Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Сопротивление временное сложные

Еще сложнее обстоит положение с рекомендациями по расчету гидравлики при движении через пучки стержней двухфазного потока. В литературе до последнего времени практически отсутствовали какие-либо публикации по данному вопросу. В связи с этим при расчете гидравлического сопротивления каналов сложной формы приходилось ориентироваться на рекомендации, полученные при движении двухфазного потока в круглых трубах.  [c.146]

Титан — тугоплавкий металл [температура плавления (1665 5) С], плотность 4500 кг/м . Временное сопротивление чистого титана = 250 МПа, относительное удлинение б =70 %, он обладает высокой коррозионной стойкостью. Удельная прочность титана выше, чем у многих легированных конструкционных сталей. Поэтому при замене сталей титановыми сплавами можно при равной прочности уменьшить массу детали на 40 %. Одпако титан имеет низкую жаропрочность, так как при температурах выше 550— 600 °С легко окисляется и поглощает водород. Титан хорошо обрабатывается давлением, сваривается, из него изготовляют сложные отливки, но обработка его резанием затруднительна.  [c.19]


Учащийся должен иметь в виду, что в этой и последующих задачах законы сопротивления среды упрощены в учебных целях. В действительности эти законы значительно сложнее, и сила сопротивления, как правило, не может быть представлена одним аналитическим выражением на всем интервале времени движения.  [c.307]

До сравнительно недавнего времени в сопротивлении материалов довольно широко применялся термин сложное сопротивление (некоторые авторы учебных пособий и преподаватели пользуются им до сих пор) и рассматриваемая тема открывала изучение соответствующего раздела. Сложным сопротивлением  [c.138]

В тех случаях, когда конструкции работают при повышенных температурах, достаточных для возникновения деформаций ползучести, расчеты при малоцикловом нагружении оказываются значительно сложнее. Это связано с тем, что сопротивление повторным неупругим деформациям и разрушению зависит не только от уровня нагрузок и числа циклов, но и от длительности нагружения и температуры. Учет температурно-временного фактора в условиях  [c.370]

Испытания материалов проводят с целью определения механических характеристик, таких, как предел текучести, временное сопротивление, модуль упругости и т.д. Кроме того, их можно проводить в исследовательских целях, например для изучения условий прочности в сложных напряженных состояниях или выявления механических свойств материала.  [c.541]

На рис. 27.7 [81] представлены кривые изменения локального числа Нуссельта при поперечном обтекании цилиндра в зависимости от угла ф для различных чисел Рейнольдса в условиях постоянного теплового потока по поверхности. Из рисунка видно, что число Нуссельта уменьшается, начиная от передней критической точки, достигает минимума при некотором угле ф и далее вниз по потоку резко возрастает. В передней критической точке толщина ламинарного пограничного слоя мала и поэтому локальные коэффициенты теплоотдачи и числа Нуссельта велики. По мере удаления от критической точки вниз по потоку растет толщина пограничного слоя, вместе с ней растет его тепловое сопротивление и коэффициент теплоотдачи уменьшается. В зоне отрыва пограничного слоя коэффициент теплоотдачи вновь резко возрастает. В этой области происходят весьма сложные и еще до конца не ясные явления. Здесь, видимо, происходит периодический процесс — утолщение пограничного слоя, его отрыв и унос оторвавшейся массы жидкости вниз по потоку. Этот периодический процесс непрерывно повторяется. Можно ожидать, что чем больше таких процессов происходит в единицу времени, тем интенсивнее теплоотдача, так как в момент отрыва слоя тепловое сопротивление в этой зоне значительно уменьшается. Очевидно, что применить гидродинамическую теорию теплообмена (см. гл. 24) в этой области невозможно. На интенсивность теплоотдачи в зоне отрыва влияют число Рейнольдса, форма и качество поверхности (шероховатость) обтекаемого тела, физические константы жидкости.  [c.321]


Процесс цианирования по сравнению с процессом цементации требует меньше времени для получения слоя заданной толщины, характеризуется значительно меньшими деформациями и короблением деталей сложной формы и более высоким сопротивлением износу и коррозии.  [c.79]

