Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Уравнение вариационное равновесия оболочки

Уравнения статического равновесия оболочки строятся подобно уравнениям движения на основе вариационного уравнения следующего вида  [c.107]

Тогда вариационные уравнения для всех рассматриваемые конструктивно-анизотропных оболочек в качестве условий стационарности имеют одинаковые дифференциальные уравнения равновесия, выраженные в обобщенных усилиях (производные понимаются в обобщенном смысле), и геометрические соотношения такие же, как для гладкой оболочки. Все различия содержатся в физических уравнениях, которые в общем случае по форме совпадают с уравнениями для анизотропных оболочек, но имеют различные параметры упругости, отражающие все особенности конструктивной анизотропии. Таким образом, приведение конструктивно-анизотропных оболочек к анизотропным состоит в определении физических параметров.  [c.218]


Вычислим вариацию работы внешней поверхностной нагрузки SAf, вариацию работы внешних контурных усилий 5Л и подставим их найденные значения вместе с 5П из (3.21) в вариационное уравнение (1.15), Приравнивая нулю выражения, стоящие перед вариациями независимых перемещений щ, w получим пять нелинейных дифференциальных уравнений равновесия оболочки в удельных усилиях и моментах  [c.56]

Для вывода уравнения равновесия оболочки используем вариационный принцип Лагранжа, в соответствии с которым  [c.43]

ВАРИАЦИОННЫЕ УРАВНЕНИЯ РАВНОВЕСИЯ ОБОЛОЧЕК И ГРАНИЧНЫЕ УСЛОВИЯ  [c.164]

Аналогично показанному в настоящем разделе выводу может быть сделан вывод дифференциальных уравнений равновесия и совместности деформаций в теории упругости, в теории пластин и оболочек и т. д. Одновременно с уравнениями могут быть получены все естественные граничные условия ). Можно показать, что уравнения Эйлера инвариантны при преобразовании подынтегральной функции в функцию от новых независимых переменных. Методы вариационного исчисления удовлетворяют тому требованию, что минимум скалярной величины (функционала) не зависит от выбора координат. Это наиболее естественным образом соот-  [c.448]

Решение задачи устойчивости оболочек в малом после каждого шага по внешним воздействиям (исследуется устойчивость оболочек при мгновенном деформировании) или по времени (исследуется устойчивость оболочек при ползучести) сводим к анализу однородного вариационного уравнения (11.27). Наличие ненулевых вещественных решений этого уравнения при некотором критическом уровне внешних воздействий (в первом случае) или в некоторый критический момент времени (во втором случае) означает потерю устойчивости оболочки с переходом в новое, близкое к основному состояние равновесия.  [c.34]

Уравнение равновесия шпангоута (4.167) можно получить другим способом, не рассматривая силовые условия сопряжений (4.157). При вариационном способе получения уравнений равновесия достаточно лишь кинематических условий (4.164). Рассмотрим целиком узел конструкции (см. рис. 4.14), включая шпангоут и оболочку. Согласно принципу возможных перемещений в положении равновесия для рассматриваемого узла будем иметь следующее условие  [c.166]


С аппроксимацией напряжений поперечного сдвига дело обстоит несколько сложней. Как указывается в [6] анализ достаточно точных решений задач изгиба толстых плит и оболочек, а также специальные исследования, посвященные вопросу выбора аппроксимирующих функций, показывают, что некоторые неизбежные неточности, которые допускаются при выборе этих функций, незначительно влияют на основные расчетные величины оболочки вдали от линий искажения. Некоторый произвол при разумном выборе функций не может внести в уточненную теорию недопустимых погрешностей . Вариационный принцип Рейсснера позволяет достаточно гибко подойти к этому вопросу. Вид аппроксимирующих функций можно найти, исходя из структуры уравнений равновесия (4.189). Интегрируя первое уравнение по г, получим [6]  [c.172]

Другой пример дают задачи расчета многосвязных оболочек, разобранные в гл. 5. Функционал Кастильяно для многосвязной оболочки при статических граничных условиях имеет в качестве одного из условий стационарности уравнения неразрывности контура отверстия-, его аналог — функционал Лагранжа — имеет в качестве условий стационарности уравнения равновесия контура отверстия, но для задачи с деформационными граничными условиями. Этот пример показывает, что вариационная форма статико-геометрической аналогии позволяет глубже увидеть связь уравнений и найти ее между соотношениями, которые раньше казались несвязанными.  [c.135]

