Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Разрядники

F Разрядники, предохранители, устройства защитные Предохранитель плавкий FU  [c.496]

Винтовой механизм (в верхней части на рис. 13.1, г) обеспечивает регулирование расстояния между коническими электродами, между которыми возникает электрический разряд при прохождении через разрядник электромагнитной энергии выше определенного уровня мощности. Винтовой механизм состоит из винта 4, имеющего внутреннюю более мелкую и наружную более крупную резьбы, стержня 5 с наружной резьбой и втулки 6 с внутренней резьбой. Принцип работы такого механизма будет рассмотрен ниже.  [c.195]


Конструкции паяных соединений весьма разнообразны. Например, трубка 13 от центрального вывода (см. рис. 13.1, в) припаяна к выводу-колпачку 9 окунанием в расплавленный припой. Большинство деталей резонансного разрядника (см. рис. 13.1, в) соединены между собой пайкой. При этом паяные соединения обеспечивают вакуумную плотность.  [c.229]

Специфическими для вакуумной техники являются вакуумно-плотные соединения — спаи стекла с металлом. В этих соединениях одну из деталей — стеклянную — нагревают до пластичного состояния и соединяют с нагретой металлической деталью. В указанной конструкции резонансного разрядника (см. рис. 13.1, в) применено несколько спаев стекла с металлом спай стеклянного изолятора 16 с цилиндрическим стаканчиком 8, спаи со стеклом 17 центрального ввода 12. На чертежах в спаях стекла с металлом стек-  [c.229]

Разрядник газовый (ионный) — ионный электровакуумный прибор, действие которого основано на использовании резкого увеличения его проводимости вследствие возникновения самостоятельного дугового или тлеющего разряда- и предназначенный в основном для защиты элементов электрических цепей от перенапряжений или избыточной мощности или коммутации электрических цепей в тех случаях, когда необходимо производить замыкание или размыкание электрической цепи за столь короткое время, которое не могут обеспечить механические выключатели [3].  [c.152]

Разрядник искровой — устройство, в котором происходит искровой разряд в простейшем случае два острых или иной формы электрода, между последними проскакивает искра, когда напряжение па них достигнет определенной величины [9].  [c.152]

Значения 232 Разрядник газовый (ионный) 152 -- искровой 152  [c.762]

Установка электрогидравлической очистки состоит из выпрямителя и конденсаторов, которые разряжаются периодически через воздушный искровой разрядник. Энергия конденсаторов передается на пару электродов, погруженных в жидкую среду. При разряде большая часть энергии уходит в объем жидкой среды между электродами, так как в этом месте сопротивление во много раз выше, чем в любом другом отрезке разрядного контура.  [c.361]

Электрогидравлическая очистка отливок ведется в воде на глубине не менее 500 мм (рис. 178). Отлетающие частицы оседают из дно бака, а мелкие частицы остаются во взвешенном состоянии. Воздушный искровой разрядник выделяет при разряде озон и оксид азота (N0), что вредно для здоровья.  [c.362]

Фотоэффект. С установлением электромагнитной природы света волновая теория, казалось, победила окончательно. Однако мог ли автор ее экспериментального обоснования Г. Герц предполагать, что им енно ему будет суждено обнаружить явление, которое будет противоречить волновой теории Он заметил, что при освещении одного из шаров разрядника ультрафиолетовым излучением разряд между шарами возникает при значительно меньших напряжениях. Им было высказано предположение, что под действием излучения зазор между шарами становится более электропроводным. Полученное явление было названо фотоэффектом. Подробные исследования фотоэффекта по схеме, показанной на рис. 24, выполнил в 1888—1890 гг. профессор Московского университета А. Г. Столетов. Он показал, что ток в цепи  [c.117]