Для привода технологических машин обычно применяют асинхронные электродвигатели, у которых угловая скорость ротора меняется в зависимости от нагрузки. Механическая характеристика Л4д(со) такого двигателя (см. рис. 11.7) сложнее, чем у других типов двигателей. При расчете маховика в этом случае учитывают минимальную величину (о ин1 которая не должна быть меньше значения, соответствующего опрокидывающему моменту двигателя Л4 акс- Приведенный момент М1 сил сопротивления может являться функцией угла поворота ф или времени t.  [c.383]

Отметим, что при выводе выражений (1-17), (1-19), (1-20) и (1-23) не делалось никаких предположений о характере зависимости удельного сопротивления и магнитной проницаемости от координаты X. В этом смысле эти зависимости являются общими и мы будем ими пользоваться также и при более сложных формах поверхностного эффекта. Например, если Я и не будут синусоидальными функциями времени, мы заменим их эквивалентными синусоидами — первыми гармониками функций Я (/), ( ) и б 1), как то было предложено Л. Р. Нейманом [22].  [c.12]

Очевидно, что чем больше падение напряжения в рельсах, а следовательно, и разность потенциалов рельс — земля и чем меньше сопротивление между рельсами и удаленными слоями земли, тем больше величина токов утечки, то есть блуждающих токов в земле. Сопротивление между рельсами и землей зависит от типа конструкции пути и удельного сопротивления грунта, окружающего этот путь. Поскольку направление распространения токов в земле, их интенсивность и время действия зависят от целого ряда факторов, которые в значительной степени изменяются во времени, то оценка их является весьма сложной. При самых неблагоприятных условиях, способствующих утечке тока в землю, величина блуждающего тока в земле может достигать 70—80 процентов от общего тягового тока [4, 101, регистрируется она самопишущими приборами.  [c.45]

Поэтому коэффициенты 1/ j можно трактовать как жесткости этих пружин. Наконец, последний член лагранжиана можно рассматривать как потенциал, вызванный движущими силами = Qj, не зависящими от координат, например гравитационными силами. (Силы могут, однако, зависеть от времени.) Что касается диссипативной функции (2.38), то ее можно считать вызванной наличием диссипативных (вязких) сил, пропорциональных обобщенным скоростям. Такова вторая интерпретация уравнения (2.39) [или функций (2.37), (2.38)]. Согласно этой интерпретации уравнения (2.39) описывают сложную систему масс, связанных пружинами и движущихся в вязкой жидкости под действием внешних сил. Таким образом, мы описали движение двух различных физических систем посредством одного и того же лагранжиана. Отсюда следует, что все результаты и методы исследования, связанные с одной из этих систем, могут быть непосредственно применены и к другой. Так, например, для изучения рассмотренных выше электрических контуров был разработан целый ряд специальных методов, которые применимы и к соответствующим механическим системам. Таким путем было установлено много аналогий между электрическими и механическими или акустическими системами. В связи с этим термины, применяемые при описании электрических колебательных контуров (реактанс, реактивное сопротивление и т. д.), вполне допустимы и в теории механических колебательных систем ).  [c.59]

Вследствие сложного характера временной зависимости сопротивления усталости от частоты циклического нагружения возникают трудности при разработке (на основе высокочастотного нагружения) ускоренных способов определения характеристик усталости. Тем не менее использование методов высокочастотного деформирования, по нашему мнению,— наиболее перспективный подход в решении задач ускоренного определения характеристик усталости. Это утверждение основывается на следующем сравнении различных способов ускоренных усталостных испытаний.  [c.335]


Расчет сопротивления деформации с помощью уравнения (43) проводится по кривым деформационного упрочнения для любого сложного закона нагружения. Однако для инженерного расчета этот метод сложен кроме того, предполагается, что свойства материала инвариантны во времени и деформация проходит в изотермических условиях.  [c.29]

