Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Интенсивность теплоотдачи

Двучлен в скобках учитывает интенсивность теплоотдачи с поверхности коэффициент Ь = 2p/ yS 1/с р — коэффициент теплоотдачи, кал/см с °С и /3 — коэффициенты, пропорциональные безразмерным длительностям нагрева, определяемые по номограмме (рис. 120) в зависимости от безразмерной температуры а  [c.237]

С увеличением толщины теплового пограничного слоя при ламинарном течении жидкости у поверхности пластины интенсивность теплоотдачи уменьшается. В переходной зоне общая толщина пограничного слоя продолжает возрастать, однако значение а при этом увеличивается, потому что толщина ламинарного подслоя убывает, а в образующемся турбулентном слое тепло переносится не только теплопроводностью, но и конвекцией вместе с перемещающейся массой, т. е. более интенсивно. В результате сум-.марное термическое сопротивление теплоотдачи убывает.  [c.80]


Из формулы (10.14) видно, что интенсивность теплоотдачи убывает по мере стенания конденсата из-за возрастания толщины его пленки. Среднее значение коэффициента теплоотдачи от поверхности высотой Н  [c.88]

Рис. 10.5, Изменение интенсивности теплоотдачи к горизонтальной трубе в зависимости от массовой концентрации воздуха в паре при атмосферном давлении и различных скоростях обтекания Рис. 10.5, Изменение интенсивности теплоотдачи к горизонтальной трубе в зависимости от <a href="/info/21410">массовой концентрации</a> воздуха в паре при <a href="/info/2442">атмосферном давлении</a> и различных скоростях обтекания
Как видно из примера, даже при низких температурах вклад излучения в теплообмен между поверхностью и газом может быть значительным, особенно при низкой интенсивности теплоотдачи конвекцией.  [c.97]

Интенсивность теплоотдачи от воздуха на 2- 3 порядка ниже, чем от воды, поэтому и количество теплоты, получаемой поверхностью тела человека в сауне, много меньше, чем в кипяшей воде. В сауне это количество теплоты отводится от поверхности тела за счет испарения пота, поэтому температура поверхности удерживается в допустимых пределах.  [c.212]

Для выяснения влияния размера частиц на интенсивность теплоотдачи в [Л, 361] была использована полузамкнутая схема с участками охлаждения и нагрева восходящего потока четырех фракций песка и проса. Недостаток методики — измерение температур путем непосредственного размещения термопар в потоке газовзвеси, хотя условия опытов указывают на вероятность ф1=т 1. Вызывают также сомнения данные, полученные при весьма низких скоростях пневмотранспорта (например, 6 м/сек для частиц песка размером до 1,2 мм и проса). При этом отсутствует стабильный транспорт частиц, суще-  [c.220]

Рис. 6-6. Сопоставление относительной интенсивности теплоотдачи потоков взвеси в зависимости от концентрации. Рис. 6-6. Сопоставление относительной интенсивности теплоотдачи потоков взвеси в зависимости от концентрации.
Рис. 6-9. Влияние критерия Рейнольдса на относительную интенсивность теплоотдачи газовзвеси. Рис. 6-9. Влияние <a href="/info/18260">критерия Рейнольдса</a> на относительную интенсивность теплоотдачи газовзвеси.

В первой области существования дисперсных потоков — области потоков газовзвеси — согласно теоретическим и опытным данным (гл. 6) увеличение концентрации при прочих равных условиях может вызвать значительное увеличение интенсивности теплообмена. Такой результат был объяснен улучшением теплофизических характеристик, радиальным теплопереносом и положительным влиянием твердых частиц на теплообмен в пограничном слое. Этот эффект до определенного предела перекрывает отрицательное влияние роста концентрации на пульсации газа (гл. 3) и на скорость межкомпонентного теплообмена в газовзвеси (гл. 5). Однако во в т о-рой области дисперсных потоков — области потоков флюидной взвеси— увеличение насыщенности газового потока твердыми частицами сверх Ркр не только меняет структуру потока, но и содействует постепенному сближению растущего термического сопротивления ядра потока и понижающегося термического сопротивления пристенной зоны. Наконец, при определенных значениях растущей концентрации и определенных условиях движения потока могут сформироваться условия, при которых в решающей степени скажется отрицательное влияние стесненности движения частиц на теплообмен. В этом случае рост концентрации приведет не к повышению относительной интенсивности теплоотдачи, а к ее падению— процесс уже прошел через максимум.  [c.255]

