Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Первый метод составления уравнений движения

ПЕРВЫЙ МЕТОД СОСТАВЛЕНИЯ УРАВНЕНИЙ ДВИЖЕНИЯ  [c.385]

В настоящей главе рассматриваются колебания систем, имеющих несколько степеней свободы. Первые два параграфа посвящены методам составления уравнений движения таких систем. В зависимости от структуры системы для составления уравнений ее движения рационально использовать или метод сил, или метод деформаций. Эти методы рассмотрены в разделах А и Б 1.  [c.244]


Гидродинамический метод исследования двухфазного потока сводится к составлению уравнений движения произвольных дифференциальных объемов каждой из фаз и уравнений механического взаимодействия фаз по границам их раздела. Таким образом, согласно общим принципам, изложенным в первой главе и развитым в последующих главах, особенно в десятой и одиннадцатой, имеем систему уравнений  [c.164]

Ограничение содержания аналитической динамики изучением методов решения уравнений движения, нахождением инвариантных соотношений и постоянных движения. Эта тенденция сложилась потому, что весьма эффективными стали методы получения первых интегралов при известном полном интеграле соответствующим образом составленного уравнения в частных производных, например, уравнения Гамильтона—Якоби. К тому же условия каноничности преобразований, составленные для произвольно выбранного гамильтониана преобразованной системы могут привести к интегрируемым уравнениям относительно производящей функции, с помощью которой определяются в дальнейшем первые интегралы канонических уравнений движения. Усилению этой тенденции способствует, причем весьма действенно, всевозрастающее внедрение ЭВМ в учебный процесс.  [c.43]

Приведенные в книге примеры подтверждают важность методов аналитической механики для самых различных приложений показать это являлось одной из целей, которую ставил перед собой автор книги. При рассмотрении примеров на первый план выдвигалась постановка задачи и составление уравнений движения интегрированию их и исследованию результатов уделено меньше места.  [c.10]

Для теоретического исследования динамических процессов составляем дифференциальные уравнения движения системы, пользуясь известной методикой С. Н. Кожевникова. Особенности этих уравнений состоят в том, что переход каната через разрез изменит расчетные эквивалентные схемы (рис. 178) и структуру уравнений для первой и второй схемы, что является результатом изменения места присоединения массы с моментом инерции Метод составления уравнения для этих двух расчетных эквивалентных схем подробно рассмотрен в работе [146].  [c.389]

Затем необходимо решать составленные дифференциальные уравнения. В дальнейшем будут объяснены различные методы решения. Обычно можно найти первый интеграл при помощи теоремы живых сил. Позднее будет приведен способ получения этого интеграла без предварительного составления уравнений движения.  [c.75]


Преимущества метода. Изложим теперь метод Лагранжа составления уравнений движения. Этот метод имеет ряд преимуществ. Он приводит к уравнениям движения, не содержащим реакций, н поэтому особенно удобен для исследования движений нескольких тел, соединенных между собой. Он также дает нам большой выбор величин, которые можно принять в качестве координат. Кроме того, как только составлена функция Лагранжа, из этой одной функции можно вывести все уравнения движения вместо того, чтобы выводить каждое из них из отдельных общих теорем механики. С другой стороны, эта функция при исследовании малых колебаний должна быть вычислена с точностью до квадратов малых величин, ибо в этом случае в уравнениях движения удерживаются только первые степени малых величин. Поэтому, когда число уравнений движения невелико, часто более удобно получать их в результате разложения сил и вычисления моментов.  [c.397]

Применение основного закона динамики ведет в данной задаче быстрее и проще к составлению дифференциальных уравнений движения, однако первый путь — использование уравнений Лагранжа в обобщенных координатах является более общим методом.  [c.602]

При условии (о) можно найти уравнения первого приближения, разлагая правые части уравнений (11.311) в ряды Фурье и сохраняя в правых частях лишь свободные члены. Более подробное рассмотрение применения метода усреднения к конкретному случаю исследования движения проведено в следующем параграфе. Как будет там показано, резонансный случай требует некоторого видоизменения в составлении уравнений первого приближения.  [c.316]

