Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Прямые методы решения задач теории упругости

Прямой метод решения задач теории упругости, заключающийся в интегрировании основных уравнений при заданных граничных условиях, не всегда возможен. Обратный метод, примененный в гл. 7 для плоских задач, часто не соответствует практической постановке задачи. Сен-Венаном был предложен так называемый полуобратный метод решения задач теории упругости, который заключается в том, что часть перемещений и напряжений задается, а остальные неизвестные определяются из уравнений теории упругости при заданных граничных условиях. Полуобратный метод не является общим. Однако он оказался одним из самых эффективных методов решения задач теории упругости.  [c.172]


Прямые методы решения задач теории упругости  [c.451]

Теория преобразования вариационных проблем дает в наше распоряжение все множество вариационных функционалов, точки стационарности которых являются решением задачи теории упругости или теории оболочек наиболее интересные из них приведены в гл. 3 и 4. В каждой вариационной формулировке задачи принципиально можно применить любой из прямых методов решения вариационные методы в аналитической, численной и комбинированной форме.  [c.169]

В 4.6 был указан достаточно прямой путь для нахождения тангенциальных напряжений вдоль границы при использовании метода фиктивных нагрузок. При этом коэффициенты влияния (включая диагональные элементы) определялись непосредственно тем же основным решением задачи теории упругости, которое применялось для построения самого численного метода, а именно решением задачи о постоянных усилиях, приложенных на отрезке в бесконечной плоскости х, у. о решение характеризуется тем, что все компоненты напряжения разрывны в средней точке рассматриваемого отрезка.  [c.103]

Прямой метод, заключающийся в непосредственном интегрировании уравнений теории упругости совместно с заданными граничными условиями на поверхности. Приведенные в работах [6, 65, 145, 153—157] точные решения исходных уравнений линей ной теории упругости из-за больших математических трудностей получены для ограниченного класса задач. Поэтому при решении задач теории упругости приходится использовать приближенные решения.  [c.79]

Общее решение задач теории упругости сводится к последовательности вычислительных процедур матричной алгебры, которые подходящим образом могут быть запрограммированы для реализации на вычислительной машине. Как и другие численные методы, метод конечных элементов сводится к решению больших систем уравнений с многими неизвестными. Для этого разработаны многочисленные алгоритмы (прямые или итерационные методы вычислений).  [c.138]

В первой главе излагаются методы решения задач прикладной теории упругости, при этом основное внимание уделяется вариационным и прямым методам.  [c.6]

На практике обычно встречаются с прямой задачей теории упругости, общего метода решения которой пока не получено, но найден ряд частных решений путем ограничения области исследования. При решении некоторых из таких частных задач бывает удобно принимать за основные неизвестные компоненты напряжений, так как они проще связаны с нагрузкой тела, чем другие неизвестные, входящие в систему основных уравнений теории упругости. При решении других задач удобнее принимать за основные неизвестные перемещения, так как этих неизвестны с меньше (всего три, а не шесть). В соответствии с этим различают две основные схемы решения прямой задачи в одной разыскивают шесть компонентов напряжений, в другой — перемещения.  [c.21]


Точно так же возможно применение методов теории упругости к решению задачи теории пластичности, а именно прямого, обратного и полуобратного. Очень эффективным является приближенный метод, предложенный А. А. Ильюшиным — метод упругих решений.  [c.271]

Многие методы решения задач прикладной теории упругости, например, такие, как прямые вариационные методы, о которых более подробно будет сказано далее, в основе своей опираются на принципы Лагранжа и Кастильяно.  [c.49]

Из сказанного не следует, конечно, что результаты, полученные методами теории упругости, не могут без надлежащей обработки получить практического применения.-В тех случаях, когда решение получено в достаточно простой и общей форме, оно сразу может быть включено в арсенал средств практических расчетов. Достаточно вспомнить такие классические задачи теории упругости, как контактная задача, нашедшая прямое приложение, хотя бы в расчете шариковых подшипников, как задача  [c.9]

Оба описанных способа основываются на дифференциальных уравнениях теории упругости, но ими не исчерпываются возможные подходы к решению задач. Еще одна возможность заключена в использовании минимальных энергетических принципов и в применении основанных на них прямых методов решения вариационных задач.  [c.126]

