Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Взрыв сильный

Однако, если взрыв сильный Е велико), то давление за образующейся вследствие взрыва ударной волной будет во много раз больше начального давления в газе, и движение газа за ударной волной на небольших расстояниях от центра взрыва практически не будет зависеть от начального давления Pj. Таким образом, существенными оказываются лишь, две размерные постоянные pj и Е .  [c.172]

Если геометрическая форма тела фиксирована и его можно считать неподвижным и абсолютно твёрдым, то такое тело вполне задаётся линейным размером D. Если взрыв сильный точечный и происходит в газе, заполняющем всё пространство вне тела, то систему определяющих параметров можно представить таблицей  [c.223]


Взрыв сильный 478 — на поверхности разрыва 427  [c.502]

Взрываемость ацетилена зависит от объема сосуда или сечений, каналов, в которых он находится с уменьшением объема способность к взрыву сильно понижается.  [c.31]

Задача о взрыве сильном 190—194 ----, автомодельные уравнения 193  [c.608]

Заклепка взрывная — специальный тип заклепок, применяемых при ремонте самолета, когда имеется односторонний подход к месту работы. В отличие от обычных они имеют камеру в свободном конце стержня, которая заполняется взрывчатым веществом и защищается снаружи слоем лака. При нагреве до 130— 160° С взрывчатое вещество взрывается, сильно расширяет конец стержня и образует за.мыкающую головку.  [c.46]

Впервые в практике КРН было обнаружено в клепаных паровых котлах. Напряжения на заклепках обычно превышают предел упругости, и в котельную воду для уменьшения коррозии добавляют щелочь. В щелях между заклепками и листовым металлом котла в процессе кипения концентрация котельной воды достигает уровня, достаточного, чтобы вызвать КРН, нередко сопровождающееся взрывом котла. Поскольку было обнаружено, что одним из коррозионных факторов является щелочь, эти аварии называли щелочной хрупкостью. С распространением сварных котлов и с улучшением обработки котельной воды КРН котлов встречается не так часто, однако не исчезло полностью, так как напряжения могут возникать и в сварных швах котлов, и в емкостях для хранения сильных концентрированных щелочей.  [c.133]

Хлорированные растворители, хотя и не воспламеняются, но сравнительно токсичны. Кроме того, следы хлорсодержащих соединений, которые остаются на поверхности металла после такой обработки, впоследствии могут инициировать коррозионные разрушения. Эти растворители (три- или тетрахлорэтилен) в основном используют для обезжиривания в парах изделия подвешивают в парах кипящего растворителя. Если обезжиривают алюминий, то в хлорированный растворитель необходимо вводить специальный ингибитор и поддерживать его концентрацию — иначе неизбежны сильные коррозионные разрушения (см. разд. 20.1.4) и прямое взаимодействие металла с растворителем, которое может сопровождаться взрывом.  [c.252]

Скорость цепных реакций во времени может сильно возрастать благодаря непрерывной подаче энергии для образования активных частиц или использованию энергетического эффекта реакции на образование новых частиц. При возрастании числа активных частиц так называемый коэффициент размножения будет больше единицы (1,1...1,5) и создаются условия для перехода реакции во взрыв. В качестве примера последнего случая цепной реакции можно привести реакцию кислорода с водородом по следующей схеме (звездочкой обозначены активные частицы)  [c.310]

Задача о сильном взрыве  [c.558]


Ударные волны возникают при различных взрывах, включая и атомные взрывы, при сильных электрических разрядах и т. п. Ударными волнами сопровождается движение любого тела в среде со сверхзвуковой скоростью, даже если это тело и не. является источником звука. Поэтому любое тело в случае сверхзвукового движения в среде порождает звук, обычно воспринимаемый как короткий и резкий, — звук взрыва.  [c.240]