Законы Ньютона и законы сохранения. При выводе уравнений движения или покоя среды возможны два подхода. Первый — метод материальной частицы — заключается в составлении на основе второго закона Ньютона дифференциального уравнения движения (покоя) с последующим его интегрированием такой подход применяется главным образом в гидроаэромеханике. Второй — метод контрольных объемов — использует общие законы механики и физики (законы сохранения) для составления суммарных (интегральных) характеристик движения он характерен для гидравлики.  [c.7]

Автор сознает, что изложение можно было бы значительно сократить, если начать непосредственно с уравнений движения Лагранжа, а затем перейти к теории Гамильтона. Такая последовательность была бы оправданной, если бы целью книги было первое ознакомление студента с определенным формализмом и методом составления дифференциальных уравнений, отвечающих любой заданной динамической задаче, а также с определенными рецептами , которые могли бы помочь в решении этих уравнений. Но  [c.12]

Из общего уравнения динамики вытекают дифференциальные уравнения движения материальной системы, в которые не входят реакции идеальных связей. Возможно решение как первых (определение сил по заданному движению), так и вторых задач (определение движения по заданным силам) динамики. При решении вторых задач приходится интегрировать составленную систему дифференциальных уравнений движения. Заметим, что использование общего уравнения динамики является формальным методом составления дифференциальных уравнений движения системы. Этот метод является менее удобным и менее эффективным по сравнению с применением уравнений Лагранжа второго рода (читатель сможет в этом убедиться, ознакомившись с содержанием следующего параграфа). Однако общее уравнение динамики справедливо как для голономных, так и для неголономных систем. Уравнения Лагранжа второго рода применимы только к голономным системам.  [c.451]

Если по условию требуется определить какую-либо реакцию связи, то надо с помощью уравнений Лагранжа определить обобщенные ускорения системы (т.е. вторые производные по времени обобщенных координат), затем, применив закон освобождаемости, составить дифференциальное уравнение движения соответствующей материальной точки или применить метод кинетостатики и из составленного уравнения, решая первую задачу динамики, найти искомую реакцию.  [c.549]


Для экспериментальных исследований создавались все более мощные сверхзвуковые трубы, в конце 40-х годов стал применяться новый тип труб — ударные трубы (первые эксперименты проведены в США в 1949 г.), получившие всеобщее признание в 50-х годах. Усовершенствование оптического метода позволило получать более четкие картины течений, проследить процесс появления скачков уплотнения, уточнить структуру течения. Экспериментальные исследования в значительной мере способствовали выяснению причин появления скачков уплотнения, условий устойчивости ударных волн, структуры ударной волны, характера взаимодействия скачков, характера потока за скачком. Эти вопросы подверглись и теоретическому изучению. В 1939 г. А. Е. Донов предложил аналитическое решение задачи о вихревом сверхзвуковом течении. Он исследовал такое течение около профиля, рассматривая некоторые комбинации дифференциальных уравнений характеристик, а также выражения для дифференциала функции тока. Затем А. Ферри (1946) с помощью метода последовательных приближений определил систему характеристик уравнения движения для вихревого сверхзвукового течения, составленного Л. Крокко в 1936 г. Пример точного решения плоской вихревой задачи газовой динамики привел И. А. Кибель (1947), это ре-  [c.326]

Составлением дифференциальных уравнений движения не заканчивается, а только начинается исследование движения материальной точки. В конечном счете необходимо определить, как будет двигаться она при заданных начальных условиях, а в ряде задач еще потребуется знать, и как изменяется это движение при непрерывном изменении начальных условий. Нужно уметь определять траекторию точки и характер ее движения по этой траектории. Чтобы все это знать, необходимо уметь интегрировать уравнения движения материальной точки. Общие теоремы динамики и их первые интегралы представляют собой некоторые стандартные методы исследования ее движения. В целом ряде случаев эти стандартные методы значительно  [c.43]