Все приведенные в предыдущих главах вариационные функционалы теорий упругости и оболочек являются эффективным средством качественного анализа вариационных и дифференциальных формулировок и служат теоретической основой для построения прямых вариационных и вариационно-разностных методов, получающих все большее развитие и применение благодаря возрастающим возможностям ЭЦВМ. В этой главе показаны некоторые возможности теоретического анализа сложных задач теорий упругости и оболочек и практического применения вариационных формулировок для построения алгоритмов решения этих задач и исследования их точности.  [c.142]

В основу разработанного способа положен полуобратный метод Сен-Венана, согласно которому перемещения в направлении координатных осей нами представлены в виде явных функций координатного угла 0 (задача рассматривается в цилиндрических координатах г, 0, z ось 2 совмещена с осью модели). Принятое допущение находится в соответствии с известным решением Нейбера для случая изгиба гиперболоида вращения 161. Благодаря такому представлению переменные в выражениях для функций напряжений Папковича — Нейбера разделились, и, тем самым, объемная задача теории упругости об изгибе тела вращения свелась к двумерной. Вследствие этого напряжения выражаются через частные производные этих функций по независимым переменным гили далее — через величины порядков полос пг и пг и параметров изоклин "ф, полученные при просвечивании оптически чувствительного слоя модели в направлении нормали (прямое просвечивание) к его лицевой поверхности и под углом а (наклонное просвечивание) к нормали N — направление (рис. 1).  [c.54]

В настоящую книгу, посвящённую пространственным задачам теории упругости, можно было бы включить наряду с тем материалом, который представлен, изложение теорем о существовании решений уравнений теории упругости, вариационных и других прямых методов решения пространственных задач и рассмотрение некоторых специальных вопросов, в первую очередь задачи Сен-Венана и ей родственных задач Митчелла и Альманзи, а также учения о концентрации напряжений в местах резкого изменения геометрической формы упругого тела. Выполнение такой программы превышает силы и возможности автора оно потребовало бы для изложения, могущего претендовать на полноту и обстоятельность, работы целого коллектива и книги совершенно иного объёма. Надо надеяться, что советская литература, располагающая капитальными трудами по теории упругости, со временем обогатится отдельными сочинениями и по указанным выше вопросам.  [c.7]


Метод граничных интегральных уравнений при решений динамических задач теории упругости широко используется [29, 41, 42, 374, 408, 439, 442 и др.]. В контактных задачах прямая формулировка метода граничных интегральных уравнений более предпочтительна по сравнению с непрямой. Динамические задачи можно решать в реальном пространстве — времени, а можно использовать преобразования Лапласа или Фурье по времени. Сравнительный анализ таких подходов с точки зрения эффективности численной реализации [517, 556] показал, что с точки зрения скорости и объема вычислений методы использующие преобразования Лапласа или Фурье по времени, более эффективны. Предпочтение отдается методу, использующему преобразование Лапласа. Дополнительное преимущество этого метода по сравнению с методом решения в реальном пространстве — времени состоит в том, что при небольших изменениях он позволяет решать задачи о гармоническом нагружении. Это обстоятельство и явилось решающим при выборе варианта метода граничных интегральных уравнений. Таким образом, при,решении динамических контактных задач с односторонними ограничениями для упругих тел с трещинами использовалась прямая  [c.106]

Прямая задача теории упругости, т. е. определение перемещений и напряжений упругого тела по заданным внешним силам и условиям закрепления, даже в линейной ее постановке, весьма трудна, и в настоящее время нет эффективного общего метода ее аналитического решения. Иными словами, сформулировав какую-либо конкретную задачу этой теории математически, мы часто не имеем достаточных математических средств, для того чтобы ее решить, если не говорить о приближенных методах интегрирования или об использовании вычислительных машин. Однако поскольку всякая задача теории упругости является по существу физической задачей, уместно привлекать к ее решению не только математические, но и физические соображения. Именно этим путем и было решено большинство задач теории упругости, представляющих наибольший практический интерес.  [c.236]

В теории упругости большинство задач сводится к решению дифференциальных уравнений с заданными граничными условиями. Их решение часто связано с большими математическими трудностями. Обойти эти трудности позволяют прямые вариационные методы. Вместо того, чтобы решать основные дифференциальные уравнения теории упругости, ставится задача об определении искомых функций Ui, Zij, ац, удовлетворяющих граничным условиям и минимизирующих некоторый функционал Ф(щ, гц. оц). например полную потенциальную энергию П или дополнительную энергию П.  [c.127]

