Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Уравнение вариационное равновесия

Уравнение вариационное равновесия 108  [c.376]

Упомянем также оригинальный вариационный метод, по которому наименьшее значение имеет или взятый по всей поверхности упругого тела интеграл от квадратичной ошибки при удовлетворении граничных условий или взятый по всему объему упругого тела интеграл от квадратичной ошибки при удовлетворении уравнений упругого равновесия (уравнений Ляме).  [c.66]


Дифференциальные уравнения движения (равновесия) не всегда удобны при использовании численных методов, поскольку требуют повышенной гладкости функций по сравнению со слабой формой уравнений (формулируемой в виде уравнения принципа возможных перемещений). При квазистатическом деформировании тел при некоторых ограничениях на внешние силы и используемые уравнения можно сформулировать вариационные принципы относительно скоростей (приращений) [24, 27, 47, 73, 75, 78, 79, 81, 84, 88, 97, 98, 119]. Функционал, используемый в вариационном принципе, позволяет в некоторых случаях выделить каче-  [c.10]

Уравнения статического равновесия оболочки строятся подобно уравнениям движения на основе вариационного уравнения следующего вида  [c.107]

В заключение покажем, каким образом уравнения равновесия слабо изогнутого стержня можно получить, исходя из вариационного принципа, используя выражение (18,10) для упругой энергии  [c.114]

Фб—центральный угол дуги). Уравнение равновесия получается из вариационного принципа  [c.118]

В подынтегральном выражении ниже опущена полная производная (1 — —а os 2 j)) 2 =(2 f — а sin что не влияет на формулировку вариационной задачи. Мы выводим здесь уравнение равновесия заново, не прибегая к общим уравнениям (36,7—8), что фактически потребовало бы более громоздких вычислений.  [c.198]

Первый интеграл уравнения равновесия (т. е. уравнения Эйлера вариационной задачи о минимуме функционала (38,4))  [c.202]

Вариационное уравнение равновесия, согласно формуле (1.21), получится из соотношения  [c.19]

Вариационные уравнения равновесия согласно формуле (1.21) имеют вид  [c.29]

В 1788 г. появилось сочинение Ж- Лагранжа Аналитическая механика , в котором вся механика была изложена строго аналитически на основе принципа Даламбера и принципа возможных перемещений. При этом Лагранжем были получены дифференциальные уравнения движения механической системы в обобщенных координатах. Дальнейшее развитие аналитических методов, предложенных Лагранжем для исследования движения и равновесия несвободных механических систем, привело к установлению ряда дифференциальных и вариационных принципов механики.  [c.16]

Многие задачи механики стерл<ней, с которыми приходится сталкиваться инженеру-расчетчику, не поддаются точному решению. К таким задачам, например, относятся задачи статики и динамики стержней с переменным сечением и нелинейные задачи. Для решения подобных задач приходится использовать приближенные методы, как численные, так и аналитические. Часто оказывается, что полученные точные решения из-за чрезвычайной сложности записи являются практически бесполезными для математической и физической интерпретации или численных расчетов, т. е. приходится для получения нужной информации все равно прибегать к упрощениям или к аппроксимациям полученных решений. Среди приближенных методов решения уравнений равновесия наибольшее распространение получили методы, использующие вариационные принципы механики.  [c.128]


Полученное из принципа минимума потенциальной энергии условие Ji = U—2А = т п является очень эффективным для приближенных решений задач статики стержней. Дифференциальные уравнения, получающиеся при исследовании вариационных задач (например, уравнение равновесия стержня), интегрируются в конечном виде лишь в частных случаях. Поэтому возникает необходимость в разработке методов приближенного решения вариационных задач с использованием исходных функционалов [например, (4.217)], не переходя к дифференциальным уравнениям. Такие методы решения вариационных задач принято называть прямыми методами.  [c.180]

Из вариационного уравнения равновесия выведем уравнения равновесия и граничные условия для случая, когда компоненты тензора деформаций заданы в декартовой системе координат (3.24)  [c.221]

Предположим, что тело под действием поверхностной силы Гу и объемной силы р/ находится в равновесии. Тогда вариационное уравнение будет иметь вид  [c.221]

Учитывая это, вариационному уравнению равновесия придадим вид j 5ал dx j s.,8 rfT - j рГ.Ъи, - j =0.  [c.222]

