Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Общие теоремы и методы решения

ОБЩИЕ ТЕОРЕМЫ И МЕТОДЫ РЕШЕНИЯ  [c.68]

Общие теоремы и методы решения  [c.69]

Первый метод решения данной задачи несколько быстрее ведет к цели, но правильный выбор той или иной общей теоремы динамики существенно зависит от содержания задачи и требует некоторого навыка. Второй путь — составление уравнений Лагранжа — несколько более длинный, но является универсальным способом, применимым к любым системам, подчиненным идеальным голономным связям.  [c.594]


Значение принципов соответствия в теории ползучести состоит не только в том, что они дают возможность конструктивно построить решения для широкого класса задач в формах, удобных для приложений, но и в том, что ряд общих результатов (проблемы существования, единственности и ограниченности решения, теоремы взаимности и т. д.) является прямым следствием зтих принципов, На принципе соответствия основаны весьма аффективные, методы фактической реализации решений задач теории ползучести.  [c.277]

До последнего времени для решения уравнений теплопроводности и диффузии обычно использовались метод разделения переменных, метод мгновенных источников, методы, основанные на применении функций Грина, Дирака и др. Эти классические методы предполагают отыскание в первую очередь общего решения и его последующее приспособление к частным условиям конкретной задачи. Детальное освещение классических методов решения уравнений переноса можно найти в фундаментальной работе А. Н. Тихонова и А. А. Самарского (Л. 7]. Получаемые классическими методами решения, однако, не всегда оказываются удобными для практического использования. Так, иногда требуется получить приближенные соотношения, в которых режимные параметры процесса должны быть отделены от физических характеристик тела или системы тел, взаимодействующих с окружающей средой. Эти важные для практики соотношения бывает затруднительно получить из классических решений. Еще большие осложнения возникают при решении систем дифференциальных уравнений тепло- и массопереноса классическими методами. Под влиянием запросов техники за последние десятилетия инженерами и физиками стали широко применяться операционные методы решения. Основные правила и теоремы операционного исчисления получены киевским профессором М. Ващенко-Захарченко [Л. 8]. Наибольшее распространение они нашли в электротехнике благодаря работам Хевисайда. Этот метод оказался настолько эффективным, ЧТО позволил решить многие проблемы, считавшиеся до его появления почти неразрешимыми, и получить решения некоторых уже рассмотренных задач в форме, значительно более приспособленной для численных расчетов.  [c.79]

Философские основы механики Герца. Предсмертное сочинение Герца Принципы механики не ставило целью решение практических задач или разработку методов механики. Цель этого сочинения — показать, что общие теоремы механики и весь ее математический аппарат могут быть последовательно развиты, исходя из единого принципа.  [c.226]


Прежде всего для составления этих функций необходимо найти функции г (О, образующие k независимых периодических решений системы (49), сопряженной с системой в вариациях (46). Для этого, вообще говоря, необходимо знать общее решение системы в вариациях, т. е. системы линейных однородных уравнений с периодическими коэффициентами . Но общих методов решения таких систем не существует. Поэтому для доведения решения задачи до конца желательно вводить малый параметр так, чтобы было известно не только периодическое, но и общее решение порождающей системы. В этом случае систему из п независимых частных решений уравнений в вариациях легко найти согласно теореме Пуанкаре путем дифференцирования по параметрам. Достаточным является и знание решения порождающей системы, зависящего ог п—1 параметров, так как при наличии (я—1)-го независимого частного решения системы с периодическими коэффициентами еще одно решение можно определить с помощью квадратур.  [c.56]

В первом разделе тома даются принципы и основные уравнения механики упругого деформируемого твердого тела теории деформаций и напряжений, дифференциальные уравнения равновесия, связь между компонентами напряжения и деформации, общие теоремы теории упругости и строительной механики, вариационные принципы и их использование для решения задач механики деформируемого твердого тела, методы конечных и граничных элементов.  [c.16]