Заметим теперь, что вследствие истечения газа из области 1 — 2 (рис. 3.2), расположенной позади фронта сильной волны сжатия, давление в этой области со временем убывает. По указанной причине ударная волна, возникшая в неподвижном газе под влиянием единичного сжатия (например, взрыва или смещения поршня), всегда более или менее быстро затухает. И только в том случае, когда источник возмущения не прекращает своего действия, можно получить незатухающую ударную волну. Обнаруженное выше свойство ударных волн распространяться со скоростью, большей, чем скорость звука, приводит к тому, что незатухающие ударные волны образуются перед телом только в тех случаях, когда движение происходит со сверхзвуковой скоростью. Например, при движении в газе с постоянной сверхзвуковой скоростью твердого тела перед последним образуется ударная волна постоянной интенсивности, которая движется с той же скоростью, что и тело.  [c.118]

Тело, испускающее электроны или ионы, называется эмиттером. Для наблюдения и использования электронной или ионной эмиссии необходимо создать у поверхности эмиттера электрическое поле, отсасывающее эмитированные частицы. Обычно для достижения эмиссионным током насыщения достаточно приложить небольшое поле (десятки или сотни вольт на сантиметр). В случае полевой эмиссии внешнее электрическое поле превращает потенциальный порог, существующий на границе тела и препятствующий выходу электронов, в барьер конечной ширины и уменьшает его высоту, вследствие чего становится возможным квантовомеханическое туннелирование электронов сквозь барьер. При этом энергия электрического поля затрачивается только на ускорение эмитированных электронов. Для возникновения полевой эмиссии необходимо приложить к телу сильное электрическое поле (I 10 В/см), при этом плотность тока может достигнуть 10 А/см . При еще больших импульсных полях локальные участки эмиттера (выступы, заострения) сильно разогреваются (чаще всего током полевой эмиссии) и взрываются. Часть вещества эмиттера переходит из конденсированной фазы в плотную плазму. Этот процесс сопровождается испусканием интенсивного электронного потока — возникает взрывная электронная эмиссия. Монографии и обзоры по эмиссионной электронике и различным видам эмиттеров приведены в [1—4,  [c.567]

Отсюда видно, что ПЭ зависит от электрического поля так же, как ТЭ зависит от температуры ln(j/S2) = = f(l/ ё) (рис. 25.47). При высоких температурах плотность тока ПЭ возрастает с Т, особенно сильно в области малых (но уже вызывающих ПЭ) электрических полей. Распределение по энергиям электронов, эмитируемых из металла, при ПЭ при низких температурах эмиттера начинается от энергии, соответствующей уровню Ферми в металле (принимаемому за нуль), и простирается в область отрицательных энергий. Ширина распределения на половине высоты составляет около 0,5 эБ (рис. 25.48). При возрастании температуры энергетический спектр эмитируемых электронов расширяется в сторону положительных энергий. ПЭ полупроводников обладает рядом особенностей, связанных с распределением электронов по энергиям в них, с проникновением внешнего электрического поля в полупроводник и с сильной термо- и фоточувствительностью полупроводников, оказывающей влияние на ток ПЭ (рис. 25.49) [28, 29]. Токи ПЭ с большой плотностью удается получать с эмиттеров, имеющих форму острия. Предельная плотность тока, еще не разрушающего острие, /кр возрастает с увеличением угла при вершине эмитирующего конуса, так как с увеличением этого угла улучшается отвод теплоты от острия (табл. 25.27, рис. 25.50). В очень сильных электрических полях, когда плотность тока ПЭ достигает 10 —10 А/см локальные участки катода, из которых происходит эмиссия, (острия) в результате сильного разогрева взрываются, образуя плотную плазму, расширяющуюся со скоростью t = 10 см/с. Этот процесс сопровождается возникновением интенсивной эмиссии (взрывная электронная эмиссия, рис. 25.51) [30]. Ток /, А, взрывной электронной эмиссии при взрыве одиночного острия  [c.588]


