Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Движение нестационарное стационарное

В действительности одномерного движения не суш,ествует, но при движении жидкостей и газов в трубопроводах и элементах проточной части машин и сооружений с большими скоростями, а точнее с большими числами Рейнольдса, максимальная скорость в любом поперечном сечении потока, как правило, мало отличается от средней скорости. Поэтому приближенно в этих случаях движение можно рассматривать как одномерное с некоторой средней по сечению скоростью. Если параметры одномерного движения не зависят от -времени, движение является стационарным, если зависят — нестационарным.  [c.95]


Движение газа в системе координат, связанной с трубой, будет нестационарным, так как ударная волна, перемещаясь вдоль трубы, изменяет поле скоростей во времени. Обратим движение, сообщив мысленно всей трубе вместе с движущимся газом поступательное движение вправо со скоростью 0. Иначе говоря, будем рассматривать происходящее в трубе явление с точки зрения галилеевой системы координат, движущейся поступательно вдоль оси трубы вместе с ударной волной. Тогда ударная волна окажется как бы остановленной, а движение газа — стационарным.  [c.124]

Это отношение сил инерции нестационарного движения к стационарному.  [c.207]

Таким образом, при замедленном оптимальном движении нестационарное значение потребной тяги для горизонтального полета меньше, чем при стационарном движении. Соотношение (74) сохраняется для любой скорости движения (для любого момента движения на активном участке).  [c.216]

Уравнения (4) описывают движения как в стационарном, так и в нестационарном поле.  [c.259]

Возвратимся к равенству (II.33). Рассматривая это равенство, приходим к выводу, что оно является обобщенны.м выра-жение.м теоремы об изменении кинетической энергии несвободной системы, охватывающим случаи движения системы в консервативном поле при дополнительном действии сил сопротивления и наличии стационарных и нестационарных геометрических связей.  [c.133]

При стационарном движении жидкости линии тока остаются неизменными во времени и совпадают с траекториями частиц жидкости. При нестационарном течении такое совпадение, разумеется, не имеет места касательные к линии тока дают направления скорости разных частиц н<идкости в последовательных точках пространства в определенный момент времени, в то время как касательные к траектории дают направления скорости определенных частиц в последовательные моменты времени.  [c.24]

Это выражение для A(t) в действительности пригодно лишь в течение короткого промежутка времени после момента срыва стационарного режима множитель exp(7i/) быстро растет, между тем как описанный выше метод определения vi, приводящий к выражению вида (26,5—6), применим лишь при достаточной малости VI. В действительности, конечно, модуль А амплитуды нестационарного движения не растет неограниченно, а стремится к некоторому конечному пределу. При R, близких к Rkp, этот конечный предел все еще мал, и для его определения поступим следующи.м образом.  [c.139]


Вернемся к нестационарному движению, возникающему при R > Rkp в результате неустойчивости по отношению к малым возмущениям. При R, близких к Rkp, это движение может быть представлено в впде наложения стационарного движения vo(r) и периодического движения Vi(r, ) с малой, но конечной амплитудой, растущей по мере увеличения R по закону (26,10). Распределение скоростей в этом движении имеет вид  [c.141]

Изложенные свойства рассматриваемого движения в математическом отношении полностью аналогичны свойствам одномерных простых волн, у которых одно из семейств характеристик представляет собой семейство прямых линий в плоскости х, t (см. 101, 103, 104). Поэтому рассматриваемый класс течений играет в теории стационарного плоского (сверхзвукового) движения такую же роль, какую играют простые волны в теории нестационарного одномерного движения. Ввиду этой аналогии эти течения тоже называют простыми волнами. В частности, волну разрежения, соответствующую случаю = О, называют центрированной простой волной.  [c.603]

Таким образом, из рассмотренных примеров можно сделать следующие выводы 1) в случае стационарных голономных связей направление действительного перемещения йг точки совпадает с одним из ее возможных перемещений 5г, и если изменить закон движения точки при сохранении той же связи, то направление йг совпадает с некоторым другим из той же совокупности возможных перемещений 2) в случае же нестационарных голономных связей действительное перемещение ёг точки, вообще говоря, не совпадает ни с одним из возможных перемещений 8г.  [c.756]