Расчет массивных тел методами математической теории упругости связан со значительными математическими трудностями ввиду разнообразия форм, краевых условий и условий нагружения. Поэтому для решения пространственных задач применяют прямые и вариационные методы прикладной теории упругости.  [c.351]

Предлагаемая методика обладает, на наш взгляд, рядом достоинств. Во-первых, на каждом этапе итерационного процесса можно использовать методы классической теории упругости, которые для решения ряда задач, особенно плоских, хорошо разработаны. Во-вторых, если на каждом этапе решение строится по одной и той же методике, то оказывается возможной эффективная реализация метода на ЭЦВМ с использованием одной стандартной программы и числом циклов, обеспечивающим необходимую точность. Третьим преимуществом является возможность выявления качественно новых эффектов, что не всегда удается при использовании прямых методов [43]. В этом случае решение Uo можно рассматривать как основное, а ы,- — как поправки к нему, обусловленные неоднородностью тела. И, наконец, в отличие от предложений [98] и [204] изложенный метод применим не только для плоских задач, но и для пространственных, а также в случае анизотропных тел. Ниже на конкретных примерах будет проиллюстрирована эффективность итерационного метода.  [c.45]

Этот принцип является в известной степени аналогом принципа минимума потенциальной энергии деформаций, широко используемого в теории упругости. Принцип Гельмгольца в гидродинамике вязкой жидкости, так же как принцип минимума потенциальной энергии в теории упругости, может быть положен в основу применения прямых методов вариационного исчисления для решения задач о медленном движении, в частности для задач гидродинамической теории смазки.  [c.430]

Как видно, решение упруго-пластических задач в постановке Дагдейла существенно упрощается, так как сводится к отысканию разрывных решений в рамках теории упругости. Метод Мусхелишвили р] позволяет находить эффективное замкнутое решение таких задач б общем 4 случае произвольного числа трещин, расположенных вдоль одной прямой в бесконечной пластине, если разрывы расположены вдоль той же прямой. При этом линейные размеры пластических отрезков определяются из условий разрешимости краевой задачи в классе ограниченных функций (напряжений).  [c.287]

Вариационная формулировка задачи теории упругости используется главным образом в двух с.пучаях. В первом на основе уравнения бЭ = О строятся численные методы решения этой задачи (метод Ритца, метод конечных элементов и т. п.). Все эти методы относят к классу прямых методов решения задач теории упругости, не требующих в явной форме использования дифференциальных уравнений.  [c.57]


Если оставить в стороне прямые численные методы [45, 222, 225, 226, 245, 350, 353], методы функций комплексной переменной и сингулярных интегральных уравнений [216, 223], то одним из наиболее распространенных методов решения задач теории упругости для конечных и полубесконечных тел со смешанными граничными условиями является метод однородных решений, получивший свое название в работах П.А. Шиффа[373] и В.А. Стеклова [277].  [c.8]

Банщикова И. А., Сухорукое И.Б. Прямые и обратные задачи формообразования стержней двойной кривизны в режиме ползучести // Сб. тр. 17-й Межреспубликанской конф. по числ. методам решения задач теории упругости и пластичности. Новосибирск, 3-5 июля 2001. Изд. центр Лада, 2001. С. 27-31.  [c.781]

Как уже отмечалось, решение задач теории упругости в прямой постановке (в перемещениях либо напряжениях) представляет очень большие сложности и общих методов решеипя задач в такой постановке пока не существует, Обратная постановка задач часто не соответствует потребностям практики, так как жизнь обычно ставит задачи в прямой постановке. Прп этом известны граничные условия, и требуется определить поло напряжений, деформаций п перемещений, соответствующих заданным граничным условиям.  [c.58]

Число решенных задач из года в год увеличивается, однако еще нельзя решить (довести до отыскания функций в общем виде) любую задачу теории упругости, пользуясь указанными выше путями решения, В ряде случаев удается получить решение прямой задачи теории упругости так называемым полуобратным методом, впервые примененным Сен-Венаном. Коротко изложим сущность этого метода. Ниже этим методом решен ряд задач, где обнаруживаются некоторые особенности метода, о которых в данном параграфе говорить преждевременно. С целью придания методу в каком-то смысле алгоритмичности, рассматриваются четыре этапа решения задачи этим методом. Такая схема не претендует на универсальность, хотя все известные автору решения задач теории упругости полуобратным методом хорошо вписываются в рамки этой схемы.  [c.634]