Высокие давления и температуры, имеющие место при расширении продуктов взрыва, постепенно уменьшаются, причем процесс расширения протекает различно и в сильной степени определяется геометрической формой заряда. Динамика взрыва и расширения продуктов взрыва для плоской полосы В. В. показана на рис. 6, при этом предполагается, что детонация вызвана на большом расстоянии от рассматриваемой области. Перед фронтом детонационной волны находится В. В., за ее фронтом — продукты взрыва. Так как продукты взрыва имеют высокое давление и высокую температуру, то они расширяются в поперечном направлении, при этом образуется волна разгрузки, скорость распространения которой равна скорости звука  [c.14]

Реальное тело не обладает абсолютной жесткостью. Поверхность тела, на которую действует давление продуктов взрыва, деформируется, что оказывает влияние на интенсивность импульсивных нагрузок. Реакция тела на действие нагрузок сводится к следующему 1) вблизи поверхности материал тела под действием высокого давления продуктов взрыва вначале сильно сжимается 2) при внезапном уменьшении давления поверхность тела возвращается в ненапряженное состояние, хотя материал может получить значительную пластическую деформацию 3) в теле возникают возмущений, вызванные действующим давлением продуктов взрыва, длительность действия которых мала, так что длина импульса в материале невелика, однако возмущения имеют вид волны с крутым фронтом. Распространение этих волн проходит с высокими скоростями, т. е. в этом случае, очевидно, зарождаются ударные волны. При большой интенсивности возмущений тело может разрушаться либо в отдельных локальных областях, либо по всему объему.  [c.17]

Продукты взрыва, находясь в сильно разогретом состоянии (температура их равна нескольким тысячам градусов), передают тепловую энергию цилиндру в виде тепловых потоков и распределения температуры на внутренней поверхности. В цилиндре образуется температурное поле, определяемое интегрированием уравнения теплопроводности  [c.308]

Течение за клином и конусом, так же как и течение в простой волне, принадлежит к классу автомодельных течений, когда параметры течения в силу геометрических особенностей и начальных условий зависят не от двух независимых переменных, а от одной, или постоянны. К классу автомодельных задач относится также задача о сильном взрыве (см. п. 5 2.3).  [c.62]

При гиперзвуковых скоростях обтекания можно свести двумерную задачу обтекания тонкого тела к автомодельной одномерной задаче о сильном взрыве. Из анализа уравнений и теории подобия следует, что обтекание тела происходит так, как будто в каждом слое независимо от других имеет место вытеснение газа непроницаемым подвижным поршнем в направлении,, перпендикулярном движению тела, т. е. решение стационарной задачи аналогично решению некоторой нестационарной задачи с соответствующими заменами переменных. Эту теорию называют нестационарной аналогией, а соответствующий метод расчета — законом плоских сечений.  [c.63]

Однако учет противодавления приводит к некоторым количественным отклонениям от сильного взрыва уже на его ранней стадии. Так, начинает уменьшаться плотность на фронте ударной волны. Энергия ударной волны увеличивается за счет внутренней энергии масс газа, захватываемых фронтом. Поэто-  [c.70]

В дальнейшем в движении газа наблюдается ряд новых эффектов, качественно отличающих его от автомодельного случая. Начинается вторая, поздняя, стадия движения. Давление в центре становится меньше атмосферного. Возникновение вблизи центра области разрежения влечет за собой постепенное уменьшение скорости разлета газа в промежуточной между фронтом и центром взрыва зоне, а затем и движение газа по направлению к центру. Это приводит к сильной перестройке профилей плотности, давления и скорости. В распределениях избыточного давления plp —I и скорости по радиусу возникают отрицательные фазы. Отток газа от фронта вызывает повышение плотности в средней зоне движения и резкий спад плотности к центру. Плато давления сокращается. Скорость ударной волны стремится к скорости звука в невозмущенной среде. На рис. 2.13 приведены типичные профили давления и скорости по относи-  [c.70]

В неравновесном состоянии вещества, например, при интенсивных химических реакциях (горение, взрыв), сильных электромагнитных (разряд) или механических (ударные волны) воздействиях понятие температу-ры как единой -Характеристики состояния системы теряет свою определенность. В этом случае говорят о неравновесных температурах, характеризующих распределение полной энергии системы между разллчными ее формами (вращательная температура, колебательная температура и т. п.).  [c.6]

