Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Дифференциальные уравнения с разделенными переменными

Интегрируя полученное дифференциальное уравнение с разделенными переменными, получаем  [c.128]

Откуда получаем следующее дифференциальное уравнение с разделенными переменными  [c.392]

Так как угол Маха зависит только от величины скорости, то (2.8) является дифференциальным уравнением с разделенными переменными.  [c.308]

Заменим в формуле (XI.52) переменную величину знаменателя г постоянной Го, т. е. предположим, что за время t размеры газовой залежи не изменились. Как следует из формулы (XI.52), давление р, вычисленное в результате такой замены, будет заниженным. Подставив теперь заниженное значение р в уравнение (XI.50), получим вместо уравнения (XI.53) следующее дифференциальное уравнение с разделенными переменными  [c.262]


Таким образом, данная задача разрешена, ибо она сводится лишь к интегрированию двух уравнений с разделенными переменными между Ф и г шестью произвольными постоянными, необходимыми для полного интегрирования трех дифференциальных уравнений в переменных г, - и ф, будут i, h, D, Н я две постоянные, которые появятся в выражениях i и Ф в результате интегрирования.  [c.18]

Таким образом, уравнения (3.4) являются уравнениями с разделенными переменными. Это обыкновенные дифференциальные уравнения для определения функций Хт. Полное решение (3.2) находим с помощью формулы (3.3).  [c.48]

С. В. Ковалевская ввела новые переменные 1 и 52, посредством которых определила все шесть неизвестных функций (0 , уь Уз- В соответствии с теорией Якоби было найдено, что связь между 5) и 2 определяется дифференциальным уравнением первого порядка с разделенными переменными  [c.454]

Может возникнуть вопрос почему решение уравнения (4.114) ищется в виде произведения (4.115) с разделенными переменными. Объясняется это тем, что если такие решения существуют, то определение функций (i), (х) должно свестись к интегрированию обыкновенных дифференциальных уравнений, т. е. к задаче на порядок более простой, чем задача интегрирования уравнения в частных производных. Итак, для того, чтобы предложенный метод отыскания решения задачи (4.114), названный методом разделения переменных или методом Фурье, удалось реализовать, необходимо  [c.155]

Решение уравнения в частных производных методом разделения переменных. У нас нет какого-либо общего метода решения уравнений в частных производных. Однако при некоторых особых условиях оказывается возможным найти полный интеграл уравнения Гамильтона — Якоби. Этот специальный класс задач сыграл важную роль в развитии, теоретической физики, так как оказалось, что ряд основных задач теории атома Бора принадлежит к этому классу. В таких задачах одно уравнение в частных производных с п переменными может быть заменено п обыкновенными дифференциальными уравнениями с одной независимой переменной, которые полностью интегрируются. Такие задачи называются задачами с разделяющимися переменными .  [c.275]

Если производную у рассматривать как вспомогательную неизвестную, то равенство (53) будет дифференциальным уравнением первого порядка с разделенными переменными, которое интегрируется непосредственно и дает  [c.210]


Закон дисперсии линейных волн в жидкости конечной глубины Н исследовался с помогцью линеаризации модели и нахождения точного решения системы обыкновенных дифференциальных уравнений но аналогии с разделением переменных в соответствуюгцей классической задаче. Пз полученных зависимостей следует, что модель хорошо описывает дисперсию воли с длиной А Н — глубина жидкости) на сетке с шагами  [c.11]

Практическое значение теоремы об изменении импульса материальной точки при решении задач невелико, так как дифференциальная форма ее предоставляет основное уравнение динамики с разделенными переменными, и по сравнению с (6.1) она существенно новых соотношений не дает. Главная область применения теоремы в механике — это изучение мгновенных или ударных сил. Так называются силы, продолжительность действия которых весьма мала, и закон изменения их со временем практически остается неизвестным. Такие силы будут характеризоваться вектором импульса силы (9.3).  [c.111]

