Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Метод Лагранжа II рода

При прямом применении уравнений Гамильтона математические трудности решения задач механики обычно существенно не уменьшаются, так как при этом нам приходится иметь дело с такими же дифференциальными уравнениями, как и в методе Лагранжа. Преимущества метода Гамильтона заключаются не в его математической ценности, а в том, что он более глубоко проникает в структуру механики, так как равноправность координат и импульсов как независимых переменных предоставляет большую свободу для выбора величин, которые мы принимаем за координаты и импульсы . В результате мы приходим к новым, более абстрактным формам изложения физической сущности механики. Хотя полученные таким путем методы могут оказать некоторую помощь при решении задач механики, однако с современной точки зрения их главная ценность состоит в том, что они играют существенную роль в построении новых теорий. В частности, именно эти абстрактные концепции классической механики были исходными пунктами в построении статистической механики и квантовой теории. Изложению такого рода концепций, получающихся из уравнений Гамильтона, и посвящаются эта и следующая главы.  [c.263]


Такие решения с применением систем уравнений Лагранжа второго рода являются приближенными не только из-за численных методов решения дифференциальных уравнений, но и потому, что трение в кинематических парах здесь можно оценить лишь весьма приближенно, а упругость звеньев и зазоры в кинематических парах не учитываются вообще. Поэтому при разработке опытных образцов ПР применяют экспериментальные методы динамического исследования ПР, позволяющие с помощью соответствующих датчиков и аппаратуры записать осциллограммы перемещений, скоростей и ускорений звеньев и опытным путем учесть как неточности теоретического расчета, так и влияние ранее неучтенных факторов.  [c.338]

Уравнения обобщенной модели ЭМП получаются с помощью методов теоретической электротехники и теоретической механики или физических законов, определяющих поведение обобщенной модели. Однако физический подход, как правило, требует большой детализации модели. Поэтому здесь используется теоретический подход. Вывод уравнений обобщенной модели базируется на уравнениях Лагранжа второго рода, описывающих поведение неконсервативной системы с сосредоточенными параметрами [73]  [c.58]

Из общего уравнения динамики вытекают дифференциальные уравнения движения системы материальных точек, в которые не входят силы реакций идеальных связей. Возможно решение как прямых (определение сил по заданному движению), так и обратных задач (определение движения по заданным силам) динамики. При решении обратных задач приходится интегрировать составленную систему дифференциальных уравнений движения. Заметим, что использование общего уравнения динамики является формальным методом составления дифференциальных уравнений движения системы. Этот метод является менее удобным и менее эффективным по сравнению с применением уравнений Лагранжа второго рода (читатель сможет в этом убедиться, ознакомившись с содержанием следующего параграфа).  [c.414]

Данную задачу, подобно всем предыдущим задачам этого параграфа, можно решить с помощью уравнений Лагранжа второго рода. Это решение приведено в задаче 414. Там же дана сравнительная оценка обоих методов решения задачи.  [c.442]

Метод Рауса заключается в одновременном исключении циклических координат из уравнений Лагранжа второго рода, при этом число уравнений движения в независимых координатах понижается на число исключенных циклических координат. Предположим сначала, что все обобщенные координаты позиционные. Тогда функция Лагранжа будет функцией всех обобщенных координат, обобщенных скоростей и времени /, т. е.  [c.110]


НЕКОТОРЫЕ МЕТОДЫ ТЕОРИИ ВОЗМУЩЕНИЙ 9.1. Явный вид уравнений Лагранжа второго рода  [c.237]

Канонические уравнения применяются, главным образом, при исследовании теоретических проблем аналитической механики,в особенности при изучении общих методов интегрирования уравнений динамики. Широко применяются канонические уравнения и в небесной механике. С другой стороны, их применение к простейшим конкретным задачам не приводит к большей эффективности по сравнению с решением, основанным на уравнениях Лагранжа второго рода.  [c.149]

В только что рассмотренных примерах определить реакции можно было и без применения уравнений Лагранжа первого рода, непосредственно составляя условия равновесия движущейся точки под действием силы тяжести, реакции и центробежной силы инерции. Метод множителей Лагранжа оказывает существенную пользу в тех случаях, когда поверхность или кривая не обладают теми простыми геометрическими свойствами, как сфера или окружность покажем это на следующем примере.  [c.392]

