Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

ОСНОВНЫЕ ЗАКОНЫ ДИНАМИКИ И ИХ ПРИМЕНЕНИЯ

Применение основного закона динамики ведет в данной задаче быстрее и проще к составлению дифференциальных уравнений движения, однако первый путь — использование уравнений Лагранжа в обобщенных координатах является более общим методом.  [c.602]

Практическое применение основных законов динамики  [c.36]

ОСНОВНЫЕ ЗАКОНЫ ДИНАМИКИ И ИХ ПРИМЕНЕНИЯ  [c.123]

В такой форме основной закон динамики вращательного движения может быть применен к телу, момент инерции которого в процессе движения изменяется, или к системе тел, совершающих вращательное движение вокруг данной-неподвижной оси.  [c.69]


В последнее время в инженерной практике происходит постепенное вытеснение метода кинетостатики применением основного закона и общих теорем динамики.  [c.372]

Теория турбулентного пограничного слоя в том виде, как она представлена здесь, является в лучшем случае предварительной, поскольку она ограничена некоторыми полуэмпирическими аспектами. Однако эта теория дает выражения для поверхностного трения и теплопередачи, хорошо совпадающие с результатами измерений, и, таким образом, вселяет надежду в тех, кто желает применять ее к задачам, экспериментальные данные для которых еще не получены. Как всегда, такие применения должны делаться с осторожностью, так как теория не может быть полностью выведена из основных законов и зависит от экспериментально определяемых постоянных. Однако в этом отношении предлагаемая теория не отличается от любой другой теории турбулентного пограничного слоя. Построение теории турбулентного пограничного слоя, исходящей из основных законов, остается одной из важных нерешенных задач газовой динамики.  [c.277]

ПРИМЕНЕНИЕ ЗАКОНОВ СОХРАНЕНИЯ И ОСНОВНЫХ ТЕОРЕМ ДИНАМИКИ К ИНТЕГРИРОВАНИЮ УРАВНЕНИЙ ДВИЖЕНИЯ  [c.85]

Практическое значение теоремы об изменении импульса материальной точки при решении задач невелико, так как дифференциальная форма ее предоставляет основное уравнение динамики с разделенными переменными, и по сравнению с (6.1) она существенно новых соотношений не дает. Главная область применения теоремы в механике — это изучение мгновенных или ударных сил. Так называются силы, продолжительность действия которых весьма мала, и закон изменения их со временем практически остается неизвестным. Такие силы будут характеризоваться вектором импульса силы (9.3).  [c.111]

Методическое замечание к понятию импульса. Закон сохранения импульса изолированной материальной точки и форма основного уравнения динамики (9.1) дают возможность логически просто и последовательно ввести понятие силы и второй закон Ньютона, Если импульс тела изучить до законов Ньютона, то закон инерции можно сформулировать как закон сохранения импульса изолированной материальной точки. Далее следует постулировать сохранение импульса в замкнутой системе материальных точек. Взаимодействие в такой системе будет заключаться в передаче импульса от одних точек к другим, а сила, действующая на материальную точку, будет некоторой функцией положения рассматриваемой точки относительно остальных, определяющей скорость передачи импульса рассматриваемой точки от других точек системы. Уравнение (9.1), т. е. второй закон Ньютона, запишется как следствие закона сохранения импульса системы точек импульс, полученный материальной точкой (в единицу времени), равен импульсу, переданному ей другими точками. Анализ процесса обмена импульсом между двумя точками немедленно приводит к следствию — третьему закону Ньютона. Важно, что трактовка силы н второго закона Ньютона в форме (9.1) без каких-либо изменений применима к действию на материальную точку физического поля. В этой трактовке сила есть скорость передачи импульса точке полем, определяющаяся параметрами поля и положением точки в нем. Это значит, что понятие силы находит обобщение за пределами чисто механической концепции взаимодействия (см. 5). Также объясняется ограниченность применения третьего закона Ньютона при наличии полей обмен импульсами может происходить между телом и полем, между телами через поле, но не непосредственно между двумя телами.  [c.112]


Случайные колебания представляют собой раздел статистической механики, который посвящен применению вероятностных методов при исследовании задач динамики механических систем. Одной из основных является задача определения вероятностных характеристик (или законов распределения) выхода при известных вероятностных характеристиках входа . Она содержит ряд частных задач, к которым относят случайные стационарные и нестационарные колебания линейных и нелинейных систем как с конечным числом степеней свободы, так и систем с распределенными параметрами.  [c.393]

