем ошибка возрастает с увеличением нагрузки лопасти Сг/а (а также с увеличением концевого числа Маха и коэффициента заполнения и уменьшением крутки). Ошибки были объяснены тем, что не учтено под-жатие спутной струи или, другими словами, не принята во внимание действительная форма концевых вихрей. На нагрузку лопасти сильное влияние оказывает концевой вихрь, сходящий с предыдущей лопасти, т. е. нагрузка в значительной степени зависит от положения этого вихря по радиусу и вертикали относительно лопасти. Влияние вихря заключается в увеличении углов атаки внешних (для вихря) сечений лопасти и уменьшении углов атаки внутренных сечений. При умеренных (0,06 Ст/о 0,08) и больших нагрузках лопасти вихрь может вызвать срыв в концевой части, а значит, ограничить достижимую нагрузку концевой части и увеличить ее сопротивление, снизив тем самым эффективность несущего винта. Так как в концевой части лопасти нагрузка максимальна, аэродинамические характеристики винта в сильной степени зависят от характера обтекания концевых частей, а следовательно, от небольших изменений положения вихря (а также изменений профиля и формы лопасти в плане). Эффекты сжимаемости тоже играют важную роль, так как число Маха на конце лопасти максимально. Если бы сжимаемость воздуха и срыв не сказывались, влияние концевых вихрей на распределение нагрузки было бы еще сильнее, но эти факторы действуют взаимно исключающим образом. Если поджатием следа пренебречь, то все сечения лопасти становятся внутренними для вихря и он нигде не увеличивает углов атаки. При использовании схемы распределенной по следу завихренности или даже более простых схем влияние концевых вихрей вообще нельзя оценить. Таким образом, уточнение формы следа является решающим моментом в усовершенствовании методов расчета амодинами-ческих характеристик винта на режиме висения. Положение концевого вихря по радиусу и вертикали относительно следующей лопасти, к которой он подходит очень близко, имеет  [c.99]

Если лопасть несущего винта совершает п колебаний за оборот, то частота ее колебаний m равна nQ, где Q — угловая скорость вращения винта. Поскольку при этом скорость набегающего на сечение потока равна Qr, а полухорда — с/2, для приведенной частоты получаем выражение k = n jlr. В случае винтов с лопастями большого удлинения приближенно можно принять k 0,05n. Для низких гармоник, когда приведенная частота мала, функция уменьшения подъемной силы близка к 1. Так, для первой гармоники вихревой след уменьшает подъемную силу примерно на 5%. Поэтому пренебрежение влиянием следа и другими нестационарными эффектами при выполненном в предыдущих главах анализе аэродинамических коэффициентов несущего винта и махового движения вполне оправдано. Однако для высших гармоник приведенная частота довольно велика, и влияние следя поперечных вихрей необходимо принимать во внимание при точном расчете нагрузок.  [c.441]

Рис. 10.10, Двумерная нестационарная модель вихревого следа вращающейся лопасти (однолопастный винт). Рис. 10.10, Двумерная нестационарная <a href="/info/143593">модель вихревого следа</a> вращающейся лопасти (однолопастный винт).
Введенное в гл. 8 фурье-преобразование координат означает, переход к степеням свободы винта как твердого тела. Каждая степень свободы в невращающейся системе координат (общий шаг, циклический шаг и безреакционное движение) определяет относительное движение всех N лопастей винта, а значит, и соответствующую зависимость между интенсивностями образующихся за лопастями вихревых следов. Поэтому входящая в функцию уменьшения подъемной силы С величина W для каждой из таких степеней свободы должна определяться отдельно. При изменении общего шага движение всех лопастей происходит в одной и той же фазе по времени, так что сдвиг по фазе в интенсивности пелены связан лишь с наличием угла между лопастями. При нулевом сдвиге фазы по времени (Аг]) = 0) имеем  [c.461]