Составим общее уравнение движения машины, пользуясь для этого методом уравнений Лагранжа второго рода.  [c.415]

Желая использовать в рассматриваемом случае метод уравнений Лагранжа второго рода, составим выражение кинетической энергии в абсолютном движении  [c.429]

Основные преимущества уравнений Лагранжа второго рода (19) состоят в следующем. Во-первых, они дают единый и притом достаточно простой метод решения задач динамики для любых голономных систем точек или тел, как угодно движущихся. Во-вторых, число уравнений (19) не зависит от числа входящих в систему точек или тел и равно числу степеней свободы системы (в машинах, механизмах и приборах обычно одна, две и редко больше двух степеней свободы).  [c.792]

Данная система дифференциальных уравнений движения механической системы в обобщенных координатах — уравнений Лагранжа второго рода — дает единый и достаточно простой метод решения задач динамики. Их вид и число не зависят ни от количества тел, входящих в рассматриваемую систему, ни от того, как эти тела движутся, и определяются лишь числом степеней свободы. Кроме того, при идеальных связях в правые части уравнений входят только активные силы. Следовательно, эти уравнения позволяют заранее исключить из рассмотрения все неизвестные заранее реакции связей.  [c.303]

В следующей главе на примере сферического маятника мы убедимся, что величины Л можно толковать как реакции системы на воздействие (голономных и неголономных) связей . Там же мы увидим также, что фактическое определение величин Л должно производиться, исходя не из г произвольно выделенных уравнений, как это мы временно сделали при выводе уравнения (12.6), а из совокупности всех Зп уравнений Лагранжа. Нужно подчеркнуть, что метод лагранжевых множителей играет существенную роль не только для уравнений Лагранжа первого рода, но также и для уравнения значительно более общего типа (ср. гл. VI, 34) с другой стороны, этот метод встречается уже в элементарной теории максимумов и минимумов.  [c.95]

Если воспользоваться методом уравнений Лагранжа первого рода, то из  [c.345]

И действительно, его Аналитическая механика сыграла роль сочинения, открывшего новый этап в развитии механики. Основная для Лагранжа идея построения механики как систематического и гармоничного здания, возводимого на фундаменте единой общей предпосылки, пронизывает Аналитическую механику . И это стремление к систематичности и изяществу выражений, к математической законченности построения нашло восторженную оценку у другого великого мастера математического анализа проблем механики — Гамильтона. Во введении к своей работе Общий метод динамики Гамильтон говорит Лагранж, может быть, сделал больше, чем все другие аналитики, для того, чтобы придать широту и гармонию таким дедуктивным исследованиям, показав, что самые разнообразные следствия относительно движения системы тел могут быть выведены из одной основной формулы красота метода настолько соответствует достоинству результата, что эта великая работа превращается в своего рода математическую поэму ).  [c.795]


Возможны иные пути учета динамических явлений в приводных двигателях машинных агрегатов. Можно, например, ввести обобщенные координаты (причем некоторые из них будут относиться к электрическим или гидравлическим, другие — к механическим величинам). Далее методами, основанными на использовании уравнений Лагранжа второго рода, нетрудно получить систему дифференциальных уравнений движения машинного агрегата [109].  [c.8]

Рассмотрим цепную механическую систему рис. 28, удовлетворяющую исходным предположениям, изложенным в п. 9. Составим для нее систему интегро-дифференциальных уравнений, воспользовавшись, методом обобщенных координат и уравнениями Лагранжа второго рода [109].  [c.61]

Довольно много методов исследования движения машинного агрегата под действием сил, зависящих от положения и скорости, было разработано с использованием уравнения Лагранжа второго рода.  [c.8]

Ко второй группе отнесём методы, которые позволяет построить формальный алгоритм вычисления значений коэффициентов при вторых производных в дифференциальных уравнениях. Сюда относятся методы кинетостатики (принцип Даламбера) и методы, в которых указанный алгоритм строится исходя из уравнений Лагранжа 2-го рода.  [c.3]

Несомненным достоинством дифференциального метода является получение строгого (в математическом смысле) решения оптимизационной задачи посредством применения метода неопределенных множителей Лагранжа при условии, что на независимые параметры установки и ее отдельные узлы накладываются лишь ограничения третьего рода (в виде функциональных равенств).  [c.38]