Очень часто в реальных задачах большой практический интерес представляет переходный режим колебаний от момента приложения нагрузки до выхода системы на установившийся режим (стационарный режим, если он возможен) или до определенного момента времени. Например, если на стержень действует внезапно приложенная случайная по направлению и модулю сила и требуется выяснить, как будет двигаться стержень после ее приложения, то считать движение (колебания) стержня стационарными нельзя даже в том случае, если сила является стационарной случайной функцией. В общем случае случайные силы, действующие на стержень, могут быть любыми, в том числе и нестационарными, случайными функциями, у которых вероятностные характеристики зависят от времени. В этом случае вероятностные характеристики решений уравнений колебаний стержня (в том числе и уравнений с постоянными коэффициентами) также зависят от времени, т. е. являются нестационарными. Это существенно осложняет решение, так как воспользоваться спектральной теорией нельзя.  [c.158]

Поэтому при стационарном движении (когда деформации ремня остаются постоянными) нельзя получить непосредственных указаний о движении энергии от ведущего шкива к ведомому. Однако в случае нестационарного движения можно было бы при помощи специально поставленных опытов обнаружить, как энергия упругой деформации движется от ремня к ведомому шкиву.  [c.160]

Как показывает опыт, течение газа по достижении в промежуточном сечении трубы критического значения скорости ш р (равного местной скорости звука с) превращается после этого сечения из стационарного в нестационарное, или пульсирующее движение в потоке газа развиваются интенсивные колебания, приводящие к значительным потерям энергии движения и в конечном счете к возрастанию энтропии газа.  [c.326]

При изучении кинематики жидкости очень важно уметь находить уравнения семейств линий тока и траектории жидких частиц, положение точек разветвления потока и т. п., что необходимо для установления особенностей обтекания тел различных конфигурации. Поэтому в настоящей главе большое внимание уделено рассмотрению таких вопросов и задач, которые позволят освоить методы исследования стационарных и нестационарных течений жидкости, представить их кинематический характер, найти уравнения линий тока и траектории жидких частиц для различных видов движения.  [c.40]


Какой вид примут эти урав.чения для одномерного неустановившегося (нестационарного) течения невесомого сжимаемого газа н для плоского установившегося (стационарного) движения невесомой несжимаемой жидкости  [c.74]

Первые семь членов в (1.1.5) определяют статические, а остальные — динамические составляющие аэродинамических коэффициентов. Статические составляющие соответствуют стационарным условиям обтекания аппарата, при которых его скорость постоянная, углы атаки и скольжения, а также углы отклонения рулей фиксированы. Динамические составляющие возникают при нестационарном (неуста-новившемся) движении, сопровождающемся ускорением или замедлением обтекающего потока, вращением аппарата и изменением по времени углов поворота рулей.  [c.16]

В предлагаемой книге рассмотрены нестационарные, в том числе волновые, вибрационные и фильтрационные, а также стационарные движения различных гетерогенных, или многофазных смесей, широко представленные в различных природных процессах и областях человеческой деятельности.  [c.3]

В газовой динамике имеют место все типы задач математической физики задача Коши, краевые задачи, смешанные краевые задачи (или нестационарные краевые задачи). Например, при нестационарном обтекании тел или нестационарном движении газа в каналах возникает смешанная краевая задача. Обе эти задачи при стационарном дозвуковом течении являются краевыми, а при сверхзвуковом стационарном течении-—задачами Коши.  [c.49]

Отметим, что при формулировке условий на входе в сопло нужно иметь в виду, что при заданной площади критического сечения существует только единственное значение расхода газа, при котором реализуется стационарное решение с переходом через скорость звука в окрестности минимального сечения. В том случае, если это значение превышено, происходит переход на нестационарное ударно-волновое движение и часть расхода должна уйти череа входное сечение для установления единственного решения. Если же значение расхода меньше того, при котором в минимальном сечении имеет место скорость звука, то истечение происходит с дозвуковой скоростью.  [c.53]