Метод Ритца. Вариационная формулировка задачи о равновесии, заключающаяся в принципе минимума потенциальной энергии системы, подсказывает возможность применения для решения задач теории упругости прямых методов вариационного исчисления.  [c.153]

Метол Ритца приближенного решения задач теории упругости заключается в прямой минимизации полной энергии си стемы V. Следуя этому методу, перемещения будем искать в следующем виде  [c.43]

Речь идет также о методе дискретизации, который появился в последнее время наряду с методом конечных элементов и успешно применяется для решения задач теории упругости. Суть метода состоит в том, что основные уравнения теории упругости, которые описывают поведение неизвестных функций внутри и на границе рассматриваемой области, сводятся к интегральному уравнению. Неизвестные граничные значения связаны с известными значениями на контуре области через граничное интегральное уравнение. Впервые этот подход был применен к решению задачи кручения с помощью так называемых прямых методов теории потенциала (см. [46]) °). Развитием этой работы явился метод интегральных уравнений Риццо [47] для плоских задач теории упругости, который позднее был распространен Крузом [48] на пространственные задачи.  [c.141]

Модифицированный метод Ритца позволяет строить решения прямыми методами с необходимой точностью. В частности, решения задач теории упругости, полученные вариационными методами, нетрудно распространить на соответствующие задачи теории ползучести. Рассмотрим этот метод применительно к разысканию минимума дополнительного рассеяния [7].  [c.103]

Копейкин Ю. Д. Прямое решение двух- и трехмерных задач теории упругости и пластичности методом потенциала. — Численные методы механики енлошион среды, 1974, 5, № 2.  [c.679]

Прикладная теория упругости отличается от математической тем, что для решения задач помимо закона Гука применяются некоторые дополнительные гипотезы деформационного характера (гипотеза плоских сечений для стержней, прямых нормалей для тонких пластин и оболочек и т. и.). При решении задач прикладной теории упругости наряду с точными методами решения соответствующих уравнений могут применяться и приближенные методы. Между прикладной теорией упругости, тесно связанной с запросами практики, и сопротивлением материалов нет четкой границы. Некоторые, наиболее цростые задачи, относящиеся к этому разделу, рассматриваются также и в курсах сопротивления материалов.  [c.8]

Для иллюстрации рассмотрим пример численной реализации изложенного метода П1 1менительно к типовому элементу полому круговому цилиндру (внутренний радиус - 100 мм, наружный - 200 мм, модуль упругости Е =2, 10 МПа, коэффициент Пуассона ц = 0,3), в котором внутренняя и наружная поверхности рассматриваемой части цилиндра длиною 2 / = 200 мм свободны от нагрузок, а напряженное состояние этой части создается реакцией остальной произвольно нагруженной части цилиндра. Для нескольких вариантов заданного на наружной поверхности рассматриваемой части цилиндра тензора напряжений восстанавливался вектор напряжений на торцах этой части (обратные задачи). Для оценки точности получаемых решений обратных задач использовались численные решения соответствующих им прямых задач теории упругости.  [c.72]

При решении задачи теории пластичности можно использовать те же способы, что и в теории упругости решение в напряжениях, в перемещениях и смешанный способ. Точно так же возможно применение методов теории упругости, а именно прямого, обратного и полуобрат-ного. Однако решение задачи теории пластичности имеет свои специфические особенности вследствие нелинейности. Эффективным является приближенный метод, предложенный А. А. Ильюшиным, — метод упругих решений (разновидность метода последовательных приближений).  [c.229]

Для других случаев концентрации напряжений используются в основном приближенные способы, основанные на применении соответствующих кинематических гипотез или численных методов (метод уттругих решений, конечно-элементный метод, метод интегральных уравнений и др.). Однако указанные способы применяют в основном в исследовательских, а не инженерных целях, поскольку решение многих задач для различных режимов эксплуатации в случае статического, и особенно циклического нагружения конструкций требует значительного машинного времени и большого объема исходной информации. Получаемые при этом результаты примени.мы для конкретных конструкций, материала и уровня нагрузок. Практика инженерных расчетов базируется в основном на применении задач теорий упругости пластин, оболочек и стержней или на использовании результатов прямого экспериментального изучения местных напряжений и деформаций. Последнее, как известно, применяется для весьма ответственных машин и конструкций в силу сложности и трудоемкости экспериментов по анализу процессов эксплуатационного нагружения.  [c.69]