По сравнению с ур-ниями в декартовых координатах (см., напр., ур-пия Лагранжа 1-го рода) ур-пия (3) обладают том важным преимуществом, что число их равно числу степеней свободы системы и не зависит от кол-ва входящих в систему материальных частиц или тел кроме того, при идеальных связях из ур-ний (3) автоматически исключаются все наперёд неизвестные реакции связей. Л. у. 2 го рода, дающими весьма общий и притом достаточно простой метод решения задач, широко пользуются для изучения движения разл. механич. систем, в частности н динамике механизмов и машин, в теории гироскопа, в теории колебаний и др.  [c.542]

Характерные черты приближенного метода расчета частот свободных колебаний, в котором учитывается зависимость массы и жесткости от номера тона, показаны ниже на примере с использованием уравнений Лагранжа II рода.  [c.445]

Далее рассмотрим, какие уравнения можно вывести из принципа дополнительной виртуальной работы, если предполагается, что он справедлив для произвольных вариаций напряжений. Универсальным методом решения задач такого рода является метод множителей Лагранжа ). Будем рассматривать (1.48) и (1.49) как ограничения, а перемещения и, v, w как множители Лагранжа, ассоциированные с этими ограничениями. Тогда, проводя все рассуждения в обратном порядке, получим (1.46) из (1.50). Поскольку величины ба , ба ,. .., бт считаются независимыми в соответствии с общей схемой применения множителей Лагранжа, все коэффициенты в уравнениях (1.46) обращаются в нуль, и мы получаем уравнения (1.44) и (1.45). Таким образом, принцип дополнительной виртуальной работы эквивалентен соотношениям напряжения—деформации и граничным условиям в напряже-  [c.35]

Одним из наиболее распространенных методов вывода уравнений движения механических систем является метод, основанный на использовании уравнений Лагранжа второго рода  [c.18]

Из общего уравнения динамики вытекают дифференциальные уравнения движения материальной системы, в которые не входят реакции идеальных связей. Возможно решение как первых (определение сил по заданному движению), так и вторых задач (определение движения по заданным силам) динамики. При решении вторых задач приходится интегрировать составленную систему дифференциальных уравнений движения. Заметим, что использование общего уравнения динамики является формальным методом составления дифференциальных уравнений движения системы. Этот метод является менее удобным и менее эффективным по сравнению с применением уравнений Лагранжа второго рода (читатель сможет в этом убедиться, ознакомившись с содержанием следующего параграфа). Однако общее уравнение динамики справедливо как для голономных, так и для неголономных систем. Уравнения Лагранжа второго рода применимы только к голономным системам.  [c.451]

Здесь j — знак суммирования, а для возможных перемещений, т. е. бесконечно малых мгновенных изменений координат, согласных с уравнениями связи при фиксированном значении времени, применен знак б. Лагранж показывает, что его общая формула динамики дает столько дифференциальных уравнений движения, сколько требуется по условиям любой задачи. Он строит эти уравнения для систем со связями по методу неопределенных коэффициентов и получает аналогичные статическим уравнения Лагранжа первого рода , в которые явно входят реакции связей. Он дает и вторую открытую им форму уравнений движения — уравнения Лагранжа второго рода , вводя обобщенные координаты и скорости (это одно из его самых замечательных открытий в механике). Посредством анализа общей формулы (Ь), с использованием многих положений, установленных в статике, выводятся общие свойства движения . Это не что иное, как доказательство общих теорем динамики системы теоремы о движении центра инерция, теоремы моментов , теоремы живых сил .  [c.156]


М. Ф. Шульгин предложил преобразование канонических переменных, выраженных в голономных и неголономных координатах, позволяющие установить соответствие между теоремами аналитической голономной динамики. Он показал также, что метод преобразования уравнений Лагранжа второго рода, установленный Э. Раусом, можно обобщить на неголономные системы с линейными связями.  [c.102]

Рассмотренная задача иллюстрирует применение уравнений Лагранжа к неголономным системам. Мы видели, что это практически вполне возможно. Однако, вообще говоря, метод Лагранжа не особенно удобен для задач такого рода. Для неголономных систем более удобным и плодотворным является другой метод, основанный на уравнениях Гиббса — Аппеля с этим методом мы познакомимся в гл. XII и XIII.  [c.139]