Метод разделения переменных, сводящий решение уравнения в частных производных к решению нескольких обыкновенных дифференциальных уравнений, при определенных условиях может быть применен и для решения краевых задач. Попытаемся решить задачу о стационарном распределении температуры в круглой пластинке радиуса а с различными краевыми условиями на границе 5 пластинки.  [c.170]

В рассмотренных выше системах с сосредоточенными постоянными имеет место пространственное разделение элементов массы и упругости (механические системы) или емкости и индуктивности (электрические системы). В этих системах можно не учитывать времени передачи возмущения от точки к точке, оно мало по сравнению с периодом колебаний. В системах происходят колебательные процессы, зависящие от единственной переменной — времени t. Поэтому движения в системах со сосредоточенными параметрами описываются обыкновенными дифференциальными уравнениями.  [c.319]

Сформулированную задачу решим с помощью разделения переменных, т. е. т) =<р(т)г з(л). Подставляя это выражение в уравнение (3-43), получим два обыкновенных дифференциальных уравнения вида  [c.88]

Поскольку функции HiH зависят не только от времени, но и от til, т]2, Tji, Г]2, то в результате перехода к квазинормальным координатам, разумеется, не произошло полного разделения переменных в дифференциальных уравнениях (5.56), однако появилась возможность для построения эффективного приближенного решения, которое может быть получено, если сохранить в функции Qi члены, зависящие от и t]i, а в функции Qa — члены, зависящие от т)з, т)2. Как показывает анализ, использование этого приема позволяет получить результаты, которые с учетом степени достоверности исходной информации о данной системе обычно не нуждаются в дополнительных уточнениях. Это обстоятельство связано не только с малостью отброшенных членов, но и с фильтрующими свойствами системы.  [c.184]

Решение задачи можно получить и в другом виде, если разделение переменных в исходном дифференциальном уравнении произвести с помощью подстановки  [c.130]

До последнего времени для решения уравнений теплопроводности и диффузии обычно использовались метод разделения переменных, метод мгновенных источников, методы, основанные на применении функций Грина, Дирака и др. Эти классические методы предполагают отыскание в первую очередь общего решения и его последующее приспособление к частным условиям конкретной задачи. Детальное освещение классических методов решения уравнений переноса можно найти в фундаментальной работе А. Н. Тихонова и А. А. Самарского (Л. 7]. Получаемые классическими методами решения, однако, не всегда оказываются удобными для практического использования. Так, иногда требуется получить приближенные соотношения, в которых режимные параметры процесса должны быть отделены от физических характеристик тела или системы тел, взаимодействующих с окружающей средой. Эти важные для практики соотношения бывает затруднительно получить из классических решений. Еще большие осложнения возникают при решении систем дифференциальных уравнений тепло- и массопереноса классическими методами. Под влиянием запросов техники за последние десятилетия инженерами и физиками стали широко применяться операционные методы решения. Основные правила и теоремы операционного исчисления получены киевским профессором М. Ващенко-Захарченко [Л. 8]. Наибольшее распространение они нашли в электротехнике благодаря работам Хевисайда. Этот метод оказался настолько эффективным, ЧТО позволил решить многие проблемы, считавшиеся до его появления почти неразрешимыми, и получить решения некоторых уже рассмотренных задач в форме, значительно более приспособленной для численных расчетов.  [c.79]


Уравнения (3.32) выражаем через продольное и поперечное перемещения оси стержня как и в п.2.5.1. Далее используем метод Фурье разделения переменных. Система дифференциальных уравнений колебаний кругового стержня в своей плоскости с учетом инерции вращения в амплитудном состоянии примет вид  [c.177]

При составлении соответствующего дифференциального уравнения учитываются силы инерции распределенной массы и добавка изгибающего момента от продольной силы. Применив метод Фурье разделения переменных, дифференциальное уравнение поперечных колебаний призматического стержня с учетом продольной сжимающей силы в амплитудном состоянии примет вид (х) + Fv"(x) - o mv x) = qy (х)  [c.198]

