Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Дифференциальное уравнение в частных производных с разделенными переменными

Решение уравнения в частных производных методом разделения переменных. У нас нет какого-либо общего метода решения уравнений в частных производных. Однако при некоторых особых условиях оказывается возможным найти полный интеграл уравнения Гамильтона — Якоби. Этот специальный класс задач сыграл важную роль в развитии, теоретической физики, так как оказалось, что ряд основных задач теории атома Бора принадлежит к этому классу. В таких задачах одно уравнение в частных производных с п переменными может быть заменено п обыкновенными дифференциальными уравнениями с одной независимой переменной, которые полностью интегрируются. Такие задачи называются задачами с разделяющимися переменными .  [c.275]


Это уравнение определяет основную процедуру вариационного метода Канторовича-Власова, являющегося развитием более общего метода Фурье разделения переменных применительно к уравнениям теории упругости. Для сведения дифференциального уравнения в частных производных к обыкновенному дифференциальному уравнению необходимо использовать разложение (7.2) и выполнить операции в (7.5), т.е. умножить обе части исходного дифференциального уравнения на выбранную функцию ХДх) и проинтегрировать в пределах характерного размера пластины (для прямоугольной пластины это ее ширина). Точное решение получается, когда ряд (7.2) не усекается, а из (7.5) следует бесконечная система линейных дифференциальных уравнений и расчетная схема имеет бесконечное число степеней свободы в двух направлениях. При этом весьма удобно использовать ортогональную систему функций X x). В этом случае будут равны нулю многие побочные коэффициенты системы линейных дифференциальных уравнений (7.5) и она существенно упростится, а при шарнирном опирании вообще распадается на отдельные уравнения. В расчетной практике весьма редко используют два и более членов ряда (7.2), ограничиваясь только первым приближением. Связано это с высокой точностью получаемых результатов, вследствие, как представляется, незначительного расхождения между приближенной схемой и реальным объектом. Формально это выражается в надлежащем выборе функции Х х). Чем точнее она описывает какой-либо параметр в направлении оси ОХ, тем меньше погрешность результата.  [c.392]

Может возникнуть вопрос почему решение уравнения (4.114) ищется в виде произведения (4.115) с разделенными переменными. Объясняется это тем, что если такие решения существуют, то определение функций (i), (х) должно свестись к интегрированию обыкновенных дифференциальных уравнений, т. е. к задаче на порядок более простой, чем задача интегрирования уравнения в частных производных. Итак, для того, чтобы предложенный метод отыскания решения задачи (4.114), названный методом разделения переменных или методом Фурье, удалось реализовать, необходимо  [c.155]

Метод разделения переменных, сводящий решение уравнения в частных производных к решению нескольких обыкновенных дифференциальных уравнений, при определенных условиях может быть применен и для решения краевых задач. Попытаемся решить задачу о стационарном распределении температуры в круглой пластинке радиуса а с различными краевыми условиями на границе 5 пластинки.  [c.170]


С математической стороны расчет оболочек сводится к решению системы уравнений в частных производных восьмого порядка с переменными коэффициентами и малыми множителями при старших производных. Граничные условия (условия периодичности, конечности решения) содержат производные от искомых функций до третьего порядка включительно. В ряде случаев при помощи метода разделения переменных задачу удается свести к решению систем обыкновенных дифференциальных уравнений того же типа.  [c.652]

В данной главе рассматриваются свободные и вынужденные установившиеся гармонические колебания стержневых систем. Как и в статике, точные дифференциальные уравнения гармонических колебаний стержней являются нелинейными. Упрощая задачи динамики, нелинейные уравнения линеаризуют. Точность решений линейных уравнений удовлетворяют требованиям инженерных расчетов при //г > 10, поэтому они используются в инженерной практике. Линейные дифференциальные уравнения содержат частные производные по координате х и времени t. Методом Фурье разделения переменных уравнения с частными производными сводятся к уравнениям с обычными производными, описывающими перемещения стержня в амплитудном состоянии. Принцип Д Аламбера, используемый при выводе дифференциальных уравнений, позволяет рассматривать задачи динамики как задачи статики. Поэтому ниже применены предложенные правила знаков для амплитудных значений граничных параметров и нагрузки в 1.2, 1.4.  [c.91]

Частные решения получают с помощью методов отыскания автомодельных решений, симметрических решений, разделения переменных. Полезными являются методы исследования инвариантно-- групповых свойств дифференциальных уравнений и построения инвариантных решений различного ранга. В этих случаях система уравнений в частных производных сводится к системе уравнений с меньшим количеством независимых переменных. Если удается свести систему уравнений с частными производными к системе обыкновенных дифференциальных уравнений, то далее можно воспользоваться хорошо разработанным аппаратом аналитических численных или приближенно-аналитических методов. Полученные частные решения связаны с исходной системой уравнений, поэтому доказательства существования и единственности решения основаны именно на частных решениях.  [c.174]

Дифференциальное уравнение движения лопасти в частных производных решается методом разделения переменных, приводящим к системе обыкновенных дифференциальных уравнений (аргумент — время) для ряда степеней свободы, подобных уравнению махового движения жесткой лопасти. Таким образом, отклонение z r,t) элемента лопасти от плоскости вращения может быть представлено в виде разложения деформации изгиба по собственным формам. Каждое уравнение движения соответствует своему тону собственных колебаний. Сначала необходимо найти подходящие собственные формы для вращающихся лопастей. Когда формы выбраны таким образом, что реакция лопасти на возмущение хорошо описывается несколькими первыми тонами, задачи динамики несущего винта могут быть решены с использованием минимального количества степеней свободы. -  [c.357]