Значительное влияние на качество прессуемых изделий оказывает несовершенство конструкции и техническое состояние технологического оборудования (прессы, пресс-формы и т. п.), а также контрольно-измерительных приборов (манометры, термометры, реле времени и д. т.). Несовершенство конструкции пресс-форм проявляется в процессе проектирования, изготовления и эксплуатации. При проектировании необходимо предусмотреть возможность равномерного обогрева и охлаждения пресс-формы, так как неравномерность обогрева или охлаждения приводит к образованию в изделии поверхностных вздутий, расслоений, трещин, короблений, избыточной пористости материала. Это особенно важно учитывать при изготовлении крупногабаритных деталей, изделий сложной конфигурации и значительной толщины. Обогрев пресс-формы осуществляется при помощи пара, электрических нагревателей омического сопротивления и индукционных нагревателей. Охлаждают пресс-форму, как правило, водой или обдувом холодным воздухом.  [c.10]

Созданные к настоящему времени методы позволяют рассчитывать по предельному числу циклов относительно простые детали машин вал, шатун, плунжер —элементы, сходные по форме со стандартными образцами. Что же касается расчета сложных конструкций, тина самолетных, когда требуется обеспечить работоспособность не по предельному числу циклов,, а по определенному ресурсу, то эти задачи находятся в таком разрыве с теорией, излагаемой в курсе сопротивления материалов, что образуют вполне самостоятельную науку.  [c.96]

Природа сложных явлений, определяющих внутренние сопротивления, до настоящего времени еще окончательно не выяснена, хотя имеется ряд предложений по их математическому описанию. Подробное рассмотрение таких предложений и их сопоставление приведено в работе [90].  [c.61]

Рассмотренное выше исследование движения машины при переменных силах на исполнительном органе основано па предположении, что эти силы — функции времени. Однако в большинстве случаев силы сопротивления на исполнительном органе являются функциями его перемещения. Исследование движения исполнительного органа в таких слу-чаях сводится, как правило, к интегрированию нелинейных дифференциальных уравнений, и выполнить его в общем виде не удается. Аналитическое ре-щение таких уравнений оказывается весьма сложным и может быть доведено до конца лишь при введении упрощающих допущений. В связи с этим подобные задачи лучше всего решать на электронных моделирующих машинах.  [c.303]

Исследования механического пове-дения материалов должны быть направлены на накопление систематической (в том числе статистической) информации о характеристиках прочности и пластичности, устанавливаемых при испытаниях по стандартизованным методам (кратковременные статические, длительные статические и циклические испытания), а также на разработку новых методов и средств оценки сопротивления деформациям и разрушению при сложных режимах и программах нагружения. При этом существенное значение приобретает анализ процессов протекания неупругих деформаций (пластических и временных) для указанных выше стадий разрушения.  [c.27]

При проведении проектировочных расчетов теплотехнических устройств часто возникает необходимость оценить термическое сопротивление сложных по форме составных теплоизоляционных конструкций, которые собраны из элементов, выполненных из различных материалов. Ясно, что термическое сопротивление можно найти на основе детального расчета температурного поля в такой конструкции. Однако подобный путь является трудоемким, а требования к точности проектировочного расчета не оправдывают затрат времени на детальный анализ.  [c.119]

Проектирование системы разогрева представляет собой весьма сложную задачу, где не все факторы поддаются точному учету. Поэтому в ходе пусконаладочных работ необходимо внимательно проверить работу нагревателей, отрегулировать мощности на отдельных участках, изменяя число одновременно включаемых нагревателей, их длину (проволочные нагреватели удобны тем, что их сопротивление легко изменять, меняя их длину), определить последовательность и сдвиг по времени включения в зависимости от инерционности отдельных участков.  [c.80]

В связи с повышенными требованиями к теплотехническим расчетам вопрос о решении нелинейного уравнения теплопроводности становится исключительно важным. Этот вопрос приобретает решающее значение для тепловых устройств и установок, работающих в не- стационарном тепловом режиме. Аналитическое решение таких задач, как уже отмечалось, представляется сложным. Применение расчетных методов требует большой затраты времени. Принципиальная возможность решения нелинейного уравнения нестационарной теплопроводности на специализированных электрических моделях из сопротивлений, емкостей и индуктивностей была изложена в гл. 7 и 8. Решение нелинейных задач тепло-переноса может оказаться более перспективным и результативным, если будут найдены пути практической реализации нелинейности в электрических моделях с сосредоточенными параметрами. Практическая реализация нелинейности сводится к обеспечению переменности сосредоточенных параметров модели и может быть осуществлена двумя различными методами.  [c.328]