Дуговой разряд возбуждается с помощью генератора активизированной дуги переменного тока. Принципиальная электрическая схема генератора приведена на рис. 1. При включении кнопки /(9 напряжение на концах вторичной обмотки высоковольтного трансформатора 1 (3 кВ) оказывается больше пробивного напряжения вспомогательного разрядника 3. В результате его пробоя конденсатор 7 ( i 0,003 мкФ) разряжается на первичную катушку высокочастотного трансформатора 2. Со вторичной катушки этого трансформатора напряжение (30 кВ) высокой частоты попадает на электроды дуги. Промежуток 4 между ними периодически (с частотой 50—100 с ) пробивается — активизируется к прохождению через него переменного тока электрической сети. Сила тока в дуге регулируется реостатом 6 и контролируется амперметром 9. При выполнении задачи она устанавливается равной 4— 5 А.  [c.34]

В схеме моста (см. рис. 3-5) имеются разрядники, защищающие регулировочные элементы от появления опасных напряжении. При срабатывании этих разрядников вершины А vi Б заземляются.  [c.61]

На рис. 5-9 показана принципиальная схема установки, обеспечивающей быстрое отключение напряжения от образца жидкого электроизоляционного материала после пробоя. Установка состоит из ячейки 4, заполняемой испытуемой жидкостью. Напряжение на электроды 5 подается через повышающий трансформатор от регулировочного трансформатора 3. Параллельно ячейке включен шаровой разрядник 1. Расстояние между электродами разрядника изменяется одновременно с изменением напряжения регулировочного трансформатора. При этом расстояние между электродами  [c.106]

Шаровой разрядник применяют в качестве прибора для измерения пробивного напряжения, так как это напряжение связано определенной зависимостью с расстоянием между сферическими электродами данного диаметра. Амплитуда напряжения измеряется с погрешностью не более 3%. Различают симметричное и несимметричное включение шарового разрядника (рис. 5-10, а и б).  [c.107]

Пробивное напряжение воздуха для шарового разрядника определяют с ПОМОЩЬЮ таблиц, в которых значения пробивного напряжения даются в зависимости от диаметра шаров и расстояния между ними для нормальных условий (табл. 5-2). Из этих таблиц видно, что при расстояниях более 1 см пробивное напряжение для  [c.107]

На рис. 5-17 показана схема установки для генерирования апериодического коммутационного импульса. Импульсы с выхода ГИН через шаровой разрядник Р подаются на интегрирующую цепь, состоящую из резистора Р2 и последовательно включенных конденсаторов С/ и С2. Для получения апериодического импульса требуется выполнить условие  [c.114]

Разрядник шаровой 107 Регулятор напряжения 104  [c.209]

Кроме того, алюминий применяется для изготовления электрических проводов, кабелей, электродов в разрядниках, катодов в ионных рентгеновских трубках и т.д.  [c.20]

Используется уголь также и при изготовлении непроволочных высокоомных резисторов, различных разрядников для телефонных сетей, электровакуумных приборов.  [c.132]

Пробой масла производят в стандартном разряднике между погруженными в масло металлическими дисковыми электродами диаметром 25 мм с закругленными краями при расстоянии между ними 2,5 мм. Пробивное напряжение технически чистых масел в стандартном разряднике составляет 50 —60 кВ при 50 Гц и примерно 120 кВ при воздействии импульсного напряжения. Примесь воды в масле снижает значение пробивного напряжения. Если вода находится в масле в виде эмульсии, т. е. в виде мельчайших капелек, которые втягиваются в места, где напряженность поля велика, то в этом месте и начинается развитие пробоя. Характер изменения пробивного напряжения трансформаторного масла, содержащего влагу, в зависимости от температуры показан на рис. 6.2. Увеличение пробивного напряжения с ростом температуры объясняется переходом воды из суспензии в молекулярно-растворенное состояние. Рост пробивного напряжения при уменьшении температуры ниже О °С объясняется образованием льда и ростом вязкости масла.  [c.196]

Сварочный осциллятор представляет собой искровой генератор затухающих колебаний. Он содержит (рис. 75, а) низкочастотный поит.т пающий трансформатор ПТ, вторичное напряжение которого достигает 2—3 кВ, разрядник Р, колебательный контур, состав-леппый из емкости 6 , индуктивности Lk, обмотки связи и блокировочного ] опдепсатора С(. Обмотки и L образуют высокочастотный трансформатор ВТ. Вторичное напряжение ПТ ъ начале полупериода заряжает конденсатор Си и при достижении определенной величины вызывает пробой разрядника Р. В результате колебательный коптур Ь Ск оказывается закороченным и в нем возникают затухающие колебания с резонансной частотой  [c.138]


