Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Температурный цикл

Обычно механические характеристики металла в области высоких температур, достигающих температуры плавления, определяют на специальных установках, включающих в себя нагревательное устройство, имитирующее температурный цикл сварки, и механическую часть и оснащенных регистрирующими приборами. Подлежащий испытанию образец нагревают до температуры, при которой необходимо определить его свойства, и нагружают, записывая кривые П=[(Р).  [c.474]


Другим базовым испытанием свойств материалов при неизотермическом длительном малоцикловом нагружении оказывается испытание с целью определения располагаемой пластичности материала. Такие данные могут быть получены при монотонном статическом растяжении образца с варьируемой в широких пределах скоростью деформирования в условиях заданного температурного цикла (рис. 1.3.1, д).  [c.45]

Определение доли длительного статического повреждения осуществлено по результатам испытаний, выполненных с целью получения значений располагаемой пластичности материала при монотонном статическом растяжении образца с варьируемой в широких пределах скоростью деформирования в условиях заданного температурного цикла 200 860° С длительностью 5,5 мин. На  [c.52]

Для обеспечения регулирования температурного цикла образца по заданным программам с получением достаточных скоростей процесса требуется использование способов, отличающихся малой тепловой инерцией. Одним из таких способов является нагрев образца пропусканием тока и некоторые другие (например, индукционный нагрев), в которых основной запас тепла определяется образцом. Лимитируют минимальные длительности температурного цикла, достигаемые в испытаниях скорости охлаждения образца, которые оказываются значительно меньшими по сравнению с максимальными скоростями нагрева, составляющими величины порядка 1000° С/мин и более.  [c.253]

Для обеспечения регулирования температурного цикла образца по заданным программам с получением достаточных скоростей процесса требуется использование способов, отличающихся малой тепловой инерцией. Такие условия обеспечиваются при нагреве пропусканием тока и охлаждением за счет теплоотвода через охлаждаемые водой шины, крепящиеся на образце.  [c.261]

Дульнев Р. А. Сопротивление жаропрочных сплавов термической усталости в связи с формой температурного цикла. — В кн. Прочность при малом числе циклов нагружения. М. Наука, 1969.  [c.281]

Циклические термические напряжения в деталях машин обычно действуют в каждом цикле в течение некоторого времени. Длительность температурных циклов различная от десятков секунд до сотен часов.  [c.68]

Возможность распространения ста-гической теоремы. на случай температурных циклов приблизительно в то же время отмечалась В. И. Розенблюмом [143], которым позднее было предложено также соответствующее обобщение кинематической теоремы [145].  [c.10]

При использовании в доказательстве статической теоремы-непосредственно представления о кинематически возможном распределении суммарных остаточных деформаций и их скоростей (2.17) нас не интересует происхождение действительных напряжений. Последние в равной степени могут быть вызваны внешними (механическими) нагрузками или температурным полем, либо тем и другим одновременно. Таким образом, обобщение теоремы на случай температурных циклов, предложенное-Прагером [126], становится вполне очевидным и не требует отдельного доказательства.  [c.60]


Условия, аналогичные выражению (3.31), могут быть получены также для частных (фиксированных) программ изменения температуры и давления. Например, при температурных циклах, действующих при постоянном внутреннем давлении в шаре, предельное условие имеет вид  [c.99]

SO. ОБОБЩЕНИЕ КИНЕМАТИЧЕСКОЙ ТЕОРЕМЫ НА СЛУЧАИ ТЕМПЕРАТУРНЫХ ЦИКЛОВ  [c.115]

ЖИМОВ длительного нагружения (циклически изменяющаяся и постоянная температура) на пластичность мало (разброс светлых и зачерненных точек относительно кривых на рис. 2.3). Однако в общем случае характер изменения деформационной способности конструкционных материалов зависит от режима термомеханического нагружения, формы температурного цикла и структуры сплава.  [c.30]

Второй цикл- упругопластического деформирования во втором расчетном температурном цикле аналогичен рассмотренному. Важно подчеркнуть, что существует сдвиг по фазе между температурным циклом и циклом температурных напряжений. При этом активные процессы упругопластического деформирования происходят в сравнительно узком диапазоне умеренных температур 390. .. 470 °С и 420. .. 520 °С для цилиндрических оболочечных корпусов соответственно типов I и П, разгрузочные процессы циклического упругопластического деформирования происходят при высоких температурах с выдержками (610 и 670°С) и при низких температурах (170 и 220 °С).  [c.204]