Книга состоит из 11 глав, Гл. 1 содержит сведения из геометрически нелинейной теории многослойных анизотропных оболочек типа Тимошенко построенной на основе независимых гипотез относительно характера распределения перемещений и поперечных касательных напряжений по толщине пакета. Путем использования смешанного вариационного принципа получены уравнения равновесия, граничные условия и интегральные соотношения упругости для поперечных касательных напряжений. В случае осесимметричной деформации многослойных анизотропных оболочек вращения выведена нормальная система десяти обыкновенных дифференциальных уравнений первого порядка, которая в дальнейшем решается численно на ЭВМ.  [c.4]

Уравнения равновесия и соответствующие им граничные условия многослойных анизотропных оболочек получим, применив смешанный вариационный принцип [ 1.29]  [c.16]

Здесь n — номер шага по нагрузке. В результате вариационное уравнение равновесия гибкой упругопластической оболочки средней толщины, взаимодействующей со штампом, приобретает форму  [c.76]

Естественно, что каждый из полученных таким образом вариационных принципов позволяет удовлетворить вариационным методом тем уравнениям теории оболочек, которые не были присоединены к (У.5) и (У.б) в качестве предварительных. Для принципа Лагранжа такими уравнениями являются условия равновесия и статические граничные условия, а для принципа Кастилиано — соотношения неразрывности деформаций (1.35). При использовании этих принципов перечисленные уравнения выполняются как бы автоматически и нет надобности удовлетворять им заранее.  [c.91]

Особое внимание уделено получению основных уравнений, соотношений и вариационных формулировок задач статики и термоупругости многослойных оболочек с использованием варианта теории, учитывающего деформации поперечных сдвигов. В качестве кинематических гипотез выступают предположения о несжимаемости стеики оболочки в поперечном направлении и линейном распределении по толщине многослойного пакета касательных перемещений. Распределения касательных поперечных напряжений выбираются в наиболее простом виде независимо от кинематических гипотез. Приведение трехмерной задачи теории упругости к двумерной осуществляется с использованием смешанной вариационной формулировки. Все преобразования выполнены с учетом переменности метрики по толщине оболочки. Показана идентичность полученных уравнений равновесия с интегральными уравнениями трехмерной теории упругости.  [c.66]


Варианты основных уравнений, относящиеся к данному направлению теории слоистых пластин и оболочек и установленные разными авторами, можно разделить на три группы. Первую составляют уравнения, выведенные преимущественно в ранних исследованиях по неклассической теории слоистых оболочек [8, 215, 253 и др. ]. Здесь уравнения равновесия пластин и оболочек устанавливаются без использования вариационных принципов по следующей схеме. При заданной кинематической гипотезе, позволяющей учесть поперечные сдвиговые деформации, удовлетворить кинематическим и силовым условиям межслоевого контакта и условиям на верхней и нижней граничных поверхностях оболочки, определяются традиционные усилия и моменты, которые и подставляются в уравнения равновесия либо классической теории [8, 215], либо теории, основанной на кинематической модели прямой линии [253 ]. Тем самым остается неустановленной система внутренних обобщенных усилий и моментов, соответствующая принятой геометрической модели. Математически это проявляется в заниженном порядке разрешающей системы дифференциальных уравнений, что не позволяет удовлетворить необходимому числу краевых условий и приводит к существенным погрешностям в определении напряженного состояния оболочки, особенно в зонах краевых закреплений.  [c.9]

В качестве основного предположения в [6, 7] используется статическое условие о заданном законе распределения поперечных касательных напряжений. Однако в смысле вариационного равенства уравнения равновесия, полученные в [6, 7], не согласованы со связями, которые диктуются принятыми гипотезами, что, как будет показано в следующих главах, существенно изменяет распределение напряжений в конструкции. Кроме того, при использовании этого подхода не удается реализовать вариант жесткой заделки края оболочки.  [c.10]

Уравнения равновесия трехслойной оболочки и силовые граничные условия следуют из вариационного принципа Лагранжа  [c.461]

Уравнения равновесия трехслойных сотовых оболочек можно получить вариационным методом. Вначале запишем выражение для энергии деформации изгиба оболочки.  [c.373]

Устойчивость оболочек при ползучести исследуем на каждом шаге по времени с использованием двух критериев потери устойчивости. Первый связан с интенсивным ростом скорости изменения прогиба оболочки в период времени, близкий к критическому. Удовлетворение его проверяется на основе решения вариационного уравнения термоползучести (уравнение основного состояния). Второй критерий связан с мгновенной бифуркацией форм равновесия оболочки при ползучести в критический момент времени. Удовлетворение его проверяется на основе анализа вариационного уравнения устойчивости технической теории гибких оболочек, содержащего функции основного состояния. Независимому варьированию подвергаются малые добавки прогиба и функции усилий, связанные с переходом оболочки в соседнее равновесное состояние. Эти критерии являются результатом обобщения критериев потери устойчивости при мгновенном деформировании на случай ползучести.  [c.13]