Таким образом, изменение общего шага дает те же нагрузки, что у эквивалентного однолопастиого винта с расстоянием между вихревыми следами йэкв = /г и относительной частотой ( o/Q) экв = со/Л/й. Отметим, что у однолопастного винта сдвиг по фазе между интенсивностями соседних слоев вихрей зависит лишь от одного параметра (w/Q), тогда как у Л/-лопастного винта —от двух параметров (Дг)) и w/Q). Поэтому интенсивность всех слоев будет изменяться в одной и той же фазе [при целочисленной величине ( o/Q) экв] только в том случае, когда колебательное изменение общего шага лопастей будет происходить с частотой, кратной NQ. Для безреакционной формы (Л//2-я форма, которая, как показано в разд. 8.4.1, может существовать лишь при четном числе лопастей) последовательные лопасти движутся одинаково, но в противоположных направлениях. Это соответствует сдвигу по фазе на 180°, так что, полагая Аг)з = я(й/(о), получим  [c.461]

Высшие гармоники нагружения лопастей несущего винта при полете вперед рассматривались в работе Миллера [М.125] (1964 г.), где было установлено, что неоднородность поля скоростей протекания потока через диск винта связана главным образом с наличием и формой концевых вихревых жгутов лопастей, интенсивность которых определяется средним значением подъемной силы винта ). Таким образом, доминирующую роль в образовании высоких гармоник нагрузки при полете вперед играют не поперечные, а продольные вихри. Следующим по важности фактором является изменение скоростей протекания вследствие влияния ближней к лопасти части ее следа. Миллер установил, что при очень малых значениях характеристики режима ц рассмотренные выше эффекты повторного влияния пелены весьма существенны. Однако при ц 0,2 сохраняется влияние лишь близкой к лопасти части следа, учитываемое функцией Теодорсена.  [c.466]

В работе [D.13] описывается экспериментальное исследование усиления изгибных колебаний модели лопасти несущего винта, в котором особое внимание уделялось изучению повторного влияния вихревого следа на аэродинамическое демпфирование таких колебаний по различным формам. Величина демпфирования махового движения лопасти на режиме висения определялась по ее вынужденным колебаниям при приложении моментов в плоскости взмаха и по переходным процессам. Получено хорошее соответствие с результатами теории Лоуи. Подтверждено получаемое расчетом уменьшение демпфирования гармоник с частотой, кратной частоте вращения винта, вследствие уменьшения определяющей нестационарную подъемную силу функции С.  [c.466]

Займемся дальнейшим развитием, нестационарной теории профиля с тем, чтобы приспособить ее к анализу обтекания вращающейся лопасти. Хотя основы теории уже излагались в предыдущих разделах, приложение ее к лопасти несущего винта требует учета целого ряда дополнительных факторов. Применение схемы несущей линии разделяет задачу расчета нестационарных аэродинамических нагрузок при пространственном обтекании на две части внутреннюю, в которой исследуются аэродинамические характеристики профиля, и внешнюю, состоящую из расчета индуктивных скоростей, создаваемых в сечении лопасти вихревым следом винта. Что касается внутренней задачи, то при стационарном обтекании плоского профиля аэродинамические нагрузки могут быть получены из эксперимента и представлены в виде табулированных зависимостей их от угла атаки и числа Маха. При нестационарном досрывном обтекании применимы результаты теории тонкого профиля. Решение внешней задачи затруднено тем, что система вихрей винта имеет весьма сложную конфигурацию. За каждой из вращающихся лопастей тянутся взаимодействующие винтовые вихревые поверхности, деформирующиеся в поле создаваемых ими индуктивных скоростей с возникновением областей сильной завихренности в виде концевых вихревых жгутов. Аналитическое определение индуктивной скорости на лопасти без весьма существенных упрощений модели вихревого следа (например, представления винта активным диском) оказывается невозможным. На практике неоднородное поле индуктивных скоростей определяют численными методами, подробно обсуждаемыми в гл. 13. Ввиду сказанного ниже не предполагается отыскивать зависимость между индуктивной скоростью и нагрузкой путем введения функции уменьшения подъемной силы. Напротив, сами индуктивные скорости являются фактором, учитываемым явно в нестационарной теории профиля. Для построения схемы несущей линии желательно, чтобы вычисление индуктивных скоростей производилось лишь в одной точке по хорде. Проведенное выше исследование обтекания профиля на основе схемы несущей линии указывает способ, который позволяет аппроксимировать нестационарные нагрузки с достаточно полным отображением влияния пелены вихрей. Применительно к лопасти достаточно рассмотреть лишь часть пелены, расположенную вблизи ее задней кромки. При построении нестационарной теории обтекания вращающейся лопасти надлежит учесть влияние обратного обтекания и радиального течения. Теоретические нагрузки должны быть скорректированы таким образом, чтобы они отражали влияние  [c.480]