Эта теорема является частным случаем более общей теоремы, сформулированной и доказанной в [99]. Подробное изложение решения поставленной выше задачи, основанное на применении сформулированной выше теоремы, дано в [54]. Применение этой теоремы позволяет провести асимптотический анализ напряжений на некотором удалении от поверхности Г. Отметим, что идеи метода осреднения, использованного в рассматриваемом подходе, изложены также в работе [225].  [c.210]

Выводом этих уравнений и их решением мы займемся позже. В этой главе мы будем иметь дело с основными теоремами, которые можно получить из закона Гука, не обращаясь к подробным теориям напряжений и деформаций. Это те выводы, которые сам Гук мог бы сделать из своих наблюдений, если бы он обратился к закону сохранения энергии. Однако заметим, что закон сохранения энергии не был четко сформулирован даже во времена появления мемуара Навье, и только в 1837 г. Грин вывел общие уравнения новым методом, в основе которого лежал закон сохранения энергии ).  [c.10]

Вид уравнения (70) подобен виду уравнения (60). Следовательно, оба уравнения имеют одинаковые функциональные решения, и методы 379—383 можно применять при исследовании решения уравнения (70). Против приведенного вывода можно возражать. Например, смещение, рассматриваемое в 384, сопровождается расширением. Общая теорема теории распространения волн устанавливает, что фронт волны такого рода возмущений двигается нормально самому себе со скоростью, величина которой определяется  [c.466]

Сопоставление пяти методов решения этой задачи показывает, что наиболее эффективными являются первые два (теорема об изменении кинетической энергии в дифференциальной форме и уравнения Лагранжа). С помощью общего уравнения динамики также (но несколько сложнее) составляется лишь одно уравнение. Однако при этом приходится использовать формальный прием введения сил инерции. Применение метода кинетостатики и дифференциальных уравнений плоского движения приводит к составлению не одного, а двух уравнений и поэтому является более громоздким. При этом метод кинетостатики более сложен, ибо дополнительно связан с введением сил инерции.  [c.570]

Гидродинамика вязкой жидкости развивалась в XX в. по нескольким в значительной степени независимым направлениям. С одной стороны, изучалась полная система уравнений Навье Стокса и ее свойства, был найден ряд точных решений и получены некоторые общие теоремы. С другой стороны, в целях изучения прикладных задач развивались методы решения различным образом усеченных и, в первую очередь, линеаризованных уравнений Навье — Стокса, приспособленных для специфических задач (в частности, приближение гидродинамической теории смазки, линеаризация В. Озеена), также методы численного решения полной системы уравнений. Наконец, в XX в. был заложен новый раздел гидродинамики вязкой жидкости — теория пограничного слоя — и продолжала развиваться обособленная область -гидродинамики — теория турбулентности.  [c.294]


Таким образом, аналитический метод при всей сложности его приемов и преобразований позволил установить некоторые обш,ие законы и теоремы, разработать ряд общих методов решения отдельных практических задач сверхзвуковой аэродинамики.  [c.332]

Общие теоремы статической теории идеально пластического тела имеют законченный характер. Они играют определяющую роль в построении теории и при разработке методов решения задач. Такие теоремы в теории идеально пластического тела могут приобретать специфическую форму, причем в этом случае их принято называть экстремальными принципами.  [c.34]

Естественно считать, что теоремы статики должны являться частным случаем соответствующих теорем динамики идеально пластического тела, т. е. соотношения статики должны получаться непрерывным образом из соотношений динамики в частном случае. Общие теоремы динамики важны при построении теории идеально пластического тела кроме того, теоретическое значение их заключается в том, что они являются наиболее общим выражением свойств решения задач. Таким образом, теоремы динамики идеально пластического тела должны являться обоснованием разнообразных и эффективных методов решения задач.  [c.34]

Решение уравнения St = можно получить, используя различные методы решения статических задач, поскольку трансформанта Фурье 8 а) ядра интегрального уравнения (7) не имеет особенностей на вещественной оси и убывает степенным образом на бесконечности так же, как в задачах статики. Следующая теорема дает общее представление решения уравнения St =  [c.87]