Хлористый метилен СНгСЬ Сильный взрыв Сильный взрыв Взрыв сред-  [c.97]

При взаимодействии селитры с некоторыми восстановителями (медь, сульфиды, колчедан и др.) образуется нитрит аммония, в присутствии которого резко возрастает возможность взрыва селитры. С увеличением размера частиц аммиачной селитры яувствительность ее к взрыву сильно уменьшается.  [c.131]

В соответствии с различными принципами смесеобразования различаются и требования, которые предъявляют карбюраторные двигатели и дизели к применяемым в них жидким топливам. Для карбюраторного двигателя важно, чтобы топливо хорошо испарялось в воздухе, который имеет температуру окружающей среды. Поэтому в них применяют бензины. Основной проблемой, препятствующей повышению степени сжатия в таких двигателях сверх уже достигнутых значений, является детонация. Упрощая явление, можно сказать, что это — преждевременное самовоспламенение горючей смеси, нагретой в процессе сжатия. При этом горение принимает характер детонационной (ударной, несколько напоминающей волну от взрыва бомбы) волны, которая резко ухудшает работу двигателя, вызывает его быстрый износ и даже поломки. Для ее предотвращения выбирают топлива с достаточно высокой температурой воспламенения или добавляют в топливо антидетонаторы — вещества, пары которых уменьшают скорость реакции. Наиболее распространенный антидетонатор — тетраэтил свинца РЬ ( 2Hs)4 — сильнейший яд, действующий на мозг человека, поэтому при обращении с этилированным бензином нужно быть крайне осторожным. Соединения, содержащие свинец, выбрасываются  [c.180]


Электрогидравлическую штамповку также осуществляют в бассейне с водой. Ударная волна, разгоняющая заготовку, возникает при кратковременном глектрическом разряде в жидкости. Мощный искровой разряд подобен взрыву. В результате разряда в жидкости возникает ударная волна, которая, дойдя до заготовки, оказывает на нее сильное воздействие и деформирует ее по матрице. Если для полного деформирования заготовки одного импульса недостаточно, рабочий цикл может быть повторен.  [c.114]

Титан стоек в азотной кислоте любых концентраций при температурах вплоть до температуры кипения и достаточно высоких давлениях. Скорость коррозии титана в растворах азотной кислоты с течением времени резко снижается вследствие образования пленки ТЮг, обладающей защитными свойствами. Скорость кор))озии титана и его сплавов в дымящей азотной кислоте обычно не превышает 0,1 лш/гоб. Однако в литературе отмечаются случаи взрывов при нспытапин титана в дымящей азотной кислоте, которым предшествовала скорость коррозии от 10 до 100 мм1 год. Продукты, образовавшиеся в результате этого вида межкристаллитной коррозии, представляют собой частицы титана с сильно развитой активной поверхностью и обладают пирофорными свойствами они чувствительны к нагреву, удару и электрической искре.  [c.281]

Учет неоднофазности среды, в частности, фазовых переходов, требуется при изучении распространения сильных ударных волн в твердых телах, возникающих при взрыве и вызываюш,их ряд физико-химических превращений. Сюда относится изучение взрыва в различных породах (начальной стадии взрывной волны), столкновений тел с большими скоростями (порядка 1—10 км1сек), получение новых веществ методами ударного обжатия, изменение свойств металлов ударно-волновой обработкой и т. д.  [c.12]

Рассмотрим распространение сферической ударной волны большой МОЩНОСТИ, возникшей в результате сильного взрыва, т. е, мгновенного выделения в некотором небольшом объеме большого количества энергин (которую обозначим посредством ) газ, в котором волна распространяется, будем считать но-литронным ).  [c.558]

Результаты пычислеппй для других значений а также аналогичное решение задачи о сильном взрыве случае цилиндрической симметрии приведены Л. И. Седовым в книге Методы подобия и размерности в механике , и.чд. 9-М. Наука, 1981, гл. IV, 11.  [c.563]