Задача об устойчивости заданного движения материальной системы может рассматриваться с различных точек зрения. Речь может идти, во-первых, о разыскании оценок отклонений обобщенных координат и обобщенных скоростей от их значений в опорном движении в любой момент времени, когда начальные возмущения достаточно малы. Об основывающемся на этом воззрении определении устойчивости движения по Ляпунову кратко говорилось в п. 11.10, а составлению уравнений возмущенного движения — уравнений в вариациях — были посвящены пп. 11.14—11.17. Во-вторых, может рассматриваться лишь орбитальная устойчивость, когда вопрос о протекании во времени возмущенного движения отодвигается на второй план, а изучаются лишь траектории возмущенного движения и устанавливаются критерии их близости к опорной траектории. При этом часто, ограничивая постановку задачи, рассматривают только консервативные возмущения — такие, при которых на возмущенных траекториях сохраняется то же самое значение постоянной энергии /г, что и на опорной траектории. Принцип стационарного действия Лагранжа оказывается при этой постановке задачи наиболее приспособленным методом исследования орбитальной устойчивости, поскольку траекториями как опорного, так и возмущенного движений являются геодезические линии многообразия / элемента действия, т. е. простейшие геометрические  [c.721]

Для оценки виброустойчивости станков используют экспериментальные и аналитические методы. Первые на стадии проектирования станков реализовать невозможно. Поэтому для расчета динамической системы аналитическим методом выбирают параметры из условия устойчивости систем на основе анализа дифференциальных уравнений движения. Для их составления создают расчетную схему. Последнюю представляют в виде механической модели, состоящей из отдельных сосредоточенных масс, соединенных упругими связями. При этом предполагают, что деформация станка происходит, главным образом, в его стыках и соединениях. Упругую систему рукавных станков для полирования и щлифования облицовочного камня с некоторыми допущениями можно принять плоской (рис. 1). Подобный подход обусловлен тем, что угловые колебания рукавов относительно оси у практически не влияют на качество обрабатываемой поверхности. Начало координат располагают в центрах тяжести каждой массы ( i и Сг). Обобщенными координатами будут относительные перемещения масс, отсчитываемые от начала координат, и углы поворота масс относительно центров тяжести. По данной колебательной модели составляют уравнения движения  [c.304]

Таким образом, в тех случаях, когда на точку, кроме постоянных сил, действует переменная сила, зависящая или только от I, или только от X, или только от X, составленное дифференциальное уравнение прямолинейного движения точки можно всегда проинтегрировать методом разделения переменных. В результате первого интегрирования проекция скорости точки выразится через время ( или координату X, а также через постоянную интегрирования  [c.461]

Сопоставление пяти методов решения этой задачи показывает, что наиболее эффективными являются первые два (теорема об изменении кинетической энергии в дифференциальной форме и уравнения Лагранжа). С помощью общего уравнения динамики также (но несколько сложнее) составляется лишь одно уравнение. Однако при этом приходится использовать формальный прием введения сил инерции. Применение метода кинетостатики и дифференциальных уравнений плоского движения приводит к составлению не одного, а двух уравнений и поэтому является более громоздким. При этом метод кинетостатики более сложен, ибо дополнительно связан с введением сил инерции.  [c.570]


Обычно при исследовании сложных механизмов, составленных из статически определимых групп, скорости определяются, последовательно для точек каждой из выделенных групп, начиная с первой группы, присоединенной к начальному звену. Для каждого из видов статически определимых групп (двухповодковые, трехповодковые и т. д.) следует применять особый метод построения планов скоростей. Для двухповодковых групп скорости определяются из условия, что плоскопараллельное движение звена можно рассматривать как сумму поступательного движения его вместе с одной из его точек и вращательного движения вокруг оси, проходящей через эту точку. Например, если заданы или предварительно вычислены скорости точек Л и С двухповодковой группы (рис. 1,23,а), то скорость точки В определяется согласно векторным уравнениям  [c.23]

Дифференциальные уравнения возмущенного движения (2.4), получаемые методом вариации постоянных, вполне точны. Когда вспомогательная задача (для функции Гамильтона И ) отличается от исходной малыми слагаемыми, то новые переменные в этих дифференциальных уравнениях — они были постоянными во вспомогательной задаче — представляют медленно изменяющиеся функции времени, вследствие чего оказываются применимыми приемы приближенного интегрирования. В противоположность этому, излагаемый далее способ рассмотрения возмущенного движения основывается на составлении приближенных дифференци альных уравнений относительно предполагаемо м лых отклонений (вариаций) возмущенного движения от заданного невозмущенного движения. При учете лишь первых степеней этих отклонений задача сводится к рассмотрению системы линейных дифференциальных уравнений, называемой системой в вариациях. Интегрирование ее облегчается возможностью непосредственного написания некоторых частных решений в числе, равном числу произвольных постоянных в решении задачи о невозмущенном движении, отклонения от которого рассматриваются ).  [c.605]