Это уравнение определяет основную процедуру вариационного метода Канторовича-Власова, являющегося развитием более общего метода Фурье разделения переменных применительно к уравнениям теории упругости. Для сведения дифференциального уравнения в частных производных к обыкновенному дифференциальному уравнению необходимо использовать разложение (7.2) и выполнить операции в (7.5), т.е. умножить обе части исходного дифференциального уравнения на выбранную функцию ХДх) и проинтегрировать в пределах характерного размера пластины (для прямоугольной пластины это ее ширина). Точное решение получается, когда ряд (7.2) не усекается, а из (7.5) следует бесконечная система линейных дифференциальных уравнений и расчетная схема имеет бесконечное число степеней свободы в двух направлениях. При этом весьма удобно использовать ортогональную систему функций X x). В этом случае будут равны нулю многие побочные коэффициенты системы линейных дифференциальных уравнений (7.5) и она существенно упростится, а при шарнирном опирании вообще распадается на отдельные уравнения. В расчетной практике весьма редко используют два и более членов ряда (7.2), ограничиваясь только первым приближением. Связано это с высокой точностью получаемых результатов, вследствие, как представляется, незначительного расхождения между приближенной схемой и реальным объектом. Формально это выражается в надлежащем выборе функции Х х). Чем точнее она описывает какой-либо параметр в направлении оси ОХ, тем меньше погрешность результата.  [c.392]

Дифференциальное уравнение движения лопасти в частных производных решается методом разделения переменных, приводящим к системе обыкновенных дифференциальных уравнений (аргумент — время) для ряда степеней свободы, подобных уравнению махового движения жесткой лопасти. Таким образом, отклонение z r,t) элемента лопасти от плоскости вращения может быть представлено в виде разложения деформации изгиба по собственным формам. Каждое уравнение движения соответствует своему тону собственных колебаний. Сначала необходимо найти подходящие собственные формы для вращающихся лопастей. Когда формы выбраны таким образом, что реакция лопасти на возмущение хорошо описывается несколькими первыми тонами, задачи динамики несущего винта могут быть решены с использованием минимального количества степеней свободы. -  [c.357]

В седьмой главе рассмотрены вопросы численного интегрирования линейных и нелинейных краевых задач для систем обыкновенных дифференциальных уравнений, возникающих при исследовании прочности, устойчивости, свободных колебаний анизотропных слоистых композитных оболочек вращения после разделения угловой и меридиональной переменных. Разработан и апробирован алгоритм численного решения таких задач, основанный на идее инвариантного погружения, в котором проблема интегрирования первоначальной краевой задачи редуцируется к решению задачи Коши для жестких матричных дифференциальных уравнений. Приведенные тестовые примеры позволяют сделать вывод об эффективности метода. Показано, что сочетание метода Бубнова — Галеркина с обобщенной формой метода инвариантного погружения дает эффективный инструмент численного исследования устойчивости и свободных колебаний слоистых композитных оболочек вращения. Разработан метод численного определения матрицы Грина краевой задачи и на примере проблемы выпучивания длинной панели по цилиндрической поверхности показана его эффективность в задачах устойчивости оболочек вращения. Метод решения нелинейных краевых задач, объединяющий в себе итерационный процесс Ньютона с методом инвариантного погружения, рассмотрен в параграфах 7.4, 7.5.  [c.14]

Из-за различия ядер релаксации материалов слоев структура функциональной матрицы Г( ) такова, что разделение переменных в общем случае невозможно. В связи с этим для решения системы (9.16) воспользуемся одношаговым численным методом [102]. В указанной работе рассмотрена задача Коши для системы п линейных интегро-дифференциальных уравнений следующего вида  [c.499]

Уравнения (4.12) и (4.21) полностью описывают траекторию частицы с зарядом Q и массой покоя то, движущейся с произвольной скоростью в аксиально-симметричных электрическом и магнитном полях. Поскольку уравнение (4.21) содержит только функции координат гиг, оно не зависит от координаты а и описывает проекцию траектории на плоскость rz. Если эта проекция найдена, можно подставить функцию г (г) в (4.12) и найти зависимость а г). Такое разделение переменных дифференциального уравнения является следствием аксиальной симметрии. Если бы ее не было, уравнения (2.84) и (2.85) остались бы связанными и очень сложными.  [c.184]