Обычно детонационная волна возникает как результат местного взрыва в горючей смеси. В области взрыва развиваются весьма высокие давления и от нее устремляется очень сильная ударная волна. При прохождении через холодную горючую смесь эта волна, как указывалось выше, вызывает значительный разогрев газа и может довести его до воспламенения. Именно в этом случае за фронтом ударной волны следует область горения, образующая в совокупности с ударной волной волну детонационную, Так как вблизи центра взрыва скорость распрострашеняя волны и интенсивность ее очень велики, то относительные скорости газа в начале области горения и в конце ее близки между собой и существенно ниже критической скорости  [c.222]

Такое исследование имеет и практическое значение в связи с использованием в технологии упрочнения металлов ударпо-вол-НОБОЙ обработкой с применением взрывчатых веществ. Этот процесс называют упрочнением взрывом. Он приводит к существенному увеличению характеристик прочности и твердости металла, причем не только в слоях близ поверхности образца, па которую осуществлялось ударное воздействие, но и внутри него на значительной глубине ( 10 мм). Упрочнепие взрывом либо по схеме удара пластиной, разогнанной с помощью ВВ, либо но схеме накладного заряда ВВ применяется для обработки железподо-рол пых крестовин, ковшей экскаваторов, деталей камнедробилок, мельниц и т. д., т. е. деталей, подвергающихся в процессе эксплуатации сильным ударам и истиранию.  [c.283]

В начальной фазе точечного взрыва давление р невозмущенного газа пренебрежимо мало по сравнению с давлением на фронте ударной волны. Если в условиях на ударной волне и в интегральном соотношении (2.92) положить р>=0, то имеет место задача о сильном точечном взрыве. Эта задача автомо-дельна относительные значения скорости, давления и плотности f/=u/ 2, P PlPb R = plp2 зависят от относительной координаты Я=г/Г2, т. е.  [c.68]


Смотреть страницы где упоминается термин Взрыв сильный : [c.279]    [c.228]    [c.327]    [c.364]    [c.266]    [c.97]    [c.97]    [c.97]    [c.32]    [c.561]    [c.41]    [c.87]    [c.241]    [c.357]    [c.2]    [c.70]    [c.70]   
Численные методы газовой динамики (1987) -- [ c.67 ]

Методы подобия и размерности в механике (1954) -- [ c.171 , c.216 , c.223 ]

Механика сплошной среды Часть2 Общие законы кинематики и динамики (2002) -- [ c.478 ]



ПОИСК



Взрыв

Взрывные волны (автомодельные задачи) 2, Сильный точечный взрыв в газе

Задача о взрыве сильном

Задача о взрыве сильном автомодельные уравнения

Задача о взрыве сильном в газовой динамике

Задача о взрыве сильном волнового уравнения

Задача о взрыве сильном движении поршня

Задача о взрыве сильном для иерархии волн

Задача о взрыве сильном для уравнения Кортевега де Фриза

Задача о взрыве сильном корректно поставленная

Задача о взрыве сильном первого порядка

Задача о взрыве сильном плоских

Задача о взрыве сильном распространении сигнала

Задача о взрыве сильном светофоре

Задача о взрыве сильном сферических

Задача о взрыве сильном ударной трубе

Задача о взрыве сильном условиями для уравнения

Задача о сильном взрыве в среде с переменной плотностью

Задача о сильном точечном взрыве

Окисление азота при сильном взрыве в воздухе

Оптические явления, наблюдаемые при сильном взрыве, и охлаждение воздуха излучением

Приближенное рассмотрение сильного взрыва

Приближенное решение задачи о сильном точечном взрыве в горючей смеси. В. А. Левин

Сильный взрыв в однородной атмосфере

Сильный точечный взрыв

Удар при падении очень быстрого метеорита на поверхность планеты . 21. Сильный взрыв в неограниченной пористой среде

Энергия сильного взрыва



© 2025 Mash-xxl.info Реклама на сайте