Тригатрон — ионный разрядник высокого напряжения с холодным катодом и вспомогательным электродом, предназначенный для управления моментом возникновения импульсного дугового разряда.  [c.159]

В 1887 г. Герц в опытах по генерации высокочастотных электрических колебании обнаружил, что прохождение искрового разряда между полюсами разрядника облегчается, если его отрицательный полюс осветить ультрафиолетовым светом. В дальнейшем в результате систематических исследований Столетова (1888) было установлено, что в опыте Герца иод действием света из электродов освобождаются отрицательные заряды, которые, попадая в электрическое поле между электродами, ускоряются, ионизируют окружающий газ и вызывают разряд. Позже опытами Ленарда и Томсона (1899) было показано, что отрицательные заряды, освобождаемые светом из металла, являются электронами. Это явление и получило названпе фотоэлектрического эффекта (фотоэффекта).  [c.156]

Исследования внешнего фотоэффекта. Впервые внешний фотоэффект наблюдал в 1887 г. Г. Герц. Он обнаружил, что гфоскакивание искры между электродами разрядника заметно облегчается, когда электроды освещаются ультрафиолетовым светом. Обстоятельные экспериментальные исследования фотоэффекта выполнили в 1888—1889 гг. А. Г. Столетов и в 1899—1902 гг. немецкий физик Ф. Ле-нард. Последний показал, что освобождаемые светом отрицательные заряды являются электронами и что их энергия пропорциональна частоте света и не зависит от интенсивности света.  [c.159]

Открытие фотоэффекта. При генерации электромагнитных волн посредством возбуждения электрических колебаний в открытом контуре с разрядником Г. Герц обнаружил (1887), что длина искры между металлическими электродами разрядника увеличивается, если катод освещается ультрафиолетовым светом. Другими словами, падающий на металлический катод ультрафиолетовый свет облегчает проскакивание искры между катодом и анодом. Это наблюдение положило начало экспериментальным работам В. Гальвакса, А. Столетова, П. Ленар-да и др., в которых была выяснена физическая сущность наблюдаемого явления и установлены его основные количественные характеристики. Само явление получило название внешнего фотоэффекта.  [c.18]

ЭТОМ охранный электрод образца соединяется с заземленным экраном, а высоковольтный — с указанной вершиной (рис. 3-2). В два другие плеча включаТотся переменный резистор R3 и постоянный резистор R4, шунтированный конденсатором переменной емкости С4. В такой схеме вее напряжение практически приходится на емкостные плечи, так как их сопротивление переменному току 1/(ц)С) много больше сопротивлений резисторов, включенных в другие плечи. Поэтому, несмотря на наличие высокого напряжения, можно безопасно уравновешивать мост изменением параметров R3 и С4. Для защиты цепи в случае пробоя образца предусмотрены разрядники. Индикатором равновесия моста обычно служит вибрационный гальванометр (см. ниже), зачастую включенный через усилитель.  [c.51]

Рассмотренный мост обеспечивает возможность измерений на ВЫСОКИХ напряжениях, так как регулируемые элементы R3 и С4 отделены от высоковольтного вывода трансфррматора конденсаторами Со и Сс, два нижних плеча с заземленной вершиной находятся под низким напряжением и, кроме того, защищены разрядниками на случай пробоя образца во время испытаний.  [c.52]

Свечение разрядников может появиться при пробое образна, ошибочной сборке схемы, а также в случае, если установлено слишком большое сопротивление / з по сравнению с необходимым для уравновешивания моста. При появлении свечения необходимо немедленно выключить установку. Периодически надлежит проверять исправность разрядников. Для этого последовательно с разрядником включают защитное сопротивление около 2000 Ом и определяют напряжение зажигания для неонового разрядника типа СН-2 это напряжение около 80 В. Периодически следует проверять сопротивление изоляции кабелей высокого напряжения, оно должно быть не ниже 10 МОм. Заземление всей схемы должно быть тщательно выполнено медным проводом сечением не менее 6 мм-. Трансформатор высокого напряжения, предназначенный для питания моста, конденсатор Со и испытуемый образец изоляционного материала должны быть помещены в щкаф или установлены за металличеекой заземленной оградой, исключающей возможность прикосновения к проводам и зажимам, находящимся под высоким напряжением. При напряжении до 50 кВ ограждения устанавливаются на расстоянии не менее 0,5 м от чаетей, находящихся под высоким напряжением. Дверца шкафа или ограждения должна быть снабжена такой блокировкой, что когда дверца открывается, блокировочное устройство размыкает цепь питания установки. Экраны моста и соединительных кабелей должны быть надежно заземлены, так же как и корпус трансформатора высокого напряжения.  [c.61]