С (нагрев слоя в бункере прямым пропуском тока), относительной длине канала L/D = 31 125, D=16 мм и сл/ ст = 3,8- -16. Скорость частиц достигала 3,5 м сек. Наибольшие значения коэффициента теплоотдачи составили величину порядка 300—400 вт/М -град. Было обнаружено изменение теплообмена по высоте канала — вначале увеличение (тем большее, чем меньше средняя для всего канала истинная концентрация), а затем либо неизменность, либо некоторое падение интенсивности теплоотдачи. Подобное явление не наблюдается ни для флюидных потоков, ни для плотного слоя, и его следует объяснить неравенством истинных концентраций по высоте канала, разгоном частиц в начале и определенной стабилизацией их движения в конце канала.  [c.265]

При турбулентном течении жидкость в потоке весьма интенсивно перемешивается и естественная конвекция почти не оказывает влияния на теплоотдачу. Температура жидкости по сечению ядра практически постоянна. Большое изменение температуры наблюдается только в пограничном слое. При нагревании жидкости интенсивность теплоотдачи выше, чем при охлаждении. Эта зависимость хорошо учитывается отношением  [c.430]

На рис. 5.7 отклонение результатов от предельного варианта = = °°) на 1 % наблюдается при у = 1000. При дальнейшем уменьшении у интенсивность теплоотдачи от стенки канала снижается как на входном участке, так и в области стабилизированного теплообмена.  [c.109]

Изменение протяженности вставки практически не затрагивает значения Е/ (см. рис. 5.12). Незначительное воздействие этот размер оказывает также на локальную и среднюю интенсивность теплоотдачи (рис. 5.14). На рис. 5.14 сплошными кривыми показано изменение отношения локального числа Nu вдоль вставки длиной / к аналогичной характеристике Nu° для входного участка такой же длины / бесконечно длинной вставки. Штриховыми кривыми показано изменение отношения соответствующих средних значений Nu, Nu . Отклонение этих кривых от единицы и характеризует влияние параметра / вставки (адиабатичности ее выходной поверхности), наблюдается только в случае / < t/и тем заметнее, чем больше последнее неравенство. Причем проявляется это в замедленном (по сравнению с данными, приведенными на рис. 5.11) снижения теплообмена по мере удаления охладителя от входа в пористый элемент н поэтому наибольшее отклонение в сторону увеличения критерия Нуссельта достигается на выходе вставки при i =1 (крайняя правая точка на кривых). Нужно отметить, что для больших значений параметра Ре (Ре = 100) отмеченный эффект пропадает даже при очень малом значении длины / =0,1.  [c.115]

Формула Ньютона является формальным выражением теплового потока и не отражает в явном виде влияния всего многообразия факторов на интенсивность теплоотдачи все эти факторы должны учитываться коэффициентом теплоотдачи.  [c.249]

Вынужденное движение теплоносителя всегда сопровождается свободным, но его влияние на интенсивность теплоотдачи обнаруживается только при небольших скоростях вынужденного движения.  [c.307]


Интенсивность теплоотдачи зависит также от физических свойств теплоносителя.  [c.307]

Теплоемкость жидкости влияет на интенсивность конвективного переноса теплоты. При одинаковых условиях перемешивания жидкость с большей теплоемкостью переносит больше теплоты, поэтому интенсивность теплоотдачи также возрастает.  [c.308]

Важную роль в процессе теплоотдачи играет форма обтекаемой поверхности. Так, при внешнем обтекании форма продольного сечения тела в значительной мере определяет условия формирования пограничного слоя. Удобообтекаемые тела имеют значительную поверхность, покрытую ламинарным пограничным слоем, и, следовательно, неблагоприятные условия для теплообмена. Плавный вход в канал способствует увеличению длины участка с ламинарным пограничным слоем и уменьшению интенсивности теплоотдачи на начальном участке.  [c.308]

Количественные соотношения для расчета теплоотдачи можно получить с помощью идеи О. Рейнольдса о единстве механизмов переноса теплоты и количества движения в потоке жидкости. Единство материальных частиц, участвующих в переносе количества движения и теплоты, приводит к подобию полей скорости и температуры в неизотермическом потоке, взаимодействующем со стенкой. Существование такого подобия будет доказано в 5 настоящей главы на основе анализа уравнений движения и энергии, определяющих распределение скоростей и температур в системе. Подобие этих полей позволяет установить связь между характеристиками интенсивности теплоотдачи и трения на поверхности стенки.  [c.310]

При изучении теплоотдачи число Нуссельта в уравнении подобия всегда является искомым, так как в него входит общая характеристика интенсивности теплоотдачи — коэффициент теплоотдачи а.  [c.313]

Используем подобие скоростных и температурных полей для получения количественной связи между интенсивностью теплоотдачи и трением.  [c.317]

Опытное исследование теплоотдачи жидких металлов показало, что интенсивность теплообмена зависит от загрязненности металла окислами и от смачиваемости омываемой поверхности. Для чистых расплавленных металлов (без окислов) смачиваемость поверхности незначительно влияет на интенсивность теплоотдачи. При наличии окислов теплоотдача несмачиваемой поверхности протекает менее интенсивно, чем смачиваемой. Это обусловлено, по-видимому, тем, что окислы легче осаждаются на несмачиваемой поверхности и создают дополнительное тепловое сопротивление.  [c.341]