Прямой вариант МГЭ. Ъ BfTOM варианте неизвестные функции, входящие в интегральные уравнения, являются реальными, имеющими физический смысл переменными задачи. Так, например, в задачах теории упругости такое решение интегрального уравнения должно сразу давать все усилия и смещения на границе, а внутри тела они должны быть получены из граничных значений численным интегрированием. Некоторые из недавно разработанных алгоритмов, основанных на этом подходе, описаны Крузом, Лаша, Риццо, Шоу, Уотсоном и другими [8—23] и названы ими методами граничных интегральных уравнений.  [c.15]

Копейкин Ю. Д. Прямое решение краевых задач теории упругости для тел вращения и плоских тел при использовании метода потенциала. — Проектирование металлических конструкций ЦИНИС Госстроя СССР, 1970, вып. 7(27), с. 62—70.  [c.279]

Введенные выше потенциалы простого слоя, двойного слоя и их производные, как показано в 1, удовлетворяют тождественно дифференциальным уравнениям теории упругости внутри тела при отсутствии объемных сил. Частное решение, соответствующее действию объемных сил, выражается объемным потенциалом с плотностью, равной объемной силе. В связи с этим решение тон или иной краевой задачи теории упругости можно попытаться искать в виде суммы одного или нескольких граничных потенциалов и объемного потенциала. Плотности граничных потенциалов должны содержать достаточно неизвестных, чтобы можно было удовлетворить граничные условия. Для нахождения этих неизвестных строятся интегральные уравнения на границе тела —граничные интегральные уравнения (ГИУ). Если при заданных краевых условиях доказано существование решения построенного интегрального уравнения, то тем самым обоснована использованная формула представления решения. Вопрос обоснования формулы представления решения не возникает, если в качестве ее используется формула Сомильяны, справедливая дл любого регулярного, т. е. принадлежащего классу ( (Q) n (Q)) , поля перемещений, а также для более общих классов перемещений, для которых имеет место формула Бетти. Поскольку плотности потенциалов простого и двойного слоя, входящих в формулу Сомильяны, имеют прямой физический смысл, то соответствующую формулировку метода граничных элементов (МГЭ) называют прямой формулировкой МГЭ. В противоположность этому формулировку МГЭ, использующую другие формулы представления, называют непрямой формулировкой МГЭ.  [c.62]

В Другой работе Г. П. Черепанов [361] указал метод отыскания точного аналитического решения широкого класса смешанных задач теории упругости для пластинки, границы которой состоят из прямых, перпендикулярных оси X, и любых отрезков этой же оси. Задача решена с помощью конформного отображения заданной области на- каноническую. В качестве примера автор рассмотрел такую область —оо<х<оо, —оо<у<0 - а<х<а, а<у<<х>. При этом происходит сжатие на бесконечности, грани полосы лг= а жестко подкреплены без трения упругим телом, а на отрезках действительной оси .х 1>а отсутствуют напряжения. Другой пример состоит в контактяой задаче для плоскости с вынутой полосой, на дно которой давит симметричный штамп. Этот класс решений является обобщением известного класса решений, указанного Вестергардом еще в 1939 г. Представления Вестергарда относятся к бесконечным телам, граница которых расположена вдоль одной и той же прямой, иа которой, кроме того, касательное напряжение должно обращаться в нуль.  [c.20]

Рассмотрена прямая формулировка метода граничных интегральных уравнений динамических задач теории упругости для тел с трещинами в пространстве преобразований Лапласа. Исследованы граничные свойства этих потенциалов на границе тела и на трещине. Приведены выражения для фундаментальных решений (функций Грина) уравнений динамической теории упругости в пространстве преобразований Лапласа для трех- и двумерного случаев. Изучен характер особенностей ядер этих потенциалов. Рассмотрены методы регуляризации потенциалов, ядра которых имеют сильную особенность,, основанные на сведении к псевдодифференциальным уравнениям и уравнениям, в которых интегралы рассматриваются в смысле конечной части по Адамару. Разработан алгоритм решения односторонних контактных задач динамики тел с трещинами, основанный на отыскании седловой точки субдифференцируемого граничного функционала. Показано, что при определенном выборе параметров, входящих в алгоритм, его можно рассматривать как сжимающий оператор, действующий в соответствующем функциональном пространстве, что является обоснованием сходимости этого алгоритма.  [c.102]