При гиперзвуковых скоростях обтекания можно свести двумерную задачу обтекания тонкого тела к автомодельной одномерной задаче о сильном взрыве. Из анализа уравнений и теории подобия следует, что обтекание тела происходит так, как будто в каждом слое независимо от других имеет место вытеснение газа непроницаемым подвижным поршнем в направлении,, перпендикулярном движению тела, т. е. решение стационарной задачи аналогично решению некоторой нестационарной задачи с соответствующими заменами переменных. Эту теорию называют нестационарной аналогией, а соответствующий метод расчета — законом плоских сечений.  [c.63]

Если поле скоростей остается неизменным во времени, то движение называется стационарным, или установившимся. Если же оно зависит от времени, то движение будет нестационарным. В некоторых случаях характер движения будет зависеть от выбора системы координат. Так, в координатной системе, связанной с телом, движуш,имся с постоянной скоростью, обтекание этого тела (поезд, автомобиль и пр.) будет стационарным, в то время как в неподвижной координатной системе (для неподвижного наблюдателя) движение среды, обтекающей тело, будет нестационарным.  [c.37]

Если скорость поршня будет больше этой скорости, то между поршнем и газом образуется вакуум, причем скорость истечения в вакуум Пщах в этом нестационарном случае отличается от стационарной максимальной скорости (19) тем, что у последней перед величиной Сд вместо 2 к — 1) стоит множитель У 2 к — 1). Таким образом, например, для воздуха скорость истечения в вакуум при рассматриваемом нестационарном движении оказывается в 5 раз больше, чем в случае стационарного движения. При стационарном движении газа удельная кинетическая энергия истечения в вакуум, согласно (20), точно равна полной энтальпии в резервуаре, из которого происходит истечение в случае же нестационарного истечения кинетическая энергия в 21 к — 1) раз превосходит полную энтальпию.  [c.152]

Назовем некоторые наиболее примечательные работы, посвященные численному моделированию вторичных конвективных движений. Расчет стационарных нелинейных режимов конвекции в бесконечном вертикальном слое для значений параметров Рг = О, Gr < 5000 произведен в [34]. Установленный жесткий характер неустойчивости плоскопараллельного течения по отношению к возмущениям с волновыми числами к > 1,9. В ряде работ содержатся попытки моделирования последовательности переходов между режимами конвекции с ростом числа Рэлея на основе численного решения трехмерных уравнений конвекцрш В предположении пространственной периодичности движения нестационарные трехмерные режимы конвекции в горизонтальном слое изучались в [35]. В реальной ситуации, однако, даже удаленные боковые границы оказывают существенное влияние на структуру и смену режимов конвекции. Отметим работу [36], в которой в полной трехмерной постановке методом сеток выполнены расчеты конвективных движений в параллелепипеде с большим отношением сторон (11,5 16 1). В численном эксперименте наблюдались развитие различных типов неустойчивости системы параллельных валов, зарождение и распространенение дислокаций, возникновение пространственно-временной перемежаемости. Обстоятельное численное и экспериментальное исследование режимов конвекции в горизонтальных и наклонных прямоугольных полостях с умеренным отношением сторон проведено в [37].  [c.291]

Однако такой вывод справедлив лишь для стационарного движения жидкости. Если движение нестационарно, то в добавление к условию несжимаемости div г =0 следует учесть еще одно условие Действительно, акустическое число Маха M =vl (здесь v — ко лебательная скорость частиц) всегда значительно меньше единицы Тем не менее, поскольку акустические волны — это нестационар ное движение жидкости, условие еще не означает, что жыд  [c.18]


Как мы видели, ротор, подобный показанному на рис. 25, а, приводится во вращение паровой турбиной, совершающей 3000 об/мин, чтобы получить переменный ток со стандартной частотой 50 Гц. Часть роторной системы, показанной на рисунке, представляет собой большой электромагнит с северным и южным полюсами. Электрический ток, питающий этот электромагнит, подводится к ротору через контактные кольца. Ротор вращается внутри статора, представляющего собой стальную конструкцию с установленными в ней электрообмотками. В этих обмотках образуется электрический ток, который затем подается в линию передачи. Нри внезапном изменении электрической нагрузки на статор (как крайний случай,—при короткол замыкании) вращающийся магнит подвергается действию нестационарного крутящего момента. Этот крутящий момент, изменение которого во времени зависит от характера изменения нагрузки, создает внезапное кручение вала, что в свою очередь приводит к крутильным колебаниям турбины относительно ротора. Эти колебания накладываются на движение, обусловленное стационарной рабочей скоростью вращения ротора.  [c.113]