Расчетные зависимости (9-12) — (9-18) позволяют определить все омические сопротивления при моделировании по неявной схеме на -сеточной модели.-Следует отметить, что рассмотренный метод основан на аналогии между конечно-разностными уравнениями теплового процесса и уравнениями токов в электрической цепи. Поэтому особенности конечно-разностных уравнений присущи и электрическим моделям. Метод позволяет сравнительно просто рещать нелинейное уравнение теплопроводности и вводить корректировку в процессе решения. Однако дискретность временной и пространственной координат приводит к сложной сеточной модели, и рещение новых задач сопряжено с заменой или новой установкой части или всех омических сопротивлений.  [c.347]


Несмотря на очевидный характер влияния окисных пленок на термическое сопротивление контакта металлических поверхностей, до настоящего времени изучению этой проблемы не уделялось должного внимания. С одной стороны, ощущается недостаток в данных об образовании и росте окисных пленок, об их прочности, теплофизических свойствах и изменениях термического сопротивления действительного контакта окисленных поверхностей. С другой стороны, сложный характер процесса теплопереноса на границе раздела фаз в зоне контакта соединений с окисными пленками затрудняет создание теоретической модели, в полной мере соответствующей структуре температурного поля такого соединения.  [c.187]

В зависимости от материала, вида напряжённого состояния (растяжение, сжатие, изгиб и др.) и условий эксплуатации (темп-ра, время действия нагрузки и др.) в технике приняты разл. меры П. т. т. (предел текучести, временное сопротивление, предел усталости и т.д,). Разрушение твёрдого тела — сложный процесс, зависящий от ми. факторов, поэтому величины, определяющие П. т. т., являются условными.  [c.169]

До последнего времени вопросам компоновки вспомогательного оборудования, относящегося к газовоздушным трактам, не уделялось должного внимания. Тягодутьевые машины, воздухоподогреватели, золоуловители и другие элементы тракта часто устанавливались там, где оставалось свободное место при компоновке парогенератора, без учета того, насколько сложными окажутся подводящие и отводящие газовоздухопроводы. При таких компоновках эксплуатация оборудования оказывалась неудобной, газовоздухопроводы имели высокое гидравлическое сопротивление, а в ряде случаев являлись причиной ненадежной и неэффективной работы основного и вспомогательного оборудования.  [c.145]

При больших т и малых а и v очевидно, что членом ряда, содержащим можно пренебречь. Только когда х становится величиной порядка In член, содержащий становится существенным. Практически же это время много больше времени, за которое происходит смещение, и, таким образом, не представляет физического интереса. Это замечание весьма существенно, так как множитель т не является точным. Эта неточность связана с тем, что функция сопротивления получена из асимптотического решения ( Р = с vs) нашей задачи. Действительно, можно показать, что G s) скорее ведет себя в начале координат, как s/ln s, чем как s Иными словами, это меняет характер результата, относящегося к отрезкам времени, представляющим физический интерес. Для очень больших т (т > а Мп [а ]) 7] разлагается в ряд не по, а значительно сложнее. Причем этот ряд сходится несколько медленнее, чем ряд по.  [c.22]

Механические свойства отливок из серого чугуна будут тем выше, чем меньше в чугуне графита, чем мельче пластинки графита, чем они сложнее по форме и чем равномернее они расположены в основной массе металла. Основной характеристикой механических свойств чугуна служит временное сопротивление разрыву. Серый чугун не обладает хорошими пластическими свойствами. Но вместе с тем вследствие присутствия в его структуре пластинок графита серый чугун малочувствителен к надрезу. Чугун благодаря своим пластинкам имеет как бы надрезы во всей своей массе, вследствие чего дополнительные надрезы не имеют большого значения, как в сталях. Нередко наблюдаются случаи, когда чугунные детали при наличии в них видимых трещин продолжают длительное время служить безотказно.  [c.433]