Попытка перейти от вариационного неравенства (75) к задаче минимизации функционала наталкивается на проблему обеспечения не только потенциальности части оператора А, связанной с упругим потенциалом, но и на проблему ограничения внешних воздействий классом, при котором второе и третье слагаемые в левой части неравенства (75) в целом будут потенциальными операторами над полем перемещений и. В общем случае нетривиальной является также задача проверки условий теоремы о существовании и единственности (или неединственности) решения. По указанным причинам методы решения геометрически нелинейных контактных задач развивались применительно к вариационному неравенству (75) решения конкретных задач даны в работах [8,21,22] и некоторых других [9].  [c.108]

Предполагается, что результат осреднения в (6.7.5) не зависит от начальных данных to, Уо. что имеет место для широкого класса случаев. В работах [23, 24] указан алгоритм построения функций Vu Ai, Bi и формулируются теоремы, обосновывающие метод. При некоторых общих ограничениях отличие k-то приближения (6.7.3) от точного решения будет для переменных х величиной порядка 8 , а для переменных у — величиной порядка 8 " на интервале изменения t порядка 8" Система  [c.225]

Это допущение не является большим ограничением класса задач, так как в большинстве случаев возмущающие силы, с которыми приходится иметь дело в технических приложениях, являются силами периодическими, изменяющимися в зависимости от числа оборотов машины. В общем случае произвольная возмущающая сила на основании теоремы Фурье может быть представлена в виде ряда периодических функций sm pt и eos pt), так что метод решения, который мы изучим на частном примере, будет указывать правильный путь к решению более сложных задач.  [c.197]

Статистическая гидромеханика широко использует результаты и методы классической гидромеханики и теории вероятностей. Поэтому знание указанных двух дисциплин сильно облегчит знакомство с настоящей книгой. Тем не менее мы надеемся, что наша книга будет доступной и для лиц, имеющих лишь общую математическую и физическую подготовку. Имея з виду таких читателей, мы включили в первые два раздела основные сведения из классической гидромеханики (начиная с уравнений неразрывности и движения) и из теории вероятностей (начиная с самого понятия вероятности). Уже в этих главах, как и во всех дальнейших, мы старались уделять основное внимание принципиальным вопросам, не задерживаясь на технических деталях. С этим стремлением связано то, что мы нигде не излагаем методов решения встретившихся дифференциальных уравнений или других стандартных математических задач, а сразу приводим ответ (который иногда совсем нелегко найти). В то же время мы сравнительно подробно останавливаемся на некоторых недостаточно широко известных, но важных математических вопросах, традиционно опускаемых во всех книгах и статьях, предназначенных для механиков или физиков (типа, например, вопроса об эргодических теоремах или спектральных разложениях случайных полей) этим объясняется то, что целых два раздела книги посвящены математической теории случайных полей.  [c.25]

Необходимо подчеркнуть также (это не всегда делается при изложении метода) особую роль, которую играет в методе Пуанкаре теорема о существовании неявных функцией. По существу, основная идея метода и состоит в сведении вопроса о существовании периодических решений системы дифференциальных уравнений к вопросу о существовании неявных функций. Специфика состоит лишь в том, что особый интерес представляют особые случаи, как правило, не рассматриваемые в общих курсах и руководствах.  [c.159]

Если комплексные функции напряжений известны, то действительная и мнимая части соотношений (6.3) дают реальные физические величины, т. е. напряжения и перемещения. Для определения комплексных функций напряжений привлекаются общие теоремы теории аналитических функций, причем важным вспомогательным средством при расчетах являются так называемые интегралы типа Коши. Решения получаются частично элементарным способом, частично сводятся к сложным интегральным уравнениям. Для многих задач способ комплексных функций напряжений может рассматриваться как прямой метод решения.  [c.121]


Помимо общего значения, теорему единственности широко используют при решении конкретных задач. Иногда удается частично угадать форму решения (см., например, полуобратный метод решения задач кручения, изгиба и т. д.). Если при этом можно удовлетворить всем дифференциальным уравнениям и граничным условиям задачи, то, в силу теоремы единственности, тем самым найдено искомое решение.  [c.30]