Как инструмент для изучения произвольных голономных систем материальных точек получены уравнения Лагранжа второго рода и канонические уравнения Гамильтона [66]. Дается понятие о лагран-жевом формализме [1, 36]. Изучается поведение полной энергии системы в зависимости от структуры обобщенных сил и кинетической энергии. Дается метод циклических координат [5, 58]. Устанавливается, что для голономных систем интегргипы количества движения, кинетического момента и обобщенный интегргия энергии Якоби [70] всегда могут быть представлены как следствие существования соответствующих циклических координат. Указывается на возможность использования аппарата теории групп для поиска интегралов движения [5]. Изложение вариационных принципов Гамильтона и Мопертюи-Лагранжа-Якоби [17, 38, 70] выполнено в соответствии с современной теорией оптимальных процессов [2, 5, 13]. Геометрически наглядная трактовка придана теории малых колеба-  [c.12]

Следовательно, общий случай сводится к интегрированию N — г дифференциальных уравнений второго порядка, по внещ-нему виду напоминающих дифференциальные уравнения Лагранжа второго рода. Как видно из предыдущего, метод Раута позволяет исключить циклические скорости из уравнений Лагранжа второго рода.  [c.350]

Такую же систему уравнений можно получить и с помощью общего уравнения динамики. В этом случае составляются уравнения работ заданных моментов, сил инерции и моментов сил инерции для каждого из возможных перемещений 5ф1 и 6ф2. После подстановки в эти уравнения значений сил и моментов сил инерции, выраженных через угловые ускорения тел, а также угловых перемещений тел, выраженных через приращения углов 5ср1 и 5ф2, выражения получаются весьма громоздкими. Приводить их автору не хочется. Наиболее рациональным методом решения подобных задач является использование уравнений Лагранжа 2-го рода.  [c.147]

Уравнения Лагранжа второго рода дают общий метод составления дифференциальных уравнений движения механической системы с голономными идеальными удерживающими связями в обобщенных координатах. Строгий вывод этих уравнений выходит за рамки данного курса, поэтому проиллюстрируем их справедливость на очень частном случае механической системы с одной степенью свободы, когда наложенхсые на нее связи являются не только голономными идеальными удерживающими, но и стационарными.  [c.300]

Динамика промышленных робртов. В отличие от копирующих манипуляторов с ручным приводом промышленные роботы представляют собой механическую сис[гему, в которой динамические нагрузки (нагрузки от сил инерции) могут быть значительными. Эти нагрузки определяются из решения системы уравнений движения. Для составления уравнений движения пространственного механизма с несколькими степенями свободы применяются два метода метод уравнений Лагранжа второго рода и кинетостатический метод. Поясним оба метода на примере простейшего промышленного робота с тремя степенями свободы при цилиндрической зоне обслуживания (рис. 149).  [c.272]

Эти последние преобразования дифференциальных уравнений движения второго порядка системы притягивающихся или отталкивающихся точек во всех отношениях совпадают (не считая небольших различий в написании) с изящными каноническими формами, данными Лагранжем в Me anique Analytique, но нам казалось, что стоит вывести их заново из свойств нашей характеристической функции. Предположим (как это часто считается удобным и даже необходимым), что п точек системы не являются целиком свободными и подвержены не только своим собственным взаимным притяжениям и отталкиваниям, но связаны любыми геометрическими условиями и подвергаются влиянию любых внешних факторов, согласующихся с законом сохранения живой силы так, что число независимых отметок положения будет менее велико, а силовая функция менее проста, чем раньше. Тогда мы можем доказать при помощи рассуждения, очень сходного с предыдущим, что и при этих предположениях (которые, однако, дух динамики все более и более склонен исключать) накопленная живая сила, или действие V системы, представляет собой характеристическую функцию движения уже разобранного выше рода. Эта функция выражается тем же законом и формулой вариации, подверженной тем же преобразованиям, и обязана удовлетворять таким же способом, как и выше, конечной и начальной зависимости между ее частными производными первого порядка. Она приводит при помощи варьирования одной из этих двух зависимостей к тем же каноническим формам, которые были даны Лагранжем для дифференциальных уравнений движения, и дает, исходя из изложенных выше принципов, их промежуточные и конечные интегралы. По отношению же к тем мыслимым случаям, в которых закон живой силы не имеет места, наш метод также неприменим однако среди людей, наиболее глубоко занимавшихся математической динамикой вселенной, все более крепнет убеждение, что представление о таких случаях вызывается недостаточным пониманием взаимодействия тел.  [c.189]