Постановка вопроса. Из опыта известно, что твердые тела под влиянием внешних сил претерпевают некоторые изменения формы, исчезающие при постепенном прекращении действия сил внезапное же прекращение действия сил вызывает колебательные движения. Задачей математической теории упругости является точный количественный учет возникших таким путем изменений геометрической формы и механического состояния тела. Пред нами стоит, таким образом, вопрос об определении деформаций и напряженного состояния твердого тела, если известны как действующие на него внешние силы так и те условия закрепления, которым оно подчинено. Метод, которым мы руководствуемся, приступая к ре шению этих задач, есть обычный метод математической физики. В первую очередь определяются механические величины, характеризующие физическую картину напряженного состояния материала затем, геометрические величины, определяющие деформацию тела. Зависимость между механическими и геометрическими величинами определяется из опыта их математическая формулировка приводит нас к так называемым основным уравнениям теории упругости, иными словами, к уравнениям с часТными производными, интегрирование которых отвечает в каждом отдельном случае на поставленные выше вопросы. Кроме составления этих основных уравнений, главным содержанием математической теории упругости является еще теория их интегрирования.  [c.5]

Детерминированное математическое описание физической модели массообменных процессов в зоне технологического процесса получается упрощенным и несовершенным, прежде всего из-за трудности достоверно сформулировать граничные условия, а также выбрать и принять параметры процесса в уравнениях математического описания. Параметры делятся на характеризующие свойства материалов (теплоемкость, плотность и др.) и характеризующие явления переноса энергии и массы (теплопроводность, кинематическая вязкость и др.). Параметры первой группы, входящие в уравнения сохранения массы и энергии, обычно принимаются усредненными значениями для условий технологического процесса. Выбор параметров второй группы (констант переноса) требует особого внимания, поскольку тепловая работа печей, как отмечалось, обычно лимитируется процессами переноса. Однако до настоящего времени слабо изучены теплофизические свойства исходных материалов, особенно расплавов, что тормозит развитие теории печей. Создание общей теории позволит полностью исключить эмпирический подход в расчетах и конструировании печей (производительность, расход топлива и пр.). Анализ типовых тепловых режимов определяет оптимальные условия тепловой работы (тепло-массообмен, генерация тепла, движение газов, циркуляция расплавов и пр.) как существующих, так и проектируемых печей. В настоящее время разработаны обобщенные методы металлургических расчетов и методики составления математических моделей ряда процессов и технологических схем для ЭВМ [53]. Физико-химические закономерности в агрегатах и процессах автогенных способов плавки изучаются при помощи физического моделирования (особенно в совокупности с математическим моделированием), укрупненно-лабораторных исследований и полупромышленных испытаний [54]. Накопленный опыт позволяет оценить важность и необходимость исследований на малых установках, которые дают возможность, с одной стороны, еще до строительства промышленного агрегата решить вопросы технологического, теплотехнического и конструктивного характера, а с другой стороны, определить, какие результаты исследований можно перенести на крупный агрегат, а какие вопросы требуют уточнения или разрешения в опытно-промышленных условиях. Такую работу позволяют в широких масштабах проводить лаборатории, оснащенные современным  [c.80]

На первый взгляд может показаться, что проведенное исследование малопригодно для практических целей, так как для составления матрицы F требуется знать решение (30.7.2) уравнений движения. Но это, однако, не совсем так. Фактически нам требуется знать лишь значения при р = а, = О, t = а, для чего достаточно знать решение уравнений линейного приближения (уравнений в вариациях) для случая = 0. Последнее же решение всегда может быть построено (гл. XXIII). Таким образом, теория Пуанкаре дает нам практически удобный метод доказательства существования периодических решений.  [c.616]