Изложенная выше теория кручения брусьев с круглым сечением была разработана в конце ХУП в. французским ученым военным инженером Кулоном (1736—1806 гг.). В современном ее виде она была изложена в книге Навье, которому принадлежит и первая попытка разработать теорию кручения бруса некруглого сечения. Эта задача была разрешена только в 1855 г. французским ученым Сен-Венаном (1797—1886 гг.), впервые давшим строгий метод решения задачи о кручении бруса с произвольным поперечным сечением и приложившим его ко многим частным случаям, например к прямоугольному сечению. Значительный вклад в общую теорию кручения был сделан в работе русского ученого доцента Московского университета А. А. Соколова, изданной в 1878 г. В этой работе была, в частности, доказана важная теорема о том, что наибольшие напряжения при кручении бруса с любым поперечным сечением никогда не могут быть в точках внутри стержня, а  [c.129]

Излагаются вопросы статики и динамики тел и конструкций в рамках модели идеально пластического тела. Даны общие теоремы и экстремальные принципы динамики и статики, методы решения задач о поведении тел и конструкци11, поверхности текучести для различных конструкций и материалов. Приведены решения задач  [c.2]

Современная наука весьма часто бывает перегружена ворохом специальной терминологии и обозначений. Я стремился свести терминологию до минимума и в случае необходимости объяснять смысл новых терминов. Теоремы и методы изложены так, чтобы их можно было применять к конкретным задачам, т. е. приведены конструктивные доказательства, а не чистые теоремы существования. Стремясь использовать понятия общей теории динамических систем, я пытался следовать конструктивному подходу. В большинстве частей книги мне удалось осуществить свои намерения. Трудности возникли лишь в связи с квазипериодическими процессами. Я включил эти тонкие проблемы (например, бифуркацию торов) и мой подход к их решению не только пото.му, что они находятся на передовом рубеже современных математических исследований, но и потому, что с ними приходится то и дело сталкиваться при рассмотрении как естественных, так и искусственных систем. Главы, посвященные рассмотрению этих сложных проблем, так же, как и другие трудные главы, отмечены звездочкой. При первом чтении их можно опустить.  [c.17]

Перейдем к изучению наиболее общих методов решения задач механики. Эти методы основываются на общем принципе — принципе возможных перемеицений, или принципе Лагранжа, так как Ж. Лагранж первый придал этому принципу законченную форму и положил его в основу статики. Обч единнв этот принцип с принципом Даламбера, Ж. Лагранж получил общее уравнение динамики, из которого вытекают основные дифференциальные уравнения движения материальной системы и основные теоремы динамики ).  [c.107]

Но такой метод решения для большинства практических задач неприемлем из-за математической сложности. Трудности возникают также из-за того, что ни внутренние силы, ни реакции связей, как правило, заранее неизвестны. Однако в большинстве задач не требуется определять движение каждой точви системы, а достаточно найти параметры, характеризующие движение системы в целом. Эти суммарные характеристики движения механической системы определяются с помощью общих теорем динамики, являющихся следствием дифференциальных уравнений движения системы (9.1). К числу этих теорем относятся теорема об изменении количества движения, теорема об изменении кинетического момента и теорема об изменении кинетической энергии. Эти теоремы применимы как для точки, так и для системы материальных точек.  [c.145]

В первых пяти главах учебника рассматриваются общие вопросы теории упругости (теория напряжений и деформаций, основные соотношения и теоремы, постановка и лгетоды решения задач теории упругости, плоская задача в декартовых координатах, плоская задача в полярных координатах). В шестой и седьмой главах излагаются основные уравнения теории тонких пластин (гибких и жестких) и некоторые задачи изгиба и устойчивости пластин. Восьмая глава учебника посвящена рассмотрению приближенных методов решения задач прикладной теории упругости (вариационных, конечных разностей, конечных элементов). В девятой главе рассматриваются основы расчета тонких упругих оболочек, причем основное внимание уделено вопросам расчета безмоментных и пологих оболочек. В десятой главе изучаются основы теории пластичности. Здесь рассмотрена и теория расчета конструкций по предельнол1у состоянию.  [c.6]