Подобрать термометр, стабильность которого существенно выше 1 мК при 20 К, оказывается довольно сложным делом. Только 18 из 60 исследованных термометров показали среднеквадратичное отклонение менее 0,25 мК. Однако в процессе испытаний очень немногие термометры изменяли свои характеристики. Если не считать первых десяти температурных циклов, те термометры, которые показали высокую стабильность, неизменно оказывались стабильными те же, у которых наблюдался дрейф или иные типы нестабильностей, продолжали вести себя аналогичным образом. Было обнаружено, однако, что время от времени градуировка термометра, который на протяжении ряда температурных циклов вел себя стабильно, скачкообразно менялась (рис. 5.37). Скачок сильнее сказывается при более высоких температурах, когда сопротивление термометра меньше. Именно этот эффект, отсутствующий у железородиевых термометров, затрудняет использование германиевого термометра для воспроизведения температурной шкалы в области низких температур.  [c.240]

Наблюдая действительно происходящие движения, можно заметить, что полная механическая энергия не остается постоянной. С одной стороны, часть энергии движения уходит на преодоление всевозможных вредных сопротивлений, так что с течением времени полная энергия системы уменьшается с другой стороны, для поддержания движения или для его ускорения необходимо создать приток энергии, уходящей частично на компенсацию потерь энергии на преодоление вредных сопротивлений, частично на увеличение кинетической энергии системы. Ташм образом, никогда не приходится наблюдать движения в потенциальных силовых нолях, удовлетворяющие закону сохранения механической энергии в чистом виде, а всегда наблюдается наложение друг на друга нескольких сложных процессов, среди которых процесс движения в потенциальном поле играет более или менее значительную роль.  [c.233]

Период Древнего Рима. Римляне заимствовали многое у греков. В Древнем Риме строились сложные для того времени гидротехнические сооружения акведуки, системы водоснабжения и т. п. В своих сочинениях римский инженер-строитель Фронтин (40-103 г. н.э.) указывает, что во времена Траяна в Риме было 9 водопроводов, причем общая длина водопроводных линий составляла 436 км. Можно предполагать, что римляне уже обращали внимание на наличие связи между площадью живого сечения и уклоном дна русла, на сопротивление движению воды в трубах, на неразрывность движения жидкости. Например, Фронтин писал, что количество воды, поступившей в трубу, должно равняться количеству воды, вытекающей из нее.  [c.26]

Металлокерамика нашла достаточно широкое применение в электротехнике. Как уже отмечалось выше, этот материал применяется для изготовления контактов круглой, прямоугольной и сложной формы методом порошковой металлургии. Композиции получаются путем трехфазного спекания спрессованных из порошков заготовок либо путем пропитки серебром или медью предварительно опрессованных пористых каркасов из вольфрама или вольфрамоникелевого сплава. Удельное электрическое сопротивление металлокерамических контактов должно быть не более 0,07 мкО.м м при 20 °С, отличаться высокой стабильностью во времени и малой зависимостью от условий эксплуатации.  [c.131]

Древние строители, не имея еще теории, руководствовались только грубым опытом, копируя известные образцы их сооружения отличались громоздкостью и строились иногда целые века. С развитием в XVIII веке международной морской торговли, металлургии, горного дела появилась необходимость решать более сложные вопросы прочности судов и сооружений. Старые методы стали недопустимыми. К этому времени относят начало развития науки о сопротивлении материалов, первый курс которой издан лишь в 1826 г. во Франции.  [c.13]


Основные закономерности регулярного теплового режима были подробно исследованы Г. М. Кондратьевым [40], который определил основные связи, существующие между темпом охлаждения т, с одной стороны, и физическими свойствами тела, его формой, размерами и условиями охлаждения — с другой. Это позволило разработать методы приближенного расчета нестационарных температурных полей, методы моделирования нестационарных процессов в сложных объектах, дать оценки неравномерности температурных полей в различных условиях и т. д. На основе теории регулярного режима были предложены и получили широкое распространение а практике новые методы определения теплофизических свойств веществ а, X, с, термических сопротивлений R, степени черноты тел е, коэ4х ициентов теплоотдачи а. Преимуществом таких методов является простота техники эксперимента, высокая точность получаемых результатов и малая затрата времени на проведение эксперимента.  [c.243]