Таким образом, для вариационного уравнения бУ = О уравнениями Эйлера—Остроградского являются дифференциальные зависимости Коши (5.76) и дифференциальные уравнения равновесия (5//7), а естественными граничными условиями — условия (5.78) и (5.79).  [c.106]

Продолжим рассмотрение пространственных задач теории упругости, но на иной, вариационной основе. Будем исходить из уравнений равновесия (4.4") гл. II  [c.620]

Для вывода вариационного принципа Кастильяно, рассмотрим воображаемое напряженное состояние бац такое, что j = О, = О, xi е 5т. Значения, которые принимают величины 8ац на части поверхности 5ц, могут быть произвольны. Поскольку состояние 5ац удовлетворяет условиям равновесия, составим уравнения равновесия в форме Лагранжа, приняв за виртуальные перемещения истинные перемещения щ ж соответствующие  [c.259]

В гл. 4 была рассмотрена в элементарном изложении теория устойчивости упругих стержней. Особенность этих задач состояла в том, что уравнения равновесия составлялись для деформированного состояния стержня, т. е. по существу речь шла о геометрически нелинейных задачах. Вариационные уравнения, описанные в 8.7, эквивалентны геометрически линейным уравнениям теории упругости, для которых доказана теорема единственности. Поэтому никакие задачи устойчивости с помощью этих вариационных уравнений решать нельзя. Здесь мы постараемся распространить вариационные уравнения на геометрически нелинейные задачи. Существо дела состоит в том, что уравнения статики должны составляться не в исходной системе координат, например декартовой, а в той криволинейной системе координат, в которую превращается исходная вследствие деформации. Прямой путь получения таких уравнений довольно сложен, поэтому нам будет удобно вернуться к выводу 7.4, где напряжения определялись по существу как обобщенные силы, для которых компоненты тензора деформации служили обобщенными неремещениями. Пусть тело, ограниченное поверхностью  [c.390]

Для решения задач устойчивости, как мы уже выяснили, уравнения равновесия должны составляться для деформированного состояния упругого тела. Соответственно, применяя вариационное уравнение, в нем необходимо удерживать квадратичные члены в формулах для деформаций, как это было сделано для общей теории в 12.2 и для задачи об устойчивости стержня в 12.3. В задачах изгиба пластин достаточно удерживать те квадратичные члены, которые зависят от прогиба w, производные от перемещений мы сохраним лишь в первой степени. Повторяя вывод 12.4, мы найдем, что формулы (12.4.3) сохранят силу и в этом случае, но компоненты деформации срединной поверхности нужно будет вычислять по формулам  [c.411]

Если бы вариации бю были совершенно произвольными (удовлетворяющими нун<ным условиям на границе), то полученное решение было бы точным, так как вариационный принцип полностью эквивалентен системе уравнений равновесия и граничным условиям для напряжений. В данном случае условие экстремума выполняется лишь по отношению к некоторым Ью, поэтому полученное решение является приближенным. Однако если система функций — полная система, т. е. если любую функцию из данного класса, в частности, Ьгс х, у, ), можно приближенно с любой степенью точности представить в виде линейной комбинации этой системы функций, то, взяв достаточное число членов в (9.9), можно получить решение, вообще говоря, весьма близкое к точному.  [c.393]


Даламбер (1717—1783). Важный толчок развитию аналитических методов изучения механических систем был дан Даламбером, который свел произвольную задачу о движении к задаче о равновесии путем добавления к заданной системе внешних сил некоторой новой силы, порождаемой движением. Эта новая сила, сила инерции, совместно с остальными силами приводит к равновесию. Поэтому принцип виртуальных перемещений оказывается применимым к любым движущимся системам. Все уравнения движения произвольной механической системы охватываются, таким образом, одним вариационным принципом.  [c.388]

Пример использования вариационного пути получения дифференциальных уравнений и естественных граничных условий в механике твердого деформируемого тела. Пример 15.1. Получить уравнение равновесия изогнутого стержня как уравнение Эйлера вариационной проблемы о минимуме функционала потенциальной энергии системы 1).  [c.444]

Рассмотрим тонкую цилиндрическую оболочку, срединная поверхность которой имеет начальные отклонения от идеальной формы. Предположим, что внешняя нагрузка вызывает в соответствующей идеальной оболочке чисто безмоментное напряженное состояние. Для вывода уравнений нейтрального равновесия воспользуемся вариационным принципом Треффца [6] с учетом нелинейных соотношений теории оболочек.  [c.210]