Н. Е. Жуковский сделал принципиальные открытия в новой науке — аэромеханике, являющейся теоретической основой авиационной техники. Ряд важных законов теоретической аэромеханики был установлен в трудах Жуковского. Он доказал основную теорему о подъемной силе профиля крыла, сформулировал гипотезу для подсчета циркуляции скорости вокруг крыла с острой задней кромкой, предложил серии теоретических профилей крыльев и разработал вихревую теорию воздушного гребного винта (пропеллера). Основные методы аэродинамического эксперимента и широко использованные конструкции аэродинамических труб в нашей стране были созданы под непосредственным руководством Н. Е. Жуковского. Он первый указал ка применения теоретической и экспериментальной аэродинамики к задачам расчета летных характеристик самолета. Аэродинамический расчет и динамика самолетов как самостоятельные научные дисциплины были начаты работами Жуковского. В. И. Ленин назвал Жуковского отцом русской авиации .  [c.37]

В механике избран традиционный путь, начинающийся с законов Ньютона, динамики материальной точки. Вся электродинамика изложена на основе учения об электромагнитном поле в вакууме, причем общие его уравнения предшествуют частным случаям. В квантовой механике изучению основных вопросов предпослана пропедевтическая тема, содержащая решение простейших одномерных задач еще без применения специального математического аппарата. В статистической физике в основу положен квантовый подход, что позволяет проще и последовательнее дать ее исходные положения и получить основные выводы.  [c.4]

Теория волн эффективно работает на рынках, характеризующихся активностью большого количества участников. Рынки, на динамику котировок которых значительно влияет погода или другие природные явления, имеют меньший потенциал для применения к ним Теории Эллиота, поскольку природные явления не зависят от психологии массового инвестора и не подчиняются ее законам. Рынки с относительно небольшим количеством участников не могут привести в движение этот естественный закон массовой психологии, и поэтому на них Теория тоже не может давать стабильных, хороших результатов. С другой стороны, на рынках золота, индексов акций с широкой базой и недвижимости (хотя данные по недвижимости менее доступны) Теория работает хорошо, поскольку основной фактор изменения котировок на этих рынках - действия их участников. Практически любая область человеческой деятельности, характеризующаяся массовостью, демонстрирует предсказуемое поведение, если доступны надежные и согласованные данные о ее динамике.  [c.26]

В предисловии к этому труду Эйлер пишет Хотя мне казалось, что я достаточно ясно понял решение многих задач (речь идет о Началах Ньютона), однако задач, чуть отстуиающ их от них, я уже решить не мог . Задача XXIII из Начал Ньютона, приведенная выше, как раз служит подтверждением этих слов Эйлера. Действительно, если в этой задаче сделать самое незначительное изменение, а именно, одно коническое сечение (эллипс) заменить другим (параболой), то все решение коренным образом меняется. Дальше Эйлер говорит в том же предисловии Я попытался, насколько умел,. .. те же предложения проработать аналитически благодаря этому я значительно лучше понял суть вопроса . Следует обратить особое внимание на то, что Эйлер говорит о сути вопроса . В самом деле, язык синтетической геометрии придает каждой механической задаче такой характер, что то обш,ее, что объединяет разные задачи (например, основные законы динамики), легко может исчезнуть из ноля зрения. Эйлер справедливо говорит там же, что хотя читатель и убеждается в истине выставленных предложений, но он не получает достаточно ясного и точного их понимания . Применение анализа в значительной степени снимает эти трудности. Я изложил их планомерным и однообразным методом ,— говорит Эйлер . Однообразный метод — вот главное достоинство аналитического языка. Вот как решает Эйлер ту же задачу, которая решена Ньютоном (Задача XXIII) Задача ставится Эйлером в значительно более общем виде. О форме траектории ничего не говорится. Найденный ответ будет применим к траектории любого вида. Эйлер вводит дифференциал дуги траектории  [c.145]


Механика Ньютона покоится на трех основных законах Ньютона законе инерции, законе связи между силой, приложенной к материальной точке, и сообщаемым ею ускорением, и законе действия и противодействия. Последовательное изложение этих законов п их следствий в случае любого двиэ1Г.ения материальной точки или системы материальных точек будет дано в начале второго тома при изложении основ динамики. В статике учащийся встретится с несколько ограниченными их применениями. Для кинематики имеют значения лишь общие ньютоновские представления о пространстве и времепн.  [c.9]