А. Пшеборский для нелинейного случая, но при линейных относительно ускорений неголономных связях второго порядка вывел уравнения типа Маджи, выраженные в декартовых координатах. Последнее обстоятельство создает определенные неудобства и в известном смысле ограничивает общность его метода. Для рассматриваемого общего случая дифференциальные уравнения движения системы в лагранжевых координатах в форме Воронца — Гамеля, Аппеля — Гиббса и Ценова установил М. Ф. Шульгин 2. Р. Казанину принадлежит любопытная идея преобразования уравнений нелинейных реономных неголономных связей любого порядка в уравнения линейных склерономных связей первого порядка путем введения надлежащих новых параметров. Эта идея, как показывает Казанин, оказывается плодотворной, например, при составлении динамических уравнений движения системы и решении задачи об определении реакций связей.  [c.99]


Традиционные 1сурсы теоретической механики уделяют основное внимание вопросам составления дифференциальных уравнений движения материальных точек и систем и незаслуженно малое внимание решению этих уравнений. Это объясняется, в первую очередь, сложностью получаемых уравнений, в связи с чем в большинстве случаев они не поддаются решению аналитическими методами.  [c.80]

Введение. Твердое тело представляет собой частный случай механической системы точек, когда расстояния между любыми двумя точками системы остаются постоянными во все время движения. Одним из наиболее эффективных методов изу-чершя движения твердого тела под действием приложенных к нему сил является метод, основанный на применении основных теорем динамики системы. Для изучения поступательного движения тела мы будем исходить из теоремы о движении центра масс при изучении вращения твердого тела около неподвижной оси наиболее рационально пользоваться теоремой об изменении кинетического момента. На примерах изучения простейших движений твердого тела под действием приложенных сил весьма отчетливо выявляется значение основных теорем динамики системы, позволяющих исследовать свойства движений систем ма-териальных точек, подчиненных некоторым дополнительным условиям (связям). Основные теоремы динамики системы были исторически первым, наиболее простым и естественным методом изучения движения несвободных механических систем точек, и в частности изучения динамики твердого тела В последующем развитии механики Лагранжем был создан метод обобщенных координат, позволяющий свести составление дифференциальных уравнений движения системы с 5 степенями свободы к ясной, логически безупречной последовательности алгебраических преобразований, однако физическая наглядность рассуждений была в значительной мере утрачена  [c.400]

Существует обширный класс веществ, которые при деформации проявляют как вязкостные, так и упругие свойства. Их принято именовать вязко-упругими. Описание свойств подобных тел в последнее время привлекает к себе много внимания. При составлении реологических уравнений состояния вязко-упругих сред широко используется феноменологический метод моделей. Принимают, что поведение той или иной среды описывается в первом приближении некоторой моделью, составленной из пружин и поршней. При этом деформация пружины в модели описывает упругую деформацию в среде, а движение поршкей в вязкой жидкости— необратимые деформации вязкого течения. На рис. 8 изображены модели простейших вязко-упругих сред а) максвелловское тело б) тело Кельвина-Фойгта в) тело Бургерса-Френкеля. Реологические уравнения состояния можно составить, рассматривая  [c.15]

Трактат об устойчивости заданного состояния движения... Э. Рауса появился в 1877 г. В нем изложено в общем виде составление дифференциальных уравнений возмущенного движения, т. е. уравнений для отклонений координат системы от их значений, соответствующих заданному состоянию движения. Эти отклонения, в трактовке Рауса, вызываются мгновенными возмущениями (по сути это возмущения начальных данных). В первую очередь, как орудие исследования возмущенного движения, рассматривается метод линеаризации (теория малых колебаний). Раус переоткрывает результаты Вейерштрасса и Сомова и дает критерий для суждения о знаках вещественных частей корней характеристического уравнения. Определение устойчивости у Рауса остается в достаточной мере расплывчатым. Оно связано с понятием малости возмущений, а малы те величины, для которых возможно найти такое число, численно большее, чем каждая из них, и такое, что квадратом его можно пренебречь . Как выражается Раус, это число есть стан-  [c.121]


Смотреть страницы где упоминается термин Первый метод составления уравнений движения : [c.13]    [c.521]   
Смотреть главы в:

Динамика системы твёрдых тел Т.1  -> Первый метод составления уравнений движения



ПОИСК



159, 160 —Составление

Движение, метод

Первый метод

Составление уравнений

Уравнение метода сил



© 2025 Mash-xxl.info Реклама на сайте