Преимущество стационарного подхода особенно убедительно в том случае, когда стационарные уравнения являются параболическими по пространственной переменной, т. е. когда возможно или требуется маршевое продвижение решения по пространственной координате. К таким случаям относятся уравнения пограничного слоя, течения с химическими реакциями, имеющими конечные скорости, эффекты, которые зависят от предыстории лагранжевых частиц (разд. 6.4), и решение обратной задачи об отошедшей ударной волне (разд. 5.1.1). При решении задачи о течении газа с отошедшей ударной волной Кайрис [1970] пытался построить метод, соединяющий наилучшие свойства, присущие каждому из подходов (стационарному и нестационарному), взяв нестационарные формы уравнения неразрывности и уравнений колртчества движения и стационарные формы уравнений для температуры и для химических компонентов.  [c.166]

Проблема устойчивости течения жидкости хорошо известна в классической гидромеханике. В обш ем виде эту проблему можно сформулировать следующим образом. Пусть дана хорошо постаь-ленпая краевая задача. Может существовать (и даже быть получено в явном виде) точное решение уравнений движения, удовлетворяющее всем граничным условиям, которое является стационарным в эйлеровом смысле d dt = 0). Все же такое решение может быть неустойчивым в том смысле, что если в некоторый момент времени наложить на это решение малые возмущения, то эти возмущения самопроизвольно будут стремиться возрастать с течением времени, а не затухать. Это означает, что существует другое (возможно, нестационарное) решение уравнений движения и что практически наблюдаемый режим течения будет нестационарным, поскольку, конечно, в реальном случае невозможно избежать каких-либо возмущений. Типичным примером этого является турбулентное течение в трубе постоянного сечения, где имеется также стационарный, но неустойчивый режим течения, называемый ламинарным.  [c.297]

Согласно данным гл. 9 в поперечно продуваемом движущемся слое можно ожидать близкого совпадения с данными по теплообмену в неподвижном слое. Согласно теоретическому решению [Л. 252] нестационарный теплообмен в неподвижном слое подобен стационарному теплообмену именно при перекрестном (под углом 90°) движении компонентов. Первые опытные данные по этому вопросу были получены в вертикальном теплообменнике, предложенном Е. И, Кашуниным и испытанном без замера температур движущейся чугунной дроби. По данным измерений были определены лишь коэффициенты теплопередачи от газа к воздуху. Использованный затем косвенный метод подсчета коэффициентов теплообмена в камерах условен и в ряде положений ошибочен.  [c.324]

Во всех предыдущих параграфах данной главы мы рассматривали движение системы в потенциальном поле, но не требовали, чтобы поле это было стационарным. Именно поэтому мы предполагали, что лагранжиан, гамильтониан и иные функции, встречавшиеся нам по ходу изложения, могут зависеть явно от времени. В этом смысле изложенный выше материал охватывал движения в нестационарных потенциальных полях и, в частности, движение в потенциальном поле системы, имеющей механические реономпые связи. Для случая, когда система натуральна, связи склерономны и поле стационарно, т. е. когда потенциальная функция не зависит явно от времени, выше было установлено лишь то, что гамильтониан совпадает с полной энергией системы. Отправляясь от этого факта, мы ввели понятие обобщенно консервативной системы как такой гамильтоновой системы, в которой гамильтониан не зависит явно от времени, а сам гамиль-  [c.325]

Два уравнения (15 ) относительно координат х, у, г для фикснро-вашюго. момента времени I являются дифференциальными уравнениями семейства линий тока. После интегрирования этих уравнений появятся произвольные постоянные, различным значениям которых соответствуют разные линии тока. На фиксированной линии тока в рассматриваемый момент времени находятся разные точки сплошной среды в отличие от траекторий. Для стационарного движения, при котором вектор скорости не зависит от времени, семейство линий тока совпадает с семейством траекторий. Для нестационарного движения это разные семейства линий.  [c.218]