Во второй части книги рассматриваются вопросы применения МКЭ к решению нелинейных задач МДТТ. Результирующие линеаризованные уравнения равновесия (движения) относительно приращений перемещений получаются из принципа возможных перемещений. При квазистатическом деформировании уравнения равновесия относительно скоростей перемещений получаются из вариационных принципов. Показана тесная связь конечноэлементных уравнений, сформулированных относительно приращений и скоростей. Приведен вывод дискретных уравнений движения (равновесия) относительно приращений (скоростей) узловых перемещений. Рассматриваются процедуры пошагового решения нелинейных задач и определения напряжений для различных моделей материалов. Предложены алгоритмы решения задач устойчивости и контактных задач.  [c.12]

Для установления дифференциальных уравнений равновесия воспользуемся принципом возможных перемещений [207]. Вариационные принципы открывают естественный путь для сведения трехмерных задач механики сплошных сред к двумерным задачам теории пластин и оболочек. Их использование позволяет установить систему обобщенных внутренних усилий, соответствующую независимым обобщенным кинематическим параметрам конечносдвиговой слоистой оболочечной системы и получить корректные уравнения ее равновесия. Вместе с ними устанавливаются кинематические и естественные граничные условия задачи. Дифференциальные уравнения и краевые условия получаются из вариационного принципа путем применения формальной математической процедуры, что важно, поскольку корректное использование формального аналитического метода позволяет избежать ошибочных формулировок, которые могли бы возникнуть при составлении уравнений равновесия и краевых условий методами элементарной статики. Анализ публикаций, посвященных неклассическим моделям деформирования многослойных оболочек, выявляет многочистенные примеры таких формулировок [8, 9, 215, 250, 253 и др.]. Укажем также и на известный [301 ] классический пример такого рода — условие Пуассона на свободном крае.  [c.47]

Если решать задачи упругого равновесия по методу Сен-Венана, задаваясь из механических соображений значениями компонентов напряжённого состояния и применяя уравнения упругого равновесия Коши (4.24) и статические граничные условия (11.43), то главная трудность будет состоять в удовлетворении шести тождественных соотношений Бельтрами (4.48) и (4.50). Но из теоремы Саутуэлла ( 122) вытекает, что тождественные соотношения Сен-Венана являются следствием вариационного уравнения Кастилиано (11.70)  [c.445]

Значительное число частных задач теории упругой устойчивости решено на основе уравнений нейтрального равновесия типа (4.6) и (4.7). Решение задач сводится к отысканию собственных значений и выбору среди них тех, которые соответствуют переходу от устойчивости к неустойчивости. При этом применяются разнообразные методы — как заимствованные из математической физики, вычислительной математики, теории колебаний, так и более специализированные приемы строительной механики, теории оболочек и т. п. Среди них важное место занимают вариационные методы метод Рейли — Ритца (1873, 1889, 1908 гг.), метод Бубнова (1911 г.) и др. Применение этих методов широко освещено в книгах  [c.337]

В настоящей статье излагается теория расчета пластин, гп-ставленных из жестких и мягких слоев в произвольной последовательности. Для вывода уравнений используются вариационные принципы, что позволяет также получить естественные граничные условия и установить, таким образом, систему внутренних усилий, не противоречащих введенным гипотезам. Уравнения равновесия выводятся из принципа Лагранжа, уравнения колебаний — из принципа Гамильтона и уравнения нейтрального равновесия для задачи об устойчивости безмоментного состояния — из принципа Треффца. Обсуждаются частные и предельные случаи.  [c.32]

Пусть пластина нагружена таким образом, что в ее жестких слоях возникают тангенциальные усилия Мх х, у), уа х, у) и 1 хуа (х, у), равномерно распределенные по толщине этих слоев, а нормальные прогибы т всюду равны нулю. Исследуем устойчивость этого состояния, для чего, следуя обычной методике, составим уравнения нейтрального равновесия. Уравнения выведем из известного вариационного принципа Треффца [12], согласно которому вторая вариация полной энергии системы б Э принимает для состояния нейтрального равновесия стационарное значение  [c.63]


Если считать, что уравнения равновесия (9.75) типа плоской задачи теории упругости заранее удовлетворены (например, Nii = = onst), то вариационное уравнение Бубнова — Галеркина упрощается  [c.205]