Аналитическая форма механики, развитая Эйлером и Ла-гранжем, существенно отличается по своим методам и принципам от механики векторной. Основной закон механики, сформулированный Ньютоном произведение массы на ускорение равно движущей силе ,— непосредственно применим лишь к одной частице. Он был выведен при изучении движения частиц в поле тяготения Земли, а затем применен к движению планет под воздействием Солнца. В обоих случаях движущееся тело могло рассматриваться как материальная точка или частица , т. е. можно было считать массу сосредоточенной в одной точке. Таким образом, задача динамики формулировалась в следующем виде Частица, которая может свободно перемещаться в пространстве, находится под действием заданной силы. Описать движение в любой момент времени . Из закона Ньютона получалось дифференциальное уравнение движения, и решение задачи динамики сводилось к интегрированию этого уравнения Если частица не является свободной, а связана с други ми частицами, как, например, в твердом теле или в жидкости то уравнение Ньютона следует применять осторожно. Не обходимо сначала выделить одну частицу и определить силы которые на нее действуют со стороны остальных, окружа ющих ее частиц. Каждая частица является независимым объектом и подчиняется закону движения свободной частицы Этот анализ сил зачастую является затруднительным Так как природа сил взаимодействия заранее неизвестна приходится вводить дополнительные постулаты. Ньютон полагал, что принцип действие равно противодействию известный как его третий закон движения, будет достаточен для всех проблем динамики. Это, однако, не так. Даже в динамике твердого тела пришлось ввести дополнительное предположение о том, что внутренние силы являются цен-  [c.25]

Можно напомнить, что практические применения простейших машин (блоки, рычаги, полиспасты) в античное время при строительстве крупных зданий в Греции, Риме и Египте привлекли внимание ученых и в результате были разработаны методы определения центров тяжести тел простой геометрической формы и формулирован закон равновесия рычага. Развитие мореплавания, военной техники и гражданского строительства в XV—ХУП1 вв. способствовали открытию основных законов механического движения и появлению фундаментальных трудов по динамике твердого тела и небесной механике.  [c.4]

Книга "Основы флуоресцентной спектроскопии" написана известным специалистом в области применения люминесцентных методов в биологии и медицине, профессором отделения биохимии медицинского факультета Университета Мэриленд (Балтимор, США) Джозефом Р. Лаковичем. В ней не только изложены, физические основы явления флуоресценции и основные законы флуоресценции, описаны экспериментальные методы и применяемая аппаратура, но и детально, на обширном и самом современном материале рассмотрено влияние различных свойств среды па флуоресцентные характеристики веществ и использование флуоресцентных методов для изучения микроструктуры белков, мембран и динамики молекулярных процессов. В отличие от традиционных изложений учения о люминесценции теоретические аспекты в книге Дж. Лаковича рассмотрены в основном феноменологически и главное внимание уделено пе внутримолекулярным фотопроцео-сам и зависимости флуоресцентных свойств от структуры молекул, а влиянию свойств и структуры среды и динамики межмолекулярных взаимодействий и химических реакций на спектры, кинетику и анизотропию флуоресценции. Поэтому книгу нельзя рассматривать как универсальный учебник по флуоресцентной спектроскопии.  [c.5]

Поскольку машина с точки зрения теоретической механики представляет собой несвободную систему материальных точек и, как увидим в дальнейшем, при изучении ее движения под действием приложенных сил весьма плодотворным является применение закона изменения кинематической энергии, то основным видом классификации сил в динамике машин является их деление на задавае-м ы е силы и реакции связей. Нужно заметить, впрочем, что термин задаваемые силы является не совсем удачным. Нельзя понимать в буквальном смысле, что задаваемые силы всегда задаются. Очень часто бывает, что в задачах, связанных с изучением движения машин, некоторые из задаваемых сил являются искомыми. Термин задаваемые в данном случае обобщает группу сил, которые не могут быть причислены к разряду реакций связей. Правда, иногда вместо термина задаваемые силы пользуются термином активные силы . Однако термин активные силы несколько более узок, чем термин задаваемые , так как, например, силы инерции звеньев не могут быть отнесены к разряду активных сил, а к группе задаваемых сил их можно причислить. Исходя, из этих соображений, в дальнейшем будем пользоваться делением сил в машине на задаваемые и реакции связей. Перейдем к рассмотрению задаваемых сил в машине.  [c.14]