Таким образом, на основании деформационной теории пластичности, а также представлений об обобщенной диаграмме циклического деформирования для расчетного температурного цикла (см. рис. 4.37) принимаем следующую модель процесса неизотермического упруго-пластического деформирования.  [c.207]

Как это показано в последующих главах, посвященных оптически чувствительным материалам и методам решения пространственных задач, постоянное двойное лучепреломление можно создавать и в некоторых двухфазных изотропных материалах, если их подвергнуть под нагрузкой действию температурного цикла. При проведении измерений поляризационно-оптическим методом такие материалы можно рассматривать как кристаллы (см. фиг. 2.7)..  [c.61]

Метод полимеризации позволяет зафиксировать оптическую картину в модели на центрифуге легче, чем другие методы. Для этого не нужно выдерживать какой-то температурный цикл, и используемый материал обладает высокой оптической чувствительностью. На фиг. 10.16 в качестве примера приведена зафиксированная картина полос диска под действием собственного веса.  [c.291]

Стабилизация материалов происходит наиболее эффективно при одновременном действии температурных циклов и механических напряжений. Все же полностью устранить структурные изменения в материалах не удается.  [c.135]

Изделия подвергаются воздействию непрерывно следующих друг за другом температурных циклов. Количество циклов указывается в ТУ или программе испытаний.  [c.472]

При различных технологических операциях различны и причины, приводящие к неоднородным объемным деформациям, т. е. причины, вызывающие появление остаточных напряжений. В сварочном процессе, например, такими причинами являются температурный цикл сварки, структурные превращения в металле шва и в зонах термического влияния и изменение растворимости газов, окружающих сварной шов. Литейные остаточные напряжения возникают как следствие неравномерного (по объему детали) остывания отливок. При обработке давлением источником возникновения остаточных напряжений может быть неравномерная пластическая деформация.  [c.210]

В задачу технологических мероприятий по уменьшению остаточных напряжений входит правильное и наиболее рациональное проведение температурного цикла при различного рода термических обработках, последовательность проведения операций по обработке деталей, правильный подбор свойств материалов и др. Правда, эффективность того или иного из этих мероприятий в значительной степени зависит от конструктивного оформления изделия и других факторов. Однако в той или иной степени все эти мероприятия способствуют борьбе с возникновением неблагоприятных остаточных напряжений.  [c.223]

Подобрать термометр, стабильность которого существенно выше 1 мК при 20 К, оказывается довольно сложным делом. Только 18 из 60 исследованных термометров показали среднеквадратичное отклонение менее 0,25 мК. Однако в процессе испытаний очень немногие термометры изменяли свои характеристики. Если не считать первых десяти температурных циклов, те термометры, которые показали высокую стабильность, неизменно оказывались стабильными те же, у которых наблюдался дрейф или иные типы нестабильностей, продолжали вести себя аналогичным образом. Было обнаружено, однако, что время от времени градуировка термометра, который на протяжении ряда температурных циклов вел себя стабильно, скачкообразно менялась (рис. 5.37). Скачок сильнее сказывается при более высоких температурах, когда сопротивление термометра меньше. Именно этот эффект, отсутствующий у железородиевых термометров, затрудняет использование германиевого термометра для воспроизведения температурной шкалы в области низких температур.  [c.240]


В процессе выголиения этой работы были решены две важные технологические задачи. Первая из них — получение эпоксидного боропластика толш иной —40 мм. Боропластики такой толщины никогда прежде не изготовлялись кроме того, получение обшивок дополнительно усложнялось введением металлических прокладок. В ходе предпроизводственных испытаний установлено, что при использовании стандартного режима отверждения, разработанного к тому времени, процесс формования материала сопровождался значительным его перегревом вследствие экзотермического характера протекающих реакций. Был разработан ступенчатый температурный цикл отверждения с определенным временем выдержки при каждой температуре, который обеспечил решение проблемы перегрева. В конечном итоге было обеспечено хорошее качество изготовления верхней и нижней обшивок в производственных условиях. Вторая задача — разработка процесса сверления отверстий в комбинированном пакете эпоксидный боро-пластик — титановые прокладки. Корончатые сверла с алмазными вставками забивались титаном и становились неэффективными. Тем не менее высокое качество получаемых отверстий было достигнуто путем тщательного подбора оборотов и скоростей подач и при сверлении и использованием принудительного охлаждения струей нiидкo ти.  [c.142]