С математической стороны расчет оболочек сводится к решению системы уравнений в частных производных восьмого порядка с переменными коэффициентами и малыми множителями при старших производных. Граничные условия (условия периодичности, конечности решения) содержат производные от искомых функций до третьего порядка включительно. В ряде случаев при помощи метода разделения переменных задачу удается свести к решению систем обыкновенных дифференциальных уравнений того же типа.  [c.652]

Разрешающие уравнения (10.26), (10.28) или (10.35), (10.36) имеют второй порядок и содержат по две неизвестные функции. Разделением переменных они могут быть приведены к одному дифференциальному уравнению четвертого порядка с одной неизвестной функцией. Решение этих уравнений содержит четыре постоян-  [c.403]

Это соотношение представляет собой дифференциальное уравнение первого порядка с переменными х I, которое интегрируется разделением переменных.  [c.429]

Исторически одним из первых методов, нашедших ншрокое применение при решении краевых задач для уравнений с частными производными, явился метод разделения переменных или, как его еще называют, метод Фурье, заключающийся в построении набора частных решений, каждое из которых разыскивается в виде произведения функций меньшего числа переменных (как правило, функций одного переменного). В ряде случаев оказывается, что такое представление не вступает в противоречие с исходным дифференциальным уравнением (тогда говорят, что уравнение допускает разделение переменных) и приводит, в зависимости от размерности задачи, к нескольким обыкновенным дифференциальным уравнениям, содержащим один и тот же числовой параметр. В зависимости от характера области, в которой решается краевая задача, граничных и начальных  [c.117]

Метод разделения переменных при интегрировании дифференциальных уравнений с частными производными первого порядка в более общем виде, чем это указано в тексте, разработан Имшенецким В. Г. и изложен в его сочинении Интегрирование дифференциальных уравнений с частными производными первого и второго порядков", Москва, 19J6. Впервые напечатано в 1865 г. в. Ученых записках Казанского университета".  [c.346]

Поэтому, казалось бы, естественно поставить задачу виброакустической диагностики прямозубой передачи как задачу разделения виброакустического сигнала на ряд компонент, обусловленных различными факторами, каждый из которых является самостоятельным источником виброакустической активности. Конечно, такое разделение без всяких оговорок возможно-лишь в том случае, когда зубчатая передача может рассматриваться как линейная механическая система с постоянными параметрами [6—8]. При этом1 различным факторам, обусловливающим виброакустичность, соответствуют различные по структуре правые части системы линейных дифференциальных уравнений с постоянными коэффициентами, описывающих колебания передачи. Однако если необходимо учесть периодическое изменение жесткости зацепления в процессе пересопряжения зубьев (чередование интервалов однопарного и двупарного зацепления), то математическая модель передачи описывается системой дифференциальных уравнений с переменными коэффициентами [9—12]. Здесь уже принцип суперпозиции действует только при условии, что жесткость зацепления как функция времени не зависит от вида правых частей уравнений. Даже при этом условии можно разделить те факторы возбуждения вибраций, которые определяют правые части системы уравнений при известном законе изменения жесткости, но нельзя выделить составляющую виброакустического сигнала, обусловленную переменной жесткостью зацепления. Наконец, учет нелинейностей приводит к принципиальной невозможности непосредственного разложения виброакустического сигнала на сумму составляющих, порожденных различными факторами. Тем не менее оценить влияние каждого из этих факторов на вибро-акустический сигнал и выделить основные причины интенсивной вибрации можно и в нелинейной системе. Для этого следует подробно изучить поведение характеристик виброакустического сигнала при изменении каждого из порождающих вибрации факторов, причем для более полного описания каж-  [c.44]

При полностью открытом проходном сечении тормозного устройства (В = 0) и силе сопротивления, зависящей только от скорости (в любой степени), уравнение движения (13.18) есть нелинейное дифференциальное уравнение первого порядка относительно скорости поршня V с разделяюш,имися переменными. После разделения переменных получим  [c.266]