В 1743 г. был опубликован основной труд Даламбера по механике — его знаменитый Трактат о динамике . Первая часть Трактата посвящена построению аналитической статики. Здесь Даламбер фор.мулирует основные принципы механики , которыми он считает принцип инерции , принцип сложения движений и принцип равновесия . Принцип инерции сформулирован отдельно для случая иокоя и для случая равномерного прямолинейного движения. Принцип сложения движений представляет собой закон сложения скоростей по правилу параллелограмм,а. Принцип равновесия сформулирован в виде следующей теоремы Если два тела, обладающие скоростями, обратно пронорциональными их массам, имеют противоположные направления, так что одно тело не может двигаться, не сдвигая с места другое тело, то между этими телами будет иметь мест равновесие . Во второй части трактата, называемой Общий иринциидля нахождения движения многих тел, произвольным образом действующих друг на друга, а также некоторые применения этого принципа , Даламбер предложил общий метод составления дифференциальных уравнешгй движения любых материальных систем, основанный на сведении задачи динамики К статике. Здесь для любой системы материальных точек формулируется правило, названное впоследствии принципом Даламбера , согласно которому приложенные к точкам системы силы мон<но разложить на действующие , т. е. вызывающие ускорение системы, и потерянные , необходимые для равновесия системы.  [c.195]


Вторая часть содержит прямой и общий метод решения гидравлических задач о движении воды в каналах произвольной формы. Основным рабочим принципом Гидравлики является также принцип сохранения механической энергии (живых сил), который И. Бернулли разработал в начале XVIII в. В его работе Рассуждение о законах передачи движения (1726 г.) и в более позднем исследовании Об истинном значении живых сил и их применении в динамике принцип сохранения живых сил провозглашается важнейшим  [c.181]

В настоящей работе мы сосредоточили внимание на применении метода виртуального варьирования и метода переменного действия в области механики в связи с изучением классических дифференциальных и интегральных принципов. Метод переменного действия позволяет изучать основные образы всех трёх картин механики силовой, энергетической и геометрической. Без понятия о действии не обходятся и в других областях естествознания. Вспомним, например, принцип неопределённости в квантовой механике законы сохранения и симметрии уравнений движения в математической физике теорию интегральных инвариантов построение аналитической динамики систем Гельмгольца, Биркгофа и Намбу и т. д. Эти и многие другие направления исследования остались вне рамок книги. Обобщая сказанное, можно заметить важнейшую роль понятия о действии в развитии теории несвободных динамических систем и в становлении новой парадигмы науки в целом. Достаточно отметить, что понятие о действии стоит в одном ряду с понятиями энтропии и информации, которые являются концептуальными для естествознания.  [c.264]

Основная цель трактата ясна из его полного названия Трактат по динамике, в котором законы равновесия и движения тел сведены к их наименьшему количеству и доказаны новым способом, и где дается общий Ирипцип для определения движения нескольких тел, взаимодействующих между собой некоторым образом [29]. Книга состоит из введения и двух частей I. Общие законы движения и равновесия тел II. Общий принцип для нахождения движения нескольких тел, произвольным образом действующих друг па друга, а также некоторые применения этого принципа .  [c.259]


Смотреть страницы где упоминается термин ОСНОВНЫЕ ЗАКОНЫ ДИНАМИКИ И ИХ ПРИМЕНЕНИЯ : [c.113]    [c.13]    [c.235]    [c.298]    [c.6]    [c.1143]    [c.186]   
Смотреть главы в:

Теоретическая механика Очерки об основных положениях  -> ОСНОВНЫЕ ЗАКОНЫ ДИНАМИКИ И ИХ ПРИМЕНЕНИЯ



ПОИСК



ДИНАМИКА Законы динамики

Динамика - Основной закон

Закон динамики основной

Законы динамики

Основные Динамика

Основные законы

ПРИМЕНЕНИЕ ЗАКОНОВ СОХРАНЕНИЯ И ОСНОВНЫХ ТЕОРЕМ ДИНАМИКИ К ИНТЕГРИРОВАНИЮ УРАВНЕНИЙ ДВИЖЕНИЯ Одномерное движение

Практическое применение основных законов динамики



© 2025 Mash-xxl.info Реклама на сайте