Тогда эти центробарические компоненты будут теми же функциями времени и новых переменных элементов, которые могли быть выведены иначе посредством исключения из интегралов (Q2). Они будут строго представлять (путем распространения теории на эти ранее упоминавшиеся интегралы) компоненты скорости возмущенной планеты т относительно центра тяжести всей солнечной системы. Мы предпочли (и это вполне соответствует общему направлению нашего метода), чтобы эти центробарические компоненты скорости были вспомогательньши переменньши, объединяемыми с гелиоцентрическими координатами. Их возмущенные эначения были в этом случае строго выражены формулами невозмущенного движения. Этот выбор сделал необходимым видоизменить эти последние формулы и определить орбиту, существенно отличающуюся теоретически (хотя мало отличающуюся практически) от орбиты, так блестяще разработанной Лагранжем. Орбита, которую он себе представлял, была более просто связана с гелиоцентрическим движением единственной планеты, следовательно, она давала для такого гелиоцентрического движения как скорость, так и положение (планеты). Орбита, которую мы избрали, быть может, более тесно связана с концепцией множественной системы, движущейся относительно ее общего центра тяжести и подверженной в каждой ее части влиянию со стороны всех остальных. Какая бы орбита ни была в будущем принята астрономами, следует помнить, что обе они одинаково пригодны для описания небесных явлений, если числовые злементы каждой системы будут соответствующим образом определены при наблюдениях, а элементы другой системы орбит будут выведены из результатов наблюдения в процессе вычисления. Тем временем математики решат пожертвовать ли частично простотой той геометрической концепции, исходя из которой выведены теории Лагранжа и Пуассона для простоты другого рода (которая хотя еще не введена, но была бы желательна для этих превосходных теорий), получаемой благодаря нашим достижениям в строгом выражении дифференциалов всех наших собственных новых переменных элементов через посредство единственной функции (поскольку до сих пор казалось необходимым употреблять одну функцию для Земли, возмущенной Венерой, и другую функцию для Венеры, возмущенной Землей).  [c.281]


По динамическому исследованию пятизвенных механизмов имеется немного работ. Можно отметить, например, работы В. В. Добровольского [78], Р. Бейера [166], Б. М. Абрамова [I]. В основном мы будем придерживаться метода, разработанного В. В. Добровольским, который применил уравнения Лагранжа второго рода для изучения динамики механизмов с двумя степенями свободы. Прежде чем приступить к динамическому исследованию указанных механизмов, ознакомимся с их кинематикой.  [c.146]

АДИАБАТИЧЕСКАЯ ГИПОТЕЗА — продпологксние, лежащее в основе представления о механизме рассеяния в квантовой теории поля (КТП). Процесс рассеяния, согласно А. г., происходит след, образом. В нач. состоянии, к-рому приписывается время t— — со, частицы находятся далеко друг от друга и взаимодействие между ними полностью отсутствует. По мере сближения частиц взаимодействие постепенно (включается , достигает наиб, силы при макс. сближении и постепенно выключается , когда частицы разлетаются после рассеяния. Конечному состоянию приписывается время t — +oa. В начальном и конечном состояниях частицы описываются свободным лагранжианом т. е. лагранжианом без взаимодействия. Строго говоря, А. г. не применима к КТП, поскольку лагранжианы со взаимодействием, обычно рассматриваемые в КТП, приводят к тому, что частицы постоянно взаимодействуют с вакуумом как своего рода физ. средой, в к-рой они движутся, и поэтому не могут описываться свободным лагранжианом (см. Хаага теорема). Трудности, возникающие при введении А, г. в КТП, устраняются с помощью процедуры перенормировок при построении матрицы рассеяния. г. в. Ефимов. АДИАБАТИЧЕСКИЕ ВОЗМУЩЕНИЯ — возмущения состояний квантовой системы под воздействием медленно (адиабатически) меняющихся внеш. условий. Медленность означает, что характерное время изменения внеш. условий значительно превышает характерные времена движения системы. Метод А. в. противопоставляется внезапных возмущений методу (встряхиванию), при к-ром упомянутые времена удовлетворяют противоположному неравенству. А. в. могут приводить к значит, изменению структуры самих состояний, но при этом переходы между разными состояниями происходят с малой вероятностью. Исключение из этого правила составляют случаи, когда в процессе эволюции два или неск. уровней. энергии системы становятся близкими или пересекаются (см. Пересечение уровней). При этом переходы между пересекающимися состояниями могут происходить с заметной вероятностью и наз. неадиабатическими. Теорию Л. в. применяют для описания столкновений атомов и молекул, взаимодействия атомов и молекул с эл.-магн. полями, взаимодействия разл. возбуждений в твёрдом теле и т. д.  [c.26]