Пробивное напряжение в киловольтах (амплитудные значения) шаоовых разрядников на промышленной частоте при нормальных условиях  [c.108]

При наличии шаровых разрядников можно отградуировать испытательный трансформатор, т. е. определить коэффициент трансформации в функциц напряжения. Такую градуировку производят по шаровому разряднику и вольтметру, включенному либо на стороне низшего напряжения испытательного трансформатора, либо через измерительный трансформатор напряжения. При измерении напряжения с помощью шаровых разрядников необходимо их удалить от окружающие предметов, которые могут вызвать искажение поля между разрядниками и внести погрешность в результаты. Это расстояние от стен и проводящих предметов должно быть не менее семикратного диаметра шара. Для ограничения тока при пробое шарового промежутка последовательно включают ограничительное сопротивление.  [c.109]

Градуируя трансформатор с помощью шарового разрядника, не следует использовать промежутки выше 0,75 диаметра шара. Градуировку, как правило, производят с включенным объектом испытаний, так как на коэффициент трансформащ и может оказать влияние емкость (при емкости образца более 1000 пФ), а в некоторых случаях и сопротивление изоляции испытуемого образца. Коэс и-циент трансформации зависит также от напряжения, поэтому градуировку следует выполнять на напряжениях от минимального до значения, составляющего 0,9 разрядного, или пробивного, на пряжения.  [c.109]


Напряжение лри пробое измеряют обычно на стороне высшего напряжения при помощи электростатического киловольтиетра или шарового разрядника. Напряжение можно измерять и на стороне низшего напряжения вольтметром, отградуированным по шаровому разряднику, включенному параллельно образцу. Градуировку желательно производить в установившемся режиме выпрямительной установки и при включенном образце.  [c.111]

Резистор служит для защиты трансформатора и кенотрона от перегрузки при пробое образца. В установке имеется сосуд с электродами для стандартного испытания жидких материалов. Испытания на постоянном токе производят при помощи схемы одно-полупериодного выпрямления, для получения которой используется кенотрон Л на образец подается постоянное напряжение отрицательной полярности. Если необходимо измерять ток утечки, то для этой цели используют микроамперметр рА в анодной цепи при разомкнутом выключателе КЗ. Защита микроамперметра от перегрузок осуществляется при помощи разрядника Р, шунтирующего конденсатор и резистор. Микроамперметр имеет несколько пределов измерения.  [c.119]

В схеме предусмотрена защита от перенапряжений с помощью разрядника Р и реле максимального тока на сборных шинах, а также защита от перегрузок по току фидеров отдельных потребителей и обмоток возбуждения генераторов. Защитные реле и измерительные приборы подключаются к силовым цепям через трансформаторы тока ТТ и напряжения ТН. В отечественной практике, как правило, используются изолированные от земли сети средней частоты. 1 1иогда применяют схемы с заземлением средней точки обмоток генераторов, что позволяет контролировать состояние изоляции элементов схехнт п отключать питание при возникновении утечки на землю.  [c.211]