Изложение решения, основанного на аналитико-машинных мето дах, выходит за рамки программы учебного курса теории механиз MOB и машин. Однако общая подготовка и аналитическая формули ровка решаемых задач, так же как анализ получаемых результатов основывается на общих принципах, методах и теоремах предлага емого курса.  [c.5]

В V главе рассматриваются конечные перемещения твердого тела в пространстве, показано сложение и разложение конечных поворотов, а также решение ряда кинематических задач с применением принципа перенесения. Изложена разработанная автором теория определения положений пространственных механизмов, дано исследование механизмов с избыточными связями и показаны конкретные приложения. Заметим, что авторы работ по винтовому исчислению не использовали в явном виде принцип перенесения как метод общего подхода к пространственным задачам. Принцип перенесения, как правило, выявлялся индуктивным путем — винтовые формулы выводились в каждом, отдельном случае и затем, а posteriori, демонстрировалось их сходство с векторными, принцип же как таковой не использовался для вывода винтовых формул. А между тем, этот принцип приводит к эффективному методу решения пространственных задач, связанных с движением твердого тела, и позволяет заранее предвидеть качественный результат. Выясняется полная аналогия теорем и формул кинематики сферического движения с теоремами и формулами кинематики произвольного движения, если перейти от вещественных переменных к комплексным. Хорошо известна аналогия (хотя бы качественная) между кинематикой сферического движения и кинематикой плоского движения, ибо сферические движения в малом являются плоскими, а в большом могут быть отображены на плоскость с сохранением качественных и некоторых количественных соотношений. Отсюда следует, что любая теорема плоской кинематики имеет свой аналог в пространстве (с соответствующей заменой геометрических элементов). На основании этого соображения возникает, например, пространственное обобщение известной формулы и теоремы Эй-лера-Савари, пространственное обобщение задачи Бурместера о построении четырехзвенного механизма по пяти заданным положениям звена и др.  [c.9]


Общая теорема, лежащая и основе теории, доказанная Буссине-ском, формулирована в гл. I, ее обобщение на случай системы-— н гл. V. В той же гл. I дана общая схема решения задачи о нахождении связи между темпом охлаждения и коэффициентом теплоотдачи. Ценность этой схемы выясняется на частных практически важных задачах, решение которых дано в гл. II и III. Теория регулярного режима однородного твердого тела получает большую общность, простоту и наглядность, если для его описания прибегнуть к критериальным величинам, чему посвящены 6, 7, 8, 9 гл. I и вся гл. IV. Введение критериев W, р и С приводит к основной теореме автора ( 5 гл. I), введение критериев S и Г) (гл. IV) открывает перспективы решения задачи о регулярном режиме тел сложных и неправильных очертаний, неразрешимой методами современного математического анализа. В гл. V дана общая схема решения задачи о регулярном режиме системы, а дялее в гл. VI она применена к рассмотрению ряда частных случаев составных тел. Некоторые частные случаи регулярного режима двухсоставных и трехсоставных тел также удалось описать при помощи критериальных величин (Б, Ж, П к k — 8и9гл. VI).  [c.10]

Удовлетворительным решением задачи выяснения связи принципов статистической физики и принципов микроскопической механики можит быть лишь такое решение, которое исходит из единой точки зрения при ответах на главные вопросы этой задачи. В большинстве работ, посвяш енных этой теме, постановка вопроса охватывала только часть обш ей задачи главным образом это было или установление равенства средних временных средним фазовым (так называемая проблема эргодичности) или попытки доказательства if-теоремы (проблема необратимости). Методы, применяемые для решения разных частей общей задачи, и делаемые при этом предположения были обычно совершенно различны и не связаны между собой.  [c.17]