В данной главе рассматриваются свободные и вынужденные установившиеся гармонические колебания стержневых систем. Как и в статике, точные дифференциальные уравнения гармонических колебаний стержней являются нелинейными. Упрощая задачи динамики, нелинейные уравнения линеаризуют. Точность решений линейных уравнений удовлетворяют требованиям инженерных расчетов при //г > 10, поэтому они используются в инженерной практике. Линейные дифференциальные уравнения содержат частные производные по координате хи времени t. Методом Фурье разделения переменных уравнения с частными производными сводятся к уравнениям с обычными производными, описывающими перемещения стержня в амплитудном состоянии. Принцип Д Аламбера, используемый при выводе дифференциальных уравнений, позволяет рассматривать задачи динамики как задачи статики. Поэтому ниже применены предпоженные правила знаков для граничных параметров и нагрузки в п. 1.2, 1.4.  [c.124]

Решение в экспоненциальных функциях. Как уже говорилось выше, решения могут быть получены путем разделения переменных и последующего построения аналитического решения. Так, можно взять функццю р как произведение неизвестной функции QT Z на экспоненциальную функцию от х или на функцию, которая может быть представлена с помощью эксцоненци-альной функции, такую, как тригонометрическая или гиперболическая функции,, так как производные от всех этих функций имеют ту же общую форму, что и исходная ( кция. Неизвестная функция от Z-Может быть, затем найдена путем решения обыкновенного дифференциального уравнения, jtoTopoe получается после сокращения на функцию от х.  [c.154]

Функции Рк. х) и Qk x t) будем считать базисными (они заданы), а с помощью коэффициентов ak t) bk t)) можно удовлетворить уравнению (например, вида (2)) и дополнительным начальным или краевым условиям. Вид ряда (4) является стандарт ным при применении метода разделения переменных для линейных уравнений. Однако для нелинейных задач процедура получения коэффициентов ak t) существенно услож няется. Как правило, системы обыкновенных дифференциальных уравнений для ak t) оказываются зацепленными и нелинейными (например, когда Рк х) = sin А ж(со8 А ж) и (4) является рядом Фурье), рекуррентное точное определение ak t) становится невоз можным и необходимо соответствующие системы обыкновенных уравнений каким-то образом обрезать. Нахождение коэффициентов ak t) даже после обрезания нелинейной системы является достаточно трудоемкой операцией, особенно если требуется опреде лить много коэффициентов.  [c.19]

В этой главе рассмотрены вопросы численного интегрирования линейных и нелинейных краевых задач для систем обыкновенных дифференциальных уравнений, возникающих при исследовании прочности, устойчивости, свободных колебаний анизотропных слоистых композитных оболочек вращения после разделения угловой и меридиональной переменных. В предыдущих главах было показано, что корректный расчет таких оболочек и пластин в большинстве случаев требует привлечения неклассических дифференциальных уравнений повышенного порядка. Там же (см. параграфы 4.1, 4.4, 5.2, 6.2) отмечалась важная особенность таких уравнений — существование быстропеременных решений экспоненциального типа, имеющих ярко выраженный характер погранслоев и существенных лишь в малых окрестностях краевых закреплений, точек приложения сосредоточенных сил, мест резкого изменения геометрии конструкции и т.д. Стандартные схемы численного интегрирования краевых задач на таком классе дифференциальных уравнений малоэффективны — попытки их применения встречают принципиальные трудности, характер и формы проявления которых подробно обсуждались в параграфе 4.1 (см. также [136]). Добавим к этому замечание о закономерном характере данного явления — существование решений экспоненциального типа с чрезвычайно большим (по сравнению с длиной промежутка интегрирования) показателем изменяемости в неклассических математических моделях деформирования тонкостенных слоистых систем, дифференциальными уравнениями которых учитываются поперечные сдвиговые деформации, обжатие нормали и другие второстепенные" факторы, естественно и необходимо. Такие решения описывают краевые эффекты напряженного состояния, связанные с учетом этих факторов, и существуют не только у неклассических уравнений, установленных в настоящей монографии, но и в других вариантах неклассических уравнений повышенного порядка, что уже было показано (см. параграф 4.1) на конкретном примере. Болес того, подобные явления наблюдаются не только в теории оболочек, но и в других математических моделях механики и физики. Известным классическим примером такого рода может служить течение Навье—Стокса — при малой вязкости жидкости, как впервые было показано Л. Прандтлем (см., например, [330]), вблизи обтекаемого тела возникает зона пограничного слоя. Такие задачи согласно известной [56, 70 и др.] классификации относятся к классу сингулярно возмущенных, т.е. содержащих малый параметр и претерпевающих понижение порядка, если положить параметр равным нулю. Проблема сингулярных возмущений привлекала внимание многих авторов [56, 70, 173, 190 и др.]. Последние десятилетия отмечены значительными достижениями в ее разработке — в создании и обосновании методов асимптотического интегрирования для различных  [c.195]