До пос.яеднего времени фундаментальные исследования процессов структурообразования и разрушения при знакопеременном нагру-нсении в основном были проведены на металлах с ГЦК решеткой и сплавах на их основе. Значительно меньше исследований выполнено на металлах с ОЦК решеткой. В то же время благодаря таким особенностям ОЦК металлов, как резкая температурная и скоростная зависимость критического сопротивления сдвигу, ориентационная зависттмость предела текучести, следует ожидать значительно более сложной последовательности структурных изменений при знакопеременном нагружении по сравнению с металлами с ГЦК решеткой.  [c.153]

На основании общих физических представлений о поведении материала под нагрузкой его сопротивление деформированию определяется мгновенными условиями нагружения (температурой, скоростью деформации и другими ее производными в момент регистрации), а также структурой материала, сформированной в процессе предшествующего деформирования, который в п-мерном пространстве характеризуется траекторией точки, проекции радиуса-вектора которой — составляющие тензора напряжений (или деформаций) и время (начальная температура является параметром, характеризующим исходное состояние материала, и изменяется в соответствии с адиабатическим характером процесса деформирования). Специфической особенностью процессов импульсного нагружения является сложный характер нагружения (составляющие тензора напряжений меняются непропорционально единому параметру) и влияние времени. Невозможность экспериментального исследования материала при различных процессах нагружения (траекториях точки указанного выше л-мерного пространства) вынуждает исследователей использовать упрощенные модели механического поведения материала. Это обусловило развитие исследований по разработке теорий пластичности, учитывающих температурновременные эффекты [49, 213, 218] наряду с изучением физических процессов скоростной пластической деформации [5, 82, 175, 309]. Так, для первоначально изотропного материала исходя из гипотезы изотропного упрочнения связь тензоров напряжений и деформаций полностью определяется связью их инвариантов соответственно Ei, Ег, Ез и Ii, h, h- С учетом упругого характера связи средних напряжений и объемной деформации для металлических материалов (а следовательно, независимость от истории нагружения первых инвариантов тензоров напряжений и деформаций Ei, А) процесс нагружения определяется связью четырех оставшихся инвариантов и величины среднего давления. В классической теории пластичности  [c.11]

Таким образом, в процессе запуска момент, передаваемый муфтой, изменяется во времени по сложной кривой, имеющей ряд переломов. Это весьма затрудняет исследование процесса запуска в многоприводных машинах, где разделение процесса на выделенные здесь этапы приводит к очень громоздким математическим выражениям. Как видно из сопоставления рис. 3. 10, б, 3. 11, б и 3. 12, б, характер изменения Ж I) в значительной степени зависит от величины момента сопротивления, поэтому предложить универсальную упрощенную зависимость М ( ) не удается. Однако зависимость Л1 (/) бывает необходима, как правило, ири исследовании процессов запуска многоириводных машин иод полной нагрузкой. В таком случае можно, как видно из рис. 3. 11, б и 3. 12, б, ири Уу. Jпринять, что характер зависимости М (1) сохраняется в течение всего периода запуска таким же, как и на первых двух этапах, а ири (й > со, М = М ом-  [c.114]

Определение динамических усилий при резком торможении двухприводных машин оказывается более сложным, чем исследование их запуска. Усложнение вызывается прежде всего нелинейностью механических характеристик турбомуфт, имеющей в данном случае существенное значение, так как при опрокидывании рабочая точка переходит с устойчивого участка характеристики на неустойчивый. Кроме того, при торможении, как правило, неизбежно смещение во времени процессов опрокидывания муфт приводов. В связи с этим интегрирование системы дифференциальных уравнений движения машины при резком возрастании сил сопротивления удается осуществить лишь при помощи электронных моделирующих машин. Методика программирования такого исследования приведена в 46.  [c.394]