Флаттер, вызываемый вихревым следом. На некоторых режимах работы повторное влияние вихревого следа несущего винта может вызывать неустойчивость движения по одной степени свободы. С учетом функции Лоуи аэродинамическое демпфирование движений лопасти в ГШ и ОШ может значительно уменьшиться. На практике такой флаттер возникает при условиях, когда повторное влияние вихревого следа наиболее велико, т. е. в случаях малого общего шага при наземных испытаниях или на авторотации, на режимах висения или полета с малыми скоростями и в случае, когда собственная частота установочного движения почти кратна частоте вращения винта. В этих условиях след остается вблизи диска винта, -И вихревые поверхности индуцируют скорость в фазе. При увеличении общего шага, скорости набора высоты или полета-вперед влияние следа, а значит, и возможность возникновения вызванного им флаттера уменьшаются. Неустойчивости по одной степени свободы учитываются решением уравнений совместных махового и установочного движений лопасти как флаттер и могут быть определены по преобладанию составляющей собственного вектора, соответствующей корню с положительной действительной частью.  [c.593]

Брукс и Бейкер [В. 145] экспериментально исследовали флаттер на модели несущего винта (режим висения) с целью определения влияния концевого числа Маха, конструкционного демпфирования и центровки лопасти. Скорость флаттера QR/atij -оказалась почти постоянной для значений общего шага, при которых не было срыва, а частота флаттера была существенно ниже собственной частоты установочных колебаний лопасти ((0 0,7(00). Смещение центра масс лопасти вперед в общем увеличивало скорость флаттера при малом общем шаге. При значениях общего шага, близких к нулю, наблюдался флаттер, вызванный вихревым следом, при скорости, составляющей около 85 % теоретической, и частоте ш О,8о)0, Были также получены данные по срывному флаттеру при больших углах общего шага. Обнаружено положительное влияние сжимаемости вблизи критического числа Маха профиля если флаттер не появлялся при Мк < 0,73, то он не возникал вообще. Досрывная скорость 4>латтера вначале уменьшается по ме )е увеличения М, а затем, после некоторого значения М, быстро увеличивается. Этот стабилизирующийся эффект сжимаемости объясняется смещением назад центра давления после достижения критического числа Маха. Был сформулирован следующий приближенный критерий для конструкционного относительного демпфирования свыше  [c.597]

СИЛОЙ, которая, согласно нестационарной теории профиля, в свою очередь зависит от движения лопасти и величины циркуляции. Поэтому уравнение махового движения лопасти позволяет связать коэффициенты гармоник циркуляции с коэффициентами махового движения, что замыкает определяющую их систему уравнений. Решение ищется методом последовательных приближений, а индуктивные скорости подсчитываются при заданной циркуляции. После этого вычисляются коэффициенты гармоник нагрузки и махового движения, что позволяет уточнить циркуляцию. Процедура повторяется до достижения сходимости приближений. Поскольку высшие гармоники индуктивных скоростей в основном зависят от структуры вихревого следа, в качестве первого приближения можно использовать среднее для заданной силы тяги значение циркуляции. Миллер обнаружил, что гармоники нагрузок сильно зависят от шага винтовых поверхностей, и предположил, что для расчета влияния концевого вихря, приближающегося к лопасти, требуются нелинейная вихревая теория и представление лопасти несущей поверхностью. Он ввел также концепцию полужесткого следа, каждый элемент которого имеет вертикальную скорость, равную скорости протекания в соответствующей точке диска винта в момент схода этого элемента с лопасти.  [c.665]