При исследовании пространственных течений постоянно приходится пользоваться различными криволинейными системами координат цилиндрической, сферической и др. Такой подход не только упрощает описание картины движения, но иногда просто неизбежен от удачного выбора системы координат зависит воз.чожность разделения переменных в дифференциальных уравнениях, простота приемов удовлетворения граничных условий и многое другое. В плоском движении роль фиволинейных координат, как это было показано в 40 гл. V, играет метод функций комплексного переменного и конформных отображений переход от физической плоскости г — х- -1у к вспомогательной плоскости С = был эквивалентен пользованию криволинейными координатами , 17 вместо прямолинейных х, у.  [c.387]

Для решения задачи о дифракции для тел нескольких простых форм применйм простейший метод нахождения поля — метод разделения переменных. Суш,но-сть метода состоит в том, что решение иш.ется в виде бесконечной суммы, каждый член которой есть произведение функций, зависящих только от одной координаты. Условием применимости этого метода является существование такой системы координат, в которой, во-первых, поверхность тела совпадает с какой-либо координатной поверхностью, и, во-вторых, уравнения Максвелла (для акустики волновое уравнение) распадаются на несколько обыкновенных дифференциальных уравнений. Для двумерных задач метод применйм к клину и цилиндрам, ограниченным кривыми второго порядка. В трехмерных задачах тела могут быть ограничены любыми поверхностями второго порядка мы рассмотрим только задачу о сфере.  [c.42]

Ui = onst, то для решения дифференциальных уравнений в частных производных можпо использовать классический способ разделения переменных. Таким ь1етодом фактически и воспользовался Мн для решения упоминавшейся выше задачи о сфере, обладающей конечной проводимостью. В этом случае решение краевой задачи имеет вид бесконечного ряда и его ценность зависит от легкости вычисления необходимых функций, а также от скорости, с которой ряд сходится. Этот метод применялся в различных случаях (помимо задачи со сферой) особенно надо отметить его использование в случае дифракции на круглом диске или отверстии [5]. Следует, однако, замерить, что ли1иь некоторые из этих работ относятся к чисто скалярным задачам типа задач, встречающихся в теории звуковых волн малой амплитуды дальше будет показано, что двумерные задачи в электромагнитной теории принадлежат в основно.м к этому типу, но в других случаях векторная природа электромагнитного поля приводит к дополнительным осложнениям.  [c.514]


Смотреть страницы где упоминается термин Дифференциальные уравнения с разделенными переменными : [c.462]    [c.843]    [c.735]    [c.843]    [c.486]    [c.309]    [c.252]    [c.323]    [c.10]    [c.50]    [c.160]    [c.8]   
Справочник машиностроителя Том 1 Изд.3 (1963) -- [ c.207 ]



ПОИСК



Дифференциальное уравнение в частных производных с разделенными переменными

Дифференциальные с разделенными переменным

Дифференциальные уравнения в полных с разделенными переменным

Переменные разделенные

Уравнения разделенные



© 2025 Mash-xxl.info Реклама на сайте