Рассмотрим тонкую цилиндрическую оболочку, срединная поверхность которой имеет начальные отклонения от идеальной формы. Предположим, что внешняя нагрузка вызывает в соответствующей идеальной оболочке чисто безмоментное напряженное состояние. Для вывода уравнений нейтрального равновесия воспользуемся вариационным принципом Треффца [6] с учетом нелинейных соотношений теории оболочек.  [c.210]

Взаимодействие двух соосных цилиндрических оболочек разной длины с зазором между ними при нагружении внутренним давлением оболочки меньшего радиуса hjy4eno в [245, 250]. Авторы работы [250] сопрягают аналитические решения уравнений равновесия оболочек в зоне контакта и вне ее, получают систему уравнений относительно произвольных постоянных, находят осевую координату границы зоны контакта, решая систему трансцендентных уравнений. Сочетание вариационно-разностного метода с методом штрафной функции применено в [245]. Обжатие в обеих работах не учтено, использованы теории Кирхгофа — Лява, Тимошенко, Рейсснера.  [c.15]

Для установления дифференциальных уравнений равновесия воспользуемся принципом возможных перемещений [207]. Вариационные принципы открывают естественный путь для сведения трехмерных задач механики сплошных сред к двумерным задачам теории пластин и оболочек. Их использование позволяет установить систему обобщенных внутренних усилий, соответствующую независимым обобщенным кинематическим параметрам конечносдвиговой слоистой оболочечной системы и получить корректные уравнения ее равновесия. Вместе с ними устанавливаются кинематические и естественные граничные условия задачи. Дифференциальные уравнения и краевые условия получаются из вариационного принципа путем применения формальной математической процедуры, что важно, поскольку корректное использование формального аналитического метода позволяет избежать ошибочных формулировок, которые могли бы возникнуть при составлении уравнений равновесия и краевых условий методами элементарной статики. Анализ публикаций, посвященных неклассическим моделям деформирования многослойных оболочек, выявляет многочистенные примеры таких формулировок [8, 9, 215, 250, 253 и др.]. Укажем также и на известный [301 ] классический пример такого рода — условие Пуассона на свободном крае.  [c.47]


Задачи устойчивости типичны для тонких и тонкостенных тел. Решения этих задач для стержней, пластин и оболочек строятся обычно на основе приближенных уравнений, в которых используются некоторые кинематические и динамические гипотезы. Имеется несколько путей для получения этих уравнений. Первый, наиболее ранний способ состоит в непосредственном рассмотрении форм движения (равновесия), смежных с невозмущенным. При этом ищется некоторая приведенная нагрузка, которая вводится в уравнение невозмущенного движения. Все рассуждения носят наглядный характер однако в достаточно сложных задачах эта наглядность оказывается обманчивой. Другой путь состоит в использовании нелинейных уравнений соответствующих прикладных теорий. Линеаризуя последние в окрестности невозмущенного движения, получим искомые уравнения. В теории оболочек этот путь использовался X. М. Муштари (1939), Н. А. Алумяэ (1949), X. М. Муштари и К. 3. Галимовым (1957), Н. А. Кильчевским (1963), В. М. Даревским (1963) и другими авторами. Однако в нелинейной теории имеется еще меньше единства взглядов на то, как должны записываться основные уравнения. Следо вательно, идя по этому пути, мы лишь смещаем все трудности в другую, еще менее согласованную область. Третий путь состоит в использовании общих уравнений теории упругой устойчивости (В. В. Новожилов, 1940, 1948). Метод, основанный на соответствующем вариационном принципе, был применен  [c.332]

Значительное число частных задач теории упругой устойчивости решено на основе уравнений нейтрального равновесия типа (4.6) и (4.7). Решение задач сводится к отысканию собственных значений и выбору среди них тех, которые соответствуют переходу от устойчивости к неустойчивости. При этом применяются разнообразные методы — как заимствованные из математической физики, вычислительной математики, теории колебаний, так и более специализированные приемы строительной механики, теории оболочек и т. п. Среди них важное место занимают вариационные методы метод Рейли — Ритца (1873, 1889, 1908 гг.), метод Бубнова (1911 г.) и др. Применение этих методов широко освещено в книгах  [c.337]