Одновременно с сооружением первых электрических установок возникла проблема борьбы с перенапряжениями. Реальную опасность представляли перенапряжения, индуктируемые в воздушных проводах при близких грозовых разрядах. Исторически первыми средствами заш иты от атмосферного электричества были приспособления, заимствованные-из практики грозозащиты зданий и телеграфных линий связи заземленные тросы, стержневые молниеотводы и снабженные плавкими вставками телеграфные громоотводы, являющиеся прототипом разрядников. В 90-е-годы появилось много видов грозозащитных аппаратов, основанных на различных принципах действия водоструйные заземлители, постепенно-снижавшие перенапряжения электростатического происхождения разрядники с искровым промежутком и принудительным гашением дуги, катушки самоиндукции, предложенные английским физиком О. Лоджем в. качестве фильтров для импульсных токов молнии и др. При конструировании разрядников наиболее сложная задача заключалась в надежном гашении дуги сопровождающего тока, величина которого стремительно росла вместе с повышением мощностей электрических станций. Много изобретательности и неудачных попыток ученых и инженеров различных стран было связано с созданием разрядников. В 1891 г. И. Томсон предложил конструкцию с многократным разрывом дуги — принцип, нашедший полное признание лишь в 20—30-е годы XX в. при одновременном использовании в разрядниках токоограничивающих сопротивлений с вентильными свойствами. Начиная с 1896 г. самым распространенным видом разрядника становится роговой громоотвод, предложенный немецким электротехником Э. Ольшлегером. К 1900 г. он завоевал почти полную монополию в сетях напряжением до 10 кВ. Благодаря многочисленным усовершенствованиям роговых разрядников этот тин грозозащиты надолго удержался в европейских сетях напряжением до 50—60 кВ [31]. Америка пошла по-другому пути. Начиная с 1907 г. там распространились алюминиевые разрядники, отвечающие требованиям работы сетей напряжением 100— 150 кВ. Разрядник не обладал безупречными характеристиками и надежностью действия и явился лишь временной защитной мерой (до начала 20-х годов) [32].  [c.79]

В литых аустенитных сталях происходят изменения структуры и свойств, аналогичные изменениям в трубах из аустенитных сталей. В стали ЛА1 (1Х15Н15М2КЗВ1ТЛ) при 585—590° С происходит выпадение и коагуляция карбида Ti , а затем и сложного карбида МегзСб- В процессе старения стали ЛА1 в интервале до 54 тыс. ч непрерывно увеличивается содержание молибдена и вольфрама в карбидной фазе. В результате повышаются предел текучести и временное сопротивление и снижаются показатели пластичности и ударная вязкость [Л. 21].  [c.247]

Материал этого параграфа имеет лишь косвенное отношение к содержанию данной главы и включен в нее потому, что нелинейные элементы могут быть использованы не только в качестве самостоятельного нелинейного сопротивления, моделирующего соответствующую нелинейность тепловой системы, но и в сочетании с активными элементами в гибридных моделях. Так, помимо применения нелинейных элементов в моделях, построенных по принципам предложенного автором книги метода нелинейных сопротивлений, эти элементы могут быть использованы в качестве обратных связей операционных усилителей для создания функциональных преобразователей с соответствующими характеристиками. Кроме того, представляет интерес совместное использование нелинейных элементов, моделирующих ту или иную нелинейность системы, и элементов структурных моделей для создания специализированных устройств, реализующих сложные нелинейные зависимые от времени граничные условия II—IV рода в задачах теплопроводности (гл. X—XII), моделирующих нелинейные процессы в разветвленных гидравлических системах (гл. XVI), решающих обратные и инверсные задачи теплопроводности (гл. XIII).  [c.57]


Многочисленные экспериментальные данные по исследованию теплоотдачи, гидравлического сопротивления и критической плотности теплового потока охватывают широкий диапазон изменения всех определяюпхих параметров. Однако до настоящего времени не разработана общая теория, которая удовлетворительно описывала, бы совокупность рассматриваемых явлений и давала бы возможность аналитически подойти к решению задачи. Расчетные соотношения можно получить, применяя методы подобия процессов. В этом направлении выполнен ряд работ, но, как правило, полученные соотношения очень сложны, содержат несколько постоянных (до пяти) и. что самое главное, часто плохо согласуются с опытными данными. Кроме того, ни одна из известных работ не дает возможности получить обобщенные зависимости для теплообмена, гидравлического сопротивления и критической тепловой нагрузки исходя из единой системы безразмерных переменных.  [c.52]


Смотреть страницы где упоминается термин Сопротивление временное сложные : [c.246]    [c.255]    [c.7]    [c.194]    [c.225]    [c.9]    [c.4]    [c.214]   
Сопротивление материалов (1988) -- [ c.0 ]



ПОИСК



Временное сопротивление (ов)

Ось временная

Сложное сопротивление



© 2025 Mash-xxl.info Реклама на сайте