В теории винта для описания вихревого. следа используется ряд моделей. Модель следа, все элементы которого переносятся с одной и той же средней скоростью, называется линейной или жесткой. Если входящая в состав скорости переноса каждого элемента индуктивная скорость берется равной ее значению в точке диска винта в момент схода этого элемента, то получающийся след называется полу-жестким. Возможно, что после того, как угол ф превысит 2n/N (т. е. элемент вихря приблизится к следующей лопасти), было бы точнее вводить в состав скорости переноса среднюю по диску винта индуктивную скорость. Если каждый элемент вихря переносится с местной скоростью потока, в которую входит индуктивная скорость, вызываемая самим следом, то след деформируется (относительно идеализированного линейного следа), и тогда его называют свободным или нежестким. Деформация следа может быть определена как расчетом, так и экспериментально. При использовании в расчетах формы вихрей, взятой из эксперимента, часто говорят, что модель вихрей имеет предписанную форму.  [c.673]

В теории несущей поверхности взаимодействие крыла с пеленой вихрей рассматривается весьма полно. Это достигается тем, что крыло заменяется вихревой поверхностью, причем граничные условия выполняются во всех ее точках. Поэтому теория несущей поверхности пригодна для случаев сильного изменения индуктивных скоростей и нагрузок, имеющих место вблизи конца лопасти, а также при взаимодейетвии ее с вихревой пеленой. В развитии теории несущей поверхности применительно к крылу в последнее время достигнуты значительные успехи. Однако перенесение этой теории на случай вращающейся лопасти представляет собой весьма сложную задачу. Поскольку лопасти винта при вращении попадают в собственный вихревой след, модель такого следа должна строиться достаточно аккуратно, так как в противном случае применение схемы несущей поверхности не будет оправдано. Необходимо использовать модель свободного следа, учитывать сворачивание пелены в концевой жгут и другие тонкости структуры следа. Лишь /на режиме висения задача может рассматриваться как стационарная. Исследование работы винта на режиме полета вперед требует построения нестационарной теории несущей поверхности. Хотя при этом внешний поток и нагрузки являются периодическими, все гармоники решения связаны друг с другом. Наконец, ввиду того, что у большинства винтов концевые скорости велики, необходим учет влияния сжимаемости.  [c.687]

В настояш ее время имеются лишь единичные работы по расчету обтекания двух взаимно враш аюш ихся пространственных венцов. В [3, 4] решена задача о нестационарном аэродинамическом взаимодействии венцов прямым численным интегрированием уравнений газовой динамики. В [5 для расчета обтекания идеальной несжимаемой жидкостью двух противоположно враш аюш ихся винтов использован панельный метод, сочетаюш ий прямой численный расчет по времени с аппаратом интегральных уравнений. С целью уменьшения времени счета использовалась упрош енная твердовинтовая модель вихревых следов, а также выбиралось одинаковое количество лопастей в обоих винтах, что возволяло уменьшить размерность матрицы коэффициентов влияния. Такие подходы сопряжены с большими затратами ресурсов ЭВМ и вряд ли пригодны для многопараметрических исследований особенностей рассматриваемых течений на современных ЭВМ. В этом отношении развитый в данной работе полуаналитических подход обладает значительным преимуш еством.  [c.683]

Академик Г. Ф. Проскура на основании разработанной им еще в 1931 г. вихревой теории центробежных насосов предложил следующую зависимость для определения поправки, учитывающей влияние конечного числа лопастей на значение тео- ретического напора  [c.240]


Смотреть страницы где упоминается термин Вихревой след лопасти : [c.72]    [c.465]    [c.468]    [c.595]    [c.664]    [c.667]    [c.670]    [c.682]    [c.866]    [c.686]   
Смотреть главы в:

Теория вертолета  -> Вихревой след лопасти



ПОИСК



Вихревой след

Вихревые усы

Лопасть

Следы



© 2025 Mash-xxl.info Реклама на сайте