ШИ относительных перемещений точек при деформации можно пренебречь. Остальные гипотезы, к-рыми пользуется С. м., здесь устранены первоначально в развитии теории упругости они или подтверждаются вполне, или частью, с известным приближением, или отвергаются в связи с анализом отдельных деформаций. Элементарные теории растяжения, кручения круглых брусков, чистого изгиба вполне согласуются с теорией упругости. Изгиб в присутствии срезывающих сил, как оказывается, подчиняется закону прямой линии гипотеза Навье), но не закону плоскости (гипотеза Бернулли). Касательные напряжения при изгибе распределяются по закону параболы, но только в тех сечениях, которые имеют незначительную толщину при большой высоте (узкие прямоугольники). В других сечениях закон распределения касательных напряжений совершенно иной. Для балок переменного сечения, к к-рым в элементарной теории прилагают закон прямой линии и параболы, теория -упругости дает другие решения в этих решениях значения напряжений и деформаций гораздо выше, чем по элементарной теории следует. Общепринятый способ расчета пластин по Баху как обыкновенных балок не оправдывается теорией упругости. Ф-лы С. м. для кручения некруглых стержней не соответствуют таковым в теории упругости. Теория изгиба кривых стержней решительно не совпадает с элементарной теорией Баха-Баумана, но результаты расчета по строгой теории и на основании гипотезы плоских сечений достаточно близки. Поставлена и разрешена для ряда случаев задача о распределении местных напряжений (в местах приложения нагрузки или изменения сечения), к-рая совершенно недоступна теории С. м. Вопрос об устойчивости деформированного состояния, элементарную форму которого представляет в С.м. продольный изгиб, получил в теории упругости общее решение Бриана (Bryan), Тимошенко и Динника. Помимо многочисленных форм устойчивости стержня, сжатого сосредоточенной силой, изучены также явления устойчивости стержней переменного сечения под действием равномерно распределенных сил и другие явления устойчивости балок при изгибе, равномерно сжатой трубы, кольца, оболочек, длинного стержня при скручивании и пр. Теория упругого удара— долевого, поперечного—занимает большое место в теории упругости и включает все большее и большее чис-чо технически важных случаев. Теория колебаний получила настолько прочное положение в теории упругости и в практи-тсе, что методы расчета на ко.чебания проникают область С. м., конечно в элементарном виде. Изучены распространение волны в неограниченной упругой среде (решение Пуассона и Кирхгофа), движение волны по поверхности изотропной среды (решение Релея), волны в всесторонне ограниченных упругих системах с одной, конечно многими и бесконечно многими степенями свободы. В связи с этим находятся решения, относящиеся к колебаниям струн, мембран и оболочек, различной формы стержней, пружин и пластин.  [c.208]

Поэтому поиск методов решения трехмерных упругих и упругопластических задач является актуальным. В принципе метод конечных элементов (раздел 17, гл. III) может быть прямо применен для решения подобных задач, хотя при этом чудовиш,но возрастает объем машинного времени. Из-за недостатка анализа трехмерного состояния существующие теории механики разрушения ограничены в основном плосконапряженным или плоско-деформированным вариантами. Далее мы рассмотрим развитие этой теории и проанализируем возможности ее применения для объяснения экспериментальных результатов.  [c.91]


Смотреть страницы где упоминается термин Прямые методы решения задач теории упругости : [c.2]    [c.254]    [c.439]    [c.326]    [c.7]   
Смотреть главы в:

Механика сплошной среды Часть2 Общие законы кинематики и динамики  -> Прямые методы решения задач теории упругости



ПОИСК



Задача и метод

Задача прямая

Задача упругости

Задачи и методы их решения

Задачи теории упругости

Задачи теории упругости прямая

К упругих решений

Метод прямых

Метод решения задач теории упругости

Метод теории решений

Метод упругих решений

Прямые и обратные решения задач теории упругости. Полуобратный метод Сен-Венана

Решение задачи упругости

Решения метод

Теория Метод сил

Теория Методы решения задач

Теория упругости

Упругость Теория — см Теория упругости



© 2025 Mash-xxl.info Реклама на сайте