Равенство (I. 33) позволяет установить в явной форме представление о взаимосвязи между активными силами и реакциями связей. Как видно из равенства (1.33), реакции связей зависят от действия активных сил и от закона движения точек системы-Если активные силы отсутствуют, реакции могут отличаться от нуля, так как фукции не зависят непосредственно от действия активных сил. Это, прежде всего, относится к нестационарным связям. Но и в случае стационарных связей функции отличаются от нуля, когда при некоторых начальных условиях уравнения (I. 32) имеют решения, отличающиеся от постоянных.  [c.33]

Все сказанное позволяет утверждать, что составленные выше уравнения движения неголономных систем со стационарными связями непосредственно распространяются на случай наличия нестационарных связей. При этом, на основании равенства (11. 108Ь), можно положить, что количество дифференциальных уравнений движения равно N, где N — количество степеней свободы системы.  [c.171]

Таким образом, если в какой-либо точке линии тока завихренность отсутствует, то она отсутствует и вдоль всей этой линии. Если движение жидкости не стационарно, то этот результат остается в силе, с той разлицей, что надо говорить не о линии тока, а о траектории, описываемой с течением времени некоторой определенной жидкой частицей (напоминаем, что при нестационарном движении эти траектории не совпадают, вообще говоря, с линиями тока) ).  [c.32]

Математическое исследование устойчивости движения по отношению к бесконечно малым возмущениям должно происходить по следуюи [ей схеме. На исследуемое стационарное решение (распределение скоростей, в котором пусть будет vo(r)) накладывается нестационарное малое возмущение vi(r, t), которое должно быть определено таким образом, чтобы результируюн1ее движение v = v0 + vi удовлетворяло уравнениям движения. Уравнение для определения vi получается подстановкой в уравнения  [c.137]


Такое математическое исследование устойчивости, однако, крайне сложно. До настоящего времени не разработан теоретически вопрос об устойчивости стационарного обтекания тел конечных размеров. Нет сомнения в том, что при достаточно малых числах Рейнольдса стационарное обтекание устойчиво. Экспериментальные данные свидетельствуют о том, что при увеличении R достигается в конце концов определенное его значение (которое называют критическим, R, p), начиная с которого движение становится неустойчивым, так что при достаточно больших числах Рейнольдса (R > Ккр) стационарное обтекание твердых тел вообще невозможно. Критическое значение числа Рей нольдса не является, ралумсстся, универсальным для каждого типа движения существует свое Ккр. Эти значения, по-видимому,— порядка нескольких десятков (так, при поперечном обтекании цилиндра незатухающее нестационарное двгжеиие наблюдалось уже при R — udjy -х. 30, где —диаметр цилиндра).  [c.138]

Займемся теперь более подробным изучением полученного решения. Прежде всего заметим, что прямые ф = onst пересекают в каждой точке линии тока под углом Маха (его синус равен и,(/о = с/и), т. е. являются характеристиками. Таким образом, одно из двух семейств характеристик (в плоскости х, у) представляет собой пучок выходящих из особой точки прямых и обладает в данном случае важным свойством — вдоль каждой из них все величины остаются постоянными. В этом смысле рассматриваемое решение играет в теории плоского стационарного движения такую же роль, какую играет изученное в 99 автомодельное движение в теории нестационарных одномерных течений. Мы вернемся еще к этому вопросу в 115.  [c.574]

В предыдущем параграфе мы рассмотрели частный случай сверхзвукового стационарного двухмерного течения (простую волну), характерный тем, что в нем величина скорости является функцией только ее направления и = у(0). Это решение не могло бы быть получено из уравнения Чаплыгпна для него тождественно 1/Д = 0, и оно теряется, когда при преобразованни к плоскости годографа приходится умножать уравнение движения (уравнение непрерывности) на якобиан Д. Положение здесь аналогично тому, что мы имели в теории одномерного нестационарного движения. Все сказанное в 105 о взаимоотношении между простой волной и общим интегралом уравнения (105,2) полностью относится и ко взаимоотношению между стационарной простой волной и общим интегралом уравнения Чаплыгина,  [c.610]

Согласно акустической аналогии задача о стационарном обтекании такой пластинки эквивалентна задаче о нестационарном одномерном движении газа впереди и позади поршня, движущегося равномерно со скоростью avi. Впереди поршня образуется ударная волна, а позади — волна разрежения (см. задачи 1, 2 99). Воспользовавшись получеииыми там результатами, находим искомую подъемную силу как разность давлений, действующи. на обе стороны пластинки. Коэффициент подъемной силы  [c.661]