Теорема 13 установлена Якоби в 1837 г. Следует заметить, что обратная теорема о том, что решение уравнения с частными производными типа Гамильтона приводится к решению системы обыкновенных дифференциальных уравнений (дифференциальных уравнений характеристик), имеющей в рассматриваемом случае форму Гамильтона, высказана Пфаффом и Коши в развитие еще более ранних исследований Лагранжа и Монжа, еще до того как Гамильтон и Якоби начали заниматься вопросами динамики (Э. Уиттекер [57]). Наиболее эффективный прямой метод решения уравнения Гамильтона— Якоби — это метод разделения переменных полный интеграл есть сумма слагаемых, каждое из которых зависит только от одной из переменных Ж1,. .., ж , I.  [c.77]


Ui = onst, то для решения дифференциальных уравнений в частных производных можпо использовать классический способ разделения переменных. Таким ь1етодом фактически и воспользовался Мн для решения упоминавшейся выше задачи о сфере, обладающей конечной проводимостью. В этом случае решение краевой задачи имеет вид бесконечного ряда и его ценность зависит от легкости вычисления необходимых функций, а также от скорости, с которой ряд сходится. Этот метод применялся в различных случаях (помимо задачи со сферой) особенно надо отметить его использование в случае дифракции на круглом диске или отверстии [5]. Следует, однако, замерить, что ли1иь некоторые из этих работ относятся к чисто скалярным задачам типа задач, встречающихся в теории звуковых волн малой амплитуды дальше будет показано, что двумерные задачи в электромагнитной теории принадлежат в основно.м к этому типу, но в других случаях векторная природа электромагнитного поля приводит к дополнительным осложнениям.  [c.514]

Заметим, однако, что, хотя эти методы в своей основной форме довольно ограничены по типу граничных условий задачи, при известной модификации их можно применять и к более общим задачам. Рассмотрим сначала случай прямоугольной области с граничным условием Дирихле = f x,y), где всюду f ф 0. Введем вспомогательную функцию я] , которая определяется как точное решение уравнения с граничными условиями я] = О на всей границе. Затем введем вторую вспомогательную функцию i] , которая определяется как точное решение конечно-разностного уравнения Лапласа = О с граничным условием я] = f x,y). Точное решение получается при помощи метода разделения переменных, разработанного для дифференциальных уравнений в частных производных (см., например, Вейнбергер [1965]) и применяемого к конечноразностному уравнению. (Необходимые разложения по собственным функциям уже известны из разложения, которое требуется при решении уравнения Пуассона.) Тогда в силу линейности задачи окончательное решение получается суперпозицией. Поскольку у2я з> = и У я] " = О, имеем у2(я15 + я] ) = и, поскольку на границах ф == О и я " = f (х, (/), имеем я15 + я15 = = f(x,y). Поэтому функция я15 = я]з я удовлетворяет уравнению у2я з = и граничному условию я] = f(x,y).  [c.205]

Исторически одним из первых методов, нашедших ншрокое применение при решении краевых задач для уравнений с частными производными, явился метод разделения переменных или, как его еще называют, метод Фурье, заключающийся в построении набора частных решений, каждое из которых разыскивается в виде произведения функций меньшего числа переменных (как правило, функций одного переменного). В ряде случаев оказывается, что такое представление не вступает в противоречие с исходным дифференциальным уравнением (тогда говорят, что уравнение допускает разделение переменных) и приводит, в зависимости от размерности задачи, к нескольким обыкновенным дифференциальным уравнениям, содержащим один и тот же числовой параметр. В зависимости от характера области, в которой решается краевая задача, граничных и начальных  [c.117]

Метод разделения переменных при интегрировании дифференциальных уравнений с частными производными первого порядка в более общем виде, чем это указано в тексте, разработан Имшенецким В. Г. и изложен в его сочинении Интегрирование дифференциальных уравнений с частными производными первого и второго порядков", Москва, 19J6. Впервые напечатано в 1865 г. в. Ученых записках Казанского университета".  [c.346]

По-видимому, бросается в г.таза отсутствие дифференциального уравнения Гамильтона —Якоби с частными производными в его обычной форме, имеющей особое значение для решения проблем, которые допускают разделение переменных. Мы предпочитаем подчеркнуть преимущества более общей формы этого уравнения, предложенной Цейпелем, которая была специально задумана, чтобы служить фундаментом мощного метода теории возмущений. Этот метод содержит метод Делонэ как частный случай. Лица, интересующиеся другими аспектами этого вопроса, найдут многочисленные дополнительные сведения в Аналитической динамике Уиттекера и других руководствах.  [c.8]


Смотреть страницы где упоминается термин Дифференциальное уравнение в частных производных с разделенными переменными : [c.8]    [c.486]   
Теплотехнический справочник том 1 издание 2 (1975) -- [ c.45 ]



ПОИСК



Дифференциальное уравнение в частных производных

Дифференциальные в частных производных

Дифференциальные с разделенными переменным

Дифференциальные уравнения с разделенными переменными

К п частный

Переменные разделенные

Производная

Производная частная

Уравнение в частных производных

Уравнения разделенные

Частные производные

Частные производные , по переменным



© 2025 Mash-xxl.info Реклама на сайте