Методы составления дифференциальных уравнений колебаний упругих систем. Они изложены В разделе 1 данного тома. При выводе уравнений динамики надо согласно принципу Даламбера к действующим силам добавить распределенные силы инерции. В случаях, когда упругая система взаимодействует с упругоподве-шенными сосредоточенными массами, целесообразно применять метод уравнений Лагранжа II рода. С этой целью надо составить выражения для кинетической энергии системы, потенциальной энергии деформаций и выражения для обобщенных сил, затем с помощью уравнений Лагранжа II рода получить дифференциальные уравнения колебаний. Метод уравнений Лагранжа удобен для получения дифференциальных уравнений вынужденных колебаний, когда формы свободных колебаний известны.  [c.330]

Таким образом, метод приведения сил и масс позволяет свести задачу о движении многозвенного механизма, нагруженого многими силами и моментами сил, к движению одной точки В или звена АВ (см. рис. 6,2.4), При составлении уравнений движения механизма эти функции т к Jj, можно подставлять лишь в уравнения, содержащие кинетическую энергию. Обычно используют либо уравнение кинетической энергии, либо уравнение Лагранжа второго рода.  [c.490]

В гл. II мы многократно выводили дифференциальные уравнения для амплитуды а и фазы г ) (амплитудно-фазовые уравнения) колебательных систем при использовании метода усреднения. Здесь изложим другой алгоритм построения амплитудно-фазовых уравнений первого приближения (вида (2.144)), не требующий предварительного написания возмущенных уравнений вида (2.133). Этот алгоритм основан на применении так называемого энергетического метода [147], хорошо известного в уравнениях математической физики. Для построения уравнений первого приближения достаточно знать некоторое выражение для работы возмущающих сил, а не сами силы, входящие в уравнения Лагранжа второго рода (2.128) или (2.133),.В ряде случаев это существенно упрощает задачу. Чтобы не загромождать суть дела большим количеством громоздких формул и выкладок, вернемся к задаче (см. 2.9) о построении приближенных решений системы (2.133), близких к одночастотпым колебаниям с медленно изменяющейся частотой (оДт).  [c.171]

Итак, уже в середине XVIII в. работы Эйлера ( Механика и Теория движения твердых тел ) и Даламбера ( Динамика ) совершенно преобразили механику. По содержанию это была теперь наука, охватывающая все роды движения материальных точек и их систем, по форме механика превратилась в значительной степени в аналитическую дисциплину, во всяком случае геометрические методы отступили на второй план. Неизмеримо более сильный математический аппарат анализа привел к заметному понижению трудности предмета. Если работы Ньютона и Германна такой читатель, как Эйлер, усваивал, по его признанию, с некоторыми затруднениями то работы Эйлера, а после него — Даламбера, Клеро и других авторов не были трудными для всякого читателя, знакомого с анализом. Механика уже располагала единым методом и аппаратом, достаточно сильным для того, чтобы реализовать преимущества этого единого метода. Все же завершающий этап этих успехов аналитической механики в XVIII в., этап, связанный больше всего, с именем Лагранжа, был еще впереди. Он был подготовлен не только тем, с чем читатель уже познакомился, но и достижениями в небесной механике и в механике твердого тела.  [c.147]


Смотреть страницы где упоминается термин Метод Лагранжа II рода : [c.609]    [c.60]    [c.583]    [c.176]    [c.913]    [c.4]    [c.2]   
Машиностроение Энциклопедия Т I-3 Кн 2 (1995) -- [ c.330 ]



ПОИСК



I рода

I рода II рода

Лагранжа 1-го рода

Лагранжа 1-го рода 2-го рода

Лагранжа метод

Лагранжевы методы

Родан

Родиан

Родий

Родит



© 2025 Mash-xxl.info Реклама на сайте