В настоящей главе рассматриваются процессы, в которых инерционные и гравитационные массовые силы оказывают существенное влияние на интенсивность теплоотдачи.  [c.342]

Массовые силы влияют на распределение скоростей жидкости в потоке, от которого зависит интенсивность теплоотдачи. Поэтому дополнительное условие подобия таких потоков можно получить из анализа дифференциального уравнения движения.  [c.344]

Количественные соотношения, характеризующие теплообмен в трубах с ленточными завихрителями, получены на основе обобщения экспериментальных данных. Интенсификация теплообмена в закрученном потоке осуществляется не только за счет массовых сил, но и вследствие эффекта оребрения внутренней поверхности трубы скрученной лентой. Методика оценки этого э4)фекта рассмотрена в 1261. Однако этот эффект проявляется только при достаточно плотной посадке ленты в трубе и в большинстве случаев не оказывает существенного влияния на интенсивность теплоотдачи. В опытных исследованиях, на основе которых получены уравнения подобия, эффект оребрения не выделялся и косвенным путем учтен в коэффициенте теплоотдачи.  [c.353]

Средний коэффициент теплоотдачи, подсчитанный по формуле (8.42), характеризует интенсивность теплоотдачи только около той части диска, где пограничный слой имеет турбулентный характер. Теплоотдача около поверхности с ламинарным пограничным слоем рассчитывается отдельно по формуле (8.41).  [c.359]

Из предыдущей главы известно, что диссоциация газа приводит к увеличению интенсивности теплоотдачи. Ионизация также улучшает способность газа передавать теплоту.  [c.380]

Крайние (граничные) по концентрации формы существования дисперсных потоков — потоки газовзвеси и движущийся плотный слой. Истинная концентрация здесь меняется от величин, близких к нулю (запыленные газы), до тысяч кг/кг (гравитационный слой). Будем полагать, что простое увеличение концентрации вызывает не только количественное изменение основных характеристик потока (плотности, скорости, коэффициента теплоотдачи и др.), но — при определенных критических условиях— и качественные изменения структуры потока, механизма движения и теплопереноса. Эти представления оналичии режимных точек, аналогичных известным критическим числам Рейнольдса в однородных потоках, выдвигаются в качестве рабочей гипотезы [Л. 99], которая в определенной мере уже подтверждена экспериментально (гл. 5-9). Так, например, обнаружено, что с увеличением концентрации возникают качественные изменения в теплопереносе и что может происходить переход не только потока газовзвеси в движущийся плотный слой, но и гравитационного слоя в несвязанное состояние — неплотный слой, т. е. осаждающуюся газовзвесь. Это изменение режима гравитационного движения, связанное с падением концентрации, зачастую сопровождается резким изменением интенсивности теплоотдачи. Обнаружено существование критического числа Фруда (гл. 9), ограничивающего область движения плотного гравитационного слоя и определяющего критическую скорость, при которой достигается максимальная теплоотдача слоя.  [c.22]

Данные [Л. 376] указывают на весьма высокие значения коэффициентов теплоотдачи (для азотно-графитовой суспензии Оп = = 8 500 вт1м -град, а для гелий-графитовой суспензии On = = 1 700 вт1м град). Отмечается восьмикратное увеличение интенсивности теплоотдачи по сравнению с чистым газом, а количества передаваемого тепла — в 18 раз. Дальнейшее развитие исследований теплоотдачи газовых суспензий нашло отражение в [Л, 224, 225, 362]. В [Л. 362] средние коэффициенты теплообмена не цолучены, для конца обогреваемого участка (L/ ) = 40)  [c.222]


На рис. 6-8 представлена зависимость Оп от скорости [Л. 18, 83]. Согласно рис. 6-9 относительная интенсивность теплоотдачи газовзвеси с увеличением Re падает, кхал/м v-град ЧТО соответствует дан-  [c.226]

Сравнивая (7-10) и (6-73), заметим, что применение турбулиза-торов по данным [Л. 380] дает увеличение относительной интенсивности теплоотдачи в (l-t-Z)" раз. Данные [Л. 18. 19] о каналах  [c.236]