Алюминий. Плотность р = 2,72 г/см , = = 658° С,кристаллизуется в решетку ГЦК (К12) р о = = 0,0269 ом-мм /м Г/Ср = 0,0042 1/град а = 23,8 X X 10" 1/град, Og = 60 Мн/м (6 кгс/мм ) б = 35% ф = 80%. Алюминий — легко окисляющийся металл, однако пленка (AI2O3) надежно защищает алюминий от окисления. Пленка АЦО., имеет очень высокое удельное электрическое сопротивление (р = 10 ом-мм7м), благодаря чему она может служить надежным изолятором. Увеличение прочности алюминия достигается холодной пластической деформацией. НагартованныА алюминий имеет следующие механические свойства = 250 Мн/м (25 кгс/мм ) 6=8%. Примеси (Мп, V, Mg, Fe, Si и др.) значительно уменьшают проводимость алюминия. В зависимости от содержания примесей (Mg, Мп, Si) алюминий имеет следующую маркировку АВ1 (99,9% А1)— электролитический алюминий высокой чистоты, АВ2 (99,85% А1), АОО (99,7% AI), АО (99,6% А1), А1 (99,5% А1), А2 (99,0% AI), АЗ (98,0% А1). Алюминий АВ1 применяют для изготовления фольги электролитических конденсаторов, АВ2 — для изготовления волноводов алюминии в этом случае подвергают оксидированию, в связи с чем не требуется серебрение внутренней поверхности волноводов. Алюминий АОО, АО и А1 применяют в производстве биметаллов, а А1, А2, АЗ — для корпусов электролитических конденсаторов, пластин воздушных конденсаторов, стрелок и корпусов приборов, экранов и т. п. Алюминий используют также при изготовлении электродов в разрядниках, выпрямителях тлеющего разряда, для электродов в электроннолучевых трубках и т. д.  [c.269]

ИО — испытуемый плоский конденсатор с ВЭ, ИЭ и ОЭ С — разцовый конденсатор без потерь С< — магазин емкостей — ре- зистор, обычно с сопротивлением 10000/л (Ом). — безыидукаи-онный переменный резистор ИВ — индикатор равновесия Р — разрядники ВТ - высок( ПОЛЬТНый трансформатор Э —экран  [c.151]


Смотреть страницы где упоминается термин Разрядники : [c.195]    [c.243]    [c.116]    [c.107]    [c.107]    [c.135]    [c.228]    [c.242]    [c.243]    [c.16]    [c.102]    [c.124]    [c.174]    [c.151]    [c.200]   
Смотреть главы в:

Номенклатурный справочник высоковольтной аппаратуры 1972-1973гг.  -> Разрядники

Устройство и работа электропоездов Издание 3  -> Разрядники

Устройство и работа электровозов постоянного тока  -> Разрядники

Электропоезда постоянного тока ЭТ2 ЭТ2М ЭР2Т ЭД2Т  -> Разрядники

Электровоз  -> Разрядники

Электропоезд ЭР9М  -> Разрядники

Электропоезда переменного тока Издание 2  -> Разрядники


Подвижной состав и основы тяги поездов (1976) -- [ c.62 ]

Справочная книжка энергетика Издание 3 1978 (1978) -- [ c.242 ]

Справочная книжка энергетика Издание 4 1984 (1984) -- [ c.292 , c.294 ]



ПОИСК



Воздушный выключатель, разрядник, фильтр

Главные предохранители и разъединители, фильтры, разрядники, быстродействующие выключатели

Грозозащита, изолирующие фланцы и искровые разрядники

Защитно-релейная аппаратура и контрольно-измерительные устройства Разрядник РВЭ

Испытание вентильных разрядников

Подготовка спортсменов-разрядников

Предохранительный разрядник

Разрядник РВКУ-З.ЗА

Разрядник РМВУ

Разрядник вилитовйй РМВУ

Разрядник газовой (ионный)

Разрядник газовой (ионный) искровой

Разрядник газовый искровой

Разрядник искровой

Разрядник трехэлектродный

Разрядник тригатронного типа

Разрядник трубчатый

Разрядник трубчатый винипластовый

Разрядник фибробакелитовый

Разрядник шаровой

Разрядник электрический

Разрядник электростатический

Разрядник-тригатрон

Разрядника и ограничители перенапряжений

Разрядники алюминиевые

Разрядники вентильного типа

Разрядники тиритовые

Разрядники, предохранители (ГОСТ

Трубчатые разрядники. Защита переходов

Шаровые разрядники

Эксплуатация электростатических разрядников и зарядосьемников



© 2025 Mash-xxl.info Реклама на сайте