В случае идеально гладкой поверхности реакция целиком сводится к силе, нормальной к поверхности. Таким образом, если связью служит поверхность без трения, то реакция связи нормальна к связи. В этом случае элементарная работа реакции на любом возможном перемеи ении точки равна нулю, так как сила направлена перпендикулярно к перемеи ению. Подчеркнем, что по определению возможных перемещений только что сказанное верно как в случае стационарных, так и нестационарных связей. Само собой разумеется, что элементарная работа реакций на той части бесконечно малого перемещения, которая соответствует собственному перемещению связи, может быть в общем случае и не равна нулю. Точно так л<е в случае движения по идеальной абсолютно гладкой кривой реакция будет нормальна к кривой и работа реакции на возможном перемещении будет равна нулю. Если же поверхности или кривые не идеально гладки, то работа реакций не будет равна нулю. Аналогичное заключение относится к твердому телу, скользящему по плоскости. Если поверхности соприкасающихся тел идеально отполированы, реакция будет направлена по общей нормали к ним при этом работа реакции на. "юбом возможном перемещении будет равна нулю.  [c.315]

Е сли местная скорость к явко зависит от времени, т. е. изменяется с течением последнего, то движение и соответствуюгцее ему пол( скоростей называют неустановившимися или нестационарными. Если в каждой точке пространства вектор и имеет постоянное во времени значение, то движение и поле скоростей будут установившимися или стационарными. В этом случае  [c.27]

Режимы пересн атой детонации, которым соответствуют точки на детонационной адиабате, расположенные выше точки Bj или точки Ч—Ш, и для которых имеет место дозвуковое движение детонационной волны относительно вещества (ПД) за волной D < V2 + i, возможны только или в нестационарном режиме, когда она постепенно ослабляется волной разгрузки, стремясь к режиму Ч—Ж (соответствующая волна показана на рис. 3.1.6, б в виде О А В Е ), или в стационарном режиме при отсутствии волны разгрузки, когда детонация поддерживается поршнем (соответствующая волна на рис. 3.1.6, б имеет вид 0 А[В В ).  [c.263]

Исследуемые здесь стационарные решения со скачком или без скачка есть предельные решения, к которым стремятся нестационарные возмущения со скачком при сохранении стационарных условий перед (о) и за ( г) волной. Например, при движении поршня с постоянной KOf остью Vo в покоящуюся среду в начальный момент около поршн возникает скачок, причем его начальная амплитуда и начальная скорость распространения практически не зависят от присутствия пузырьков и определяются только свойствами жидкости. В частности, скорость распространения скачка будет практич( Ски равна скорости звука i в чистой жидкости. Далее начнут сказываться дифракция переднего скачка па пузырьках п его разгрузка пз-за сжимаемости пузырьков. Интенсивность скачка, вляющегося передним фронтом возмущения, будет уменьшаться. При этом основное возмущение должно отставать от скачка. При сохранении скорости поршня Fo асимптотически при t оо установится стационарная волновая конфигурация. Если Уо = 1 Uo — иИ > то передний скачок имеет предельную ненулевув) амплитуду, что соответствует стационарному режиму Da> j] если Fo = y — uj < то интенсивность скачка затухает д> нуля, что соответствует стационарному режиму Се< Dq< f. Аналогичные режимы будут иметь место при мгновенном повышении давления с ро до р, и сохранении его постоянным в каюм-либо месте. И если р < р , то предельная волна будет иметь непрерывную структуру.  [c.71]


Смотреть страницы где упоминается термин Движение нестационарное стационарное : [c.105]    [c.151]    [c.166]    [c.383]    [c.134]    [c.54]   
Механика сплошных сред (2000) -- [ c.18 , c.25 ]



ПОИСК



Движение нестационарное

Движение стационарное

Нестационарность

Нестационарные движения вязких сред. Вариационный подход Примеры. Инерционный принцип выбора стационарного решения для жесткопластических сред Динамика панели

Нестационарные и стационарные волновые уравнения движения жидкостей



© 2025 Mash-xxl.info Реклама на сайте