Первое систематическое рассмотрение устойчивости равновесия упругих тел принадлежит Дж. Брайану Он выяснил пределы применимости теоремы Кирхгофа и показал, что при условии малых деформаций она отпадает, если только один или два размера тела можно считать малыми. При этом явление неустойчивости может иметь место в пределах упругости, если произведение модуля упругости Е на квадрат отношения малого размера к конечному будет того же порядка, что и предел упругости материала. Дальнейшая разработка общей теории устойчивости равновесия упругих тел принадлежит Р. Саусвеллу Он устраняет ограничение относительно малости деформаций и оперирует с идеальным телом бесконечно большой прочности. При этих условиях и тела, у которых все размеры одного порядка, могут оказаться в состоянии неустойчивого равновесия. Исходя из однородного напряженного состояния тела, Р. Саусвелл дает точкам тела весьма малые перемещения и, v, w ) и для этой отклоненной формы пишет дифференциальные уравнения нейтрального равновесия, причем считает начальные деформации конечными. То соотношение между внешними силами и размерами тела, при котором полученные уравнения дают для и, у и w решения, удовлетворяющие условиям на поверхности, определяет критическое значение нагрузки в рассматриваемом случае. Применяя свой общий метод к тонким стержням и пластинкам, Р. Саусвелл нашел, что имеющееся решения задач устойчивости являются лишь первыми приближениями, хотя и вполне достаточными для практических приложений. Мы в дальнейшем ограничимся этими приближенными решениями, отсылая интересующихся теорией вопроса к работе Р. Саусвелла.  [c.258]

Для решения большинства своих задач гидроаэро- и газодинамика применяют строгие математические приемы интегрирования основных дифференциальных уравнений при установленной системе граничных и начальных условий или другие эквивалентные им математические методы (например, конформное отображение в задачах плоского движения идеальной жидкости). Для получения суммарных характеристик используются такие общие теоремы механики, как теорема количества и моментов количеств движения, энергии и др. Однако большая сложность и недостаточная изученность многих явлений вынуждают механику жидкости и газа не довольствоваться применением строгих методов теоретической механики и математической физики, столь характерных, например, для развития механики твердого тела, но и широко пользоваться услугами всевозможных эмпирических приемов и так называемых нолуэмпирических теорий, в построении которых большую роль играют отдельные опытные факты. Такие отклонения от чисто дедуктивных методов классической рациональной механики естественны для столь бурно развивающейся науки, как современная механика жидкости и газа.  [c.15]

Следствием изложенного общего метода явлются теоремы о представлении ядер интегральных операторов второй и третьей глав. Он позволяет понять природу полз ченных ранее разложений и строить решения более сложных задач для систем штампов, поскольку нахождение необходимого ортопроектора не составляет труда. Соответствующие примеры будут даны в следующем параграфе.  [c.158]

Следует подчеркнуть, что с математической точки зрения уравнения (2) и (3) тождественны и дают, конечно, при решении задач одни и те же результаты. Различие здесь лишь в подходе к составлению уравнения и в его истолковании, а именно составляя уравнение в виде (3), мы подвижную систему отсчета 2 рассматриваем как неподвижную, а ту часть ускорения Ю2, которая фактически появляется вследствие движения системы 2 (т. е. ускорения —й пер и —йУкор) получаем, присоединяя к действующей силе Р так называемые силы инерции Т пер и / кор- Такой путь практически удобен, так как позволяет использовать для решения задач все, разработанные в динамике методы, в том числе, например, общие теоремы, что особенно важно при изучении относительного движения механической системы, в частности, твердого тела.  [c.25]


Смотреть страницы где упоминается термин Общие теоремы и методы решения : [c.2]    [c.248]    [c.473]    [c.417]    [c.151]    [c.2]    [c.486]    [c.9]    [c.12]   
Смотреть главы в:

Прочность, устойчивость, колебания Том 1  -> Общие теоремы и методы решения

Прочность, устойчивость, колебания Том 1  -> Общие теоремы и методы решения



ПОИСК



Общие теоремы

Общие теоремы. Вариационные методы решения (Л. М. Качанов)

Общий метод

Общий метод решения

Решения метод

Теорема Бетти. 4.4.4.2. Теорема Максвелла Общие методы решения основных уравнений теории упругости



© 2025 Mash-xxl.info Реклама на сайте