Рис. 8-7. Характер за-Еисимосги интенсивности теплоотдачи кипящего слоя от скорости фильтрации по данным [Л. 220]. Рис. 8-7. Характер за-Еисимосги интенсивности теплоотдачи кипящего слоя от <a href="/info/26268">скорости фильтрации</a> по данным [Л. 220].
Изложенные представления были разработаны автором в 1962 г., когда данные о теплообмене при ц.>40 отсутствовали и когда понадобилось прогнозирование дальнейшего хода процесса. Эти представления о модели процесса (наличие качественных изменений на границе потоков газовзвеси и флюидных газодисперсных потоков, сказывающихся в изменении темпа влияния концентрации на теплообмен перераспределение влияния термических сопротивлений ядра потока и пристенного слоя на результирующий теплопере-нос наличие оптимальной концентрации, соответствующей максимальной интенсивности теплоотдачи, и падение теплоотдачи при превышении оптимальной концентрации) к настоящему времени, находят подтверждение.  [c.257]

Отсюда видно, что интенсивность теплоотдачи примерно на 30% ниже, чем в неподвижном слое, но значительно выше, чем в противоточно продуваемом слое. Такой результат объясним достаточно равномерным движением слоя и лучшим газораспределением. Для изучения газораспределения в слое были установлены термисторы марки ММТ-1. Согласно рис. 10-3 наибольшее количество воздуха проходит в пристенной области, что соответствует амакс- По мере удаления от стенок к центру плотность частиц увеличивается и достигает максимума в центре. Следствием этого является обратная картина распределения воздуха в ядре слоя. Из рис. 10-3 следует, что фактор движения слоя практически не оказывал влияния на распределение газа в слое. Величим неравномерности, определяемая отношением Омакс/а, сравнительно мала и в среднем равна 1,2. Этот важный результат оказался практически неизменным при увеличении Кесл от 70 до 650.  [c.326]

Для проверки положений, высказанных в 10-5, вначале были проведены опыты на лабораторном стенде при движении слоя песка в медной трубке диаметром 20/24 мм и длиной 1 730 мм [Л. 77]. Согласно рис. 10-8 обнаружено заметное влияние а теплообмен размера частиц и стесненности их движения, не учитываемое теорией стержнеподобного движения. Так, интенсивность теплоотдачи оказалась наименьшей при наибольшей стесненности движения частиц (dx = 2,08 мм Djdt = = 9,6). Установлено, что влияние скорости слоя на теплоотдачу не является монотонным, как это следует из теории стержнеподобного движения. Подтверждается  [c.335]

Рост пузырьков до отрыва от обогреваемой поверхности и движение их после отрыва вызывают интенсивную циркуляцию и перемешивание жидкости в пограничном слое, вследствие чего резко возрастает интенсивность теплоотдачи от поверхности к жидкости. Такой режим называется пузырьковым кипением. При пузырьковом кипении вся теплота от пбверхности нагрева передается пограничному слою жидкости, так как площадь соприкосновения ножек пузырьков пара с поверхностью весьма незначительна.  [c.450]

Влияние теплообмена на входной поверхности отчетливо проявляются при сравнении результатов для длинных вставок без учета (см. рис. 5.4) и с учетом (рис. 5.11) теплообмена на входе. Увеличение передачи теплоты в набегающий поток по мере уменьшения параметра Ре (данные на рис. 3.7) приводит к снижению интенсивности теплоотдачи на начальном участке тепловой стабилизации. При высоких значениях Ре (Ре > 100), когда осевым переносом теплоты теплопроводностью вдоль матрицы (в том числе и через ее входную поверхность) можно пренебречь, вид граничных условий на входной поверхности не оказьшает существенного влияния.  [c.114]

Сравнивая решения уравнений (5-9) и (5-11), можно оценить влияние теплового сопротивления покрытия на интенсивность теплоотдачи. В работе [74] предложено ввести величину т — эффективность пластины , посредством которой легко можно вычислить интенсивность, теплоотдачи с поверхности. Эту величину определяют, как отношение фактически излучаемого тепла дазя к теплу qa, которое должно было бы излучаться, если бы вся излучающая поверхность имела температуру основания пластины Д., т. е  [c.114]

Плотность теплоносителя также влияет на условия формирования пограничного слоя. Уменьшение плотности газа (например, воздуха с увеличением высоты полета) ведет к увеличению кинематического коэффициента вязкости, благодаря чему увеличивается толш,ина пограничного слоя. Поэтому уменьшение плотности газа ведет к уменьшению интенсивности теплоотдачи.  [c.308]

Поток вещества при концентрационной диффузии определяется градиентом концентрации и коэффициентом диффузии. Поэтому ко-зффиц ент диффузии будет дополь ительным с )изичееким параметром теплоносителя, влияющим па интенсивность теплоотдачи.  [c.360]


Смотреть страницы где упоминается термин Интенсивность теплоотдачи : [c.90]    [c.113]    [c.218]    [c.220]    [c.241]    [c.304]    [c.237]    [c.307]    [c.379]   
Теплотехника (1986) -- [ c.82 , c.99 ]



ПОИСК



Температурный режим парогенерирующих труб и интенсивность теплоотдачи при ухудшенных режимах

Теплоотдача



© 2025 Mash-xxl.info Реклама на сайте