В настоящее время наибольшее распространение для оценки предельной несущей способности металлоконструкций получили такие методы как метод совместного решения уравнений равновесия и условий пластичности, вариационные методы, метод линий скольжения (метод характеристик), метхзд конечных элементов и другие.  [c.98]

Для решения более сложных задач широкое применение находят вариационные методы, сущность которых заключается в том, что система уравнений равновесия, условий шастичности и граничных условий заменяется эквивалентным ей принципом возможных перемещений. Использование данного метода возможно лишь при наличии данных (экспериментальных, численных и т.п ) о скоростях деформаций в различных точках исследуемой конструкции, необходимых для нахождения функции распределения скоростей деформации по сечению, отвечающему минимальному значению энергии деформации. Изложенный метод, с связи с этим, по с ти своей является приближенным, гюскольк минимизирующие функции подбираются эмпирически.  [c.99]

Таким образом, вариационное уравнение 65 = О, в интегральной форме выражающее условия равновесия деформированного тела, эквивалентно и включает в себя соответствующие дифференциальные уравнения равновесия теории упругости вместе с условиями равновесия на поверхности тела (граничными условиями). Указанные дифференциальные уравнения служат уравнениями Эйлера функционала Э. При этом если последний будет выражен только через три фукнции перемещений Э = Э (и, v, w), то, следуя по пути, показанному в примере, мы придем к уравнениям Эйлера в форме уравнений Ляме (2.44), т. е. уравнений равновесия, записанных в перемещениях. Отметим, что в этом случае при исключении из уравнения 65 = О частных производных функций би, 8v, би потребуется операция, аналогичная интегрированию по частям — переход от интеграла по объему к интегралу по поверхности по формуле Грина. На этих преобразованиях останавливаться не будем.  [c.57]

В настоящем параграфе и в 3.7 изложение проводится применительно к декартовой системе координат и ограничивается случаем статического равновесия и отсутствием температурного эффекта. Построение вариационного уравнения Лагранжа применительно к четырехмерной задаче (при наличии термоэффекта) и в ортогональной криволинейной системе координат дано в оригинальной работе А. Е. Крушевского [48], к которой и отсылаем читателя, особенно интересующегося расчетом сложных корпусных деталей машин.  [c.71]

Другая вариационная постановка задачи кручения бруса базируется на принципе минимума потенциальной энергия системы (см. гл. V, 5). В этом случае приходим к функционалу /7, уравнением Эйлера—Остроградского которого является уравнение Лапласа (7.54) для функции кручения ф (оно получено из уравнений равновесия Ламе), естественными граничными условиями — граничные условия (7.55) для функции ф. Читателю, желаю1Цему ознакомиться с такой постановкой вариационной задачи кручения, можно рекомендовать книгу [35].  [c.179]

Таким образом, метод Ритца—Тимошенко позволяет заменить задачу о нахождении решения дифференциального уравнения (7.17) задачей о нахождении минимума потенциальной энергии. Такая замена возможна в связи с тем, что как дифференциальное уравнение изгиба пластинки (7.17), так и вариационное уравнение (з) являются уравнениями равновесия упругого тела. Покажем, что вариационное уравнение (з) включает в себя дифференциальные уравнения равновесия и условия на поверхности. Рассматривая вариационное уравнение (з) в форме  [c.157]

Уравнения равновесия для пластин получены им из вариационного уравнения Латранжа — начала возможных перемещений.  [c.202]

Метод Ритца решения задач о равновесии упругого тела основан на использовании вариационного принципа (9.8) или, в более общей формулировке, непосредственно уравнения (9.4). Этот метод состоит в следующем. Ищем решение для перемещений в виде конечной или бесконечной суммы  [c.392]


Смотреть страницы где упоминается термин Уравнение вариационное равновесия : [c.212]    [c.123]    [c.315]    [c.256]    [c.159]    [c.164]    [c.190]    [c.200]    [c.334]   
Пластичность Ч.1 (1948) -- [ c.108 ]



ПОИСК



Вариационное уравнение равновесия упругого тела

Вариационные уравнения равновесия оболочек и граничные условия

Постановка задачи теории пластичности, вариационное уравнение и уравнения равновесия

Ряд вариационный

Уравнение вариационное для упругих тел в равновесии

Уравнение вариационное равновесия оболочки

Уравнение вариационное равновесия пластинки

Уравнения равновесия сил

Уравнения равновесия уравнения



© 2025 Mash-xxl.info Реклама на сайте