Вариационное уравнение (75) соответствует известным трем дифференциальным уравнениям равновесия оболочки вра-щёния при симметричной нагрузке [25]  [c.74]

Здесь представим только общие соображения по расчету нелинейных систем, поскольку эта тема выходит за рамки данной работы. Нелинейные задачи деформирования стержней, пластин и оболочек весьма разнообразны и каждая задача требует индивидуального подхода. Однако, если нелинейные модули образуют целостную систему, то для узловых точек (линий) всегда будут справедливы уравнения равновесия между статическими параметрами и уравнения совместности перемещений между кинематическими параметрами. Это значит, что топологическая матрица С в алгоритме МГЭ для нелинейных систем будет формироваться из анализа матриц X ж Y точно так же, как для упругих систем. Основные же трудности решения нелинейных задач заключаются в определении внутреннего содержания матриц А В, т.к. построить фундаментальные функции нелинейных дифференциальных уравнений за небольшим исключением не удается. В этой связи получили развитие различные подходы к решению нелинейных краевых задач [83]. К первому направлению относятся проекционные и вариационные методы типа методов Бубнова и Ритца, методы конечных разностей и конечных элементов. Этими методами нелинейные краевые задачи сводятся к системам нелинейных  [c.512]

Ниже приведены основные соотношения теории многослойных анизотропных оболочек типа Тимошенко, построенной с помощью независимых аппроксимаций поперечных касательных напряжений и тангенциальных пфемещений. Уравнения равновесия и соответствующие им граничные условия получены путем использования смешанного вариационного принципа [ 1.11, 1.12].  [c.7]

Определение условий прогрессирующего разру-щения сплошного тела (как и родственная проблема предельного равновесия) требует решения неклассической вариационной задачи, включающей дифференциальные уравнения равновесия или совместности, ограничения на величины переменных (напряжений или приращений деформации), входящих в соответствующие уравнения, и подлежащий максимизации или минимизации критерий оптимальности (целевая функция), которым обычно является один из-параметров, определяющих внешние воздействия. Аппарат для строгого решения задач такого типа на основе любой из теорем теории приспособляемости дает математическая теория оптимальных процессов [43]. Решение одномерных задач предельного равновесия и приспособляемости пластин и оболочек с помощью принципа максимума Л. С. Понтрягина рассматривалось в работах [10,  [c.37]

При постановке новых проблем исходным пунктом в большинстве случаев является начало возможных перемеш ений, приводяш ее к вариационной формуле Лагранжа для данного объекта. Если задачу целесообразно формулировать в перемещениях, то на этом функции вариационного исчисления при решении рассматриваемой задачи и кончаются. В нелинейной же теории оболочек самым распространенным вариантом являются уравнения типа Кармана, сформулированные в смешанной форме (через прогиб и функцию напряжения). Ясно, что различным формулировкам соответствуют разные вариационные формулы. Получение таких формул нередко представляет достаточный интерес (хотя бы для нестрогого обоснования процедуры метода Бубнова — Галеркина). Например, большое внимание было уделено обобщению вариационного принципа Кастильяно на нелинейную теорию равновесия пластинок и оболочек (Н. А. Алумяэ, 1950 К. 3. Галимов, 1951, 1958).  [c.235]

В случае простейших объектов (пластинки, круговой цилиндрической и сферической оболочек) алгоритм степенного ряда может быть доведен до ИЗЯШ.НЫХ формул символического метода А, И. Лурье (1942, 1955) или до метода начальных функций В. 3. Власова (1955). Символический метод применен также для вывода упрош,енных уравнений динамики с малыми показателями изменяемости (У. К. Нигул, 1963) однако краевые условия к уравнениям равновесия толстых пластинок получены с использованием вариационной формулировки задачи (В. К. Прокопов, 1965).  [c.262]


Смотреть страницы где упоминается термин Уравнение вариационное равновесия оболочки : [c.21]    [c.160]    [c.65]    [c.169]    [c.11]    [c.137]    [c.80]    [c.11]    [c.246]    [c.16]    [c.90]    [c.9]    [c.89]    [c.443]    [c.230]   
Пластичность Ч.1 (1948) -- [ c.169 ]



ПОИСК



Вариационные уравнения равновесия оболочек и граничные условия

Оболочки уравнения

Ряд вариационный

Уравнение вариационное равновесия

Уравнения равновесия для для оболочек

Уравнения равновесия сил

Уравнения равновесия уравнения



© 2025 Mash-xxl.info Реклама на сайте