Трещины от термоциклических нагрузок имеют как межзе-ренный, так и внутризеренный характер. Такое различие может быть даже при нагружении тела только повторными термоциклами. В данном случае характер разрушения определяется в первую очередь уровнем температур, суммарным временем выдержки при высокой температуре, а также структурой материала. Так, наблюдалось изменение характера разрушения при термоциклическом нагружении плоских образцов из сплава ХН70Ю при переходе от металла открытой выплавки к металлу, подвергнутому электрошлаковому переплаву, и при изменении температурного цикла. В открытом металле при циклировании 1000 ч 200°С трещины целиком проходили по границам зерен, при циклировании 800 200°С частично по границам, частично по телу зерен в электрошлаковом металле при обоих режимах испытания трещины распространялись преимущественно по телу зерен. В последнем случае наблюдалось повышение стойкости образцов.  [c.163]

В общем случае при неизотермическом нагружении диапазон изменения температур может охватывать температуры, для которых зависимость располагаемой пластичности от времени оказывается выраженной, причем интенсивность процесса при максимальных и минимальных уровнях температуры может быть существенно различной. В связи с этим в условиях неизотермично-сти величина располагаемой пластичности становится зависящей от формы температурного цикла.  [c.44]

Для обоснования возможности использования деформационнокинетического критерия прочности и обобщенной диаграммы циклического деформирования в условиях неизотермического нагружения необходимо выполнение широкой программы экспериментальных исследований, причем получение характеристик критериальных уравнений, отражающих особенности неизотермических процессов, должно осуществляться из системы базовых экспериментов. К таким экспериментам относятся прежде всего мягкое и жесткое нагружения, сопровождающиеся синфазным и противофазным нагревом — охлаждением, а также монотонное статическое растяжение образца с варьируемой в широких пределах скоростью деформирования в условиях заданного температурного цикла.  [c.261]

Важнейшей особенностью работы конструктивных элементов является циклический характер температурного поля, определяемый режимом работы изделия. Например, за двухчасовой полетный цикл транспортного газотурбинного двигателя (ГТД) температура выходной кромки лопатки существенно изменяется, при этом довольно значительно меняются и скорости нагрева при выходе на полетный режим [25]. Значительная неравномерность температурного поля свойственна охлаждаемым рабочим лапатка(М газовой турбины [71]. Менее опасные сочетания температур t и напряжений а реализуются в турбинном диске [71], однако для них свойственны высокие уровни температур и значительные градиенты. Из приведенных данных видно, что для температурного цикла нагрева элемента характерно чередование нестационарных и стационарных участков, причем последние занимают значительное время цикла. Высокие уровни температур, циклический характер температурного воздействия, чередование нестационарных и стационарных режимов создают е материале особые условия работы высокую термомеханическую напряженность, больщие уровни термических напряжений. Все это обусловливает в большинстве случаев работу материала конструктивного элемента за пределами упругости в наиболее напряженных точках наблюдается процесс циклического упругопластического деформирования, приводяший материал к разрушению за ограниченное число циклов (Ю —10 ).  [c.8]

Такие же результаты, свидетельствующие об изменении характера развития трещин с повышением максимальной температуры при термоциклическом нагружении, получены и для других сплавов — ХН77ТЮР, ХН62ВМКЮ и др. Однако необходимо отметить, что температура — лишь один из трех основных факторов, определяющих как долговечность, так и характер разрушения при термоусталости. Наряду с tmax большое значение имеют нагрузка (амплитуда или размах деформаций) и длительность температурного цикла. Отмеченное выше влияние max относится К случзю, когда ЭТИ два фактора (для каждого рассмотренного материала) оставались неизменными, причем длительность цикла была наименьшей из исследованных (тв —О, пилообразный никл), а размах деформаций — наибольший. Как будет показано ниже, вариация этих двух параметров может изменять характер разрушения, как и максимальная температура цикла.  [c.54]

С переменным модулем вследствие изменения температуры. Процессы упрочнения и разупрочнения происходят с различной интемсивностью в верхней и нижней точках температурного цикла, вследствие чего наблюдается сдвиг петли гистерезиса ио оси напряжения и изменяется коэффициент асимметрии нагружения по числу циклов. Размах напряжений Ла может существенно изменяться по числу циклов ири этом в отличие от изотермического малоциклового нагружения ироцессы. циклического упрочнения и разупрочнения могут чередоваться.  [c.55]


Размах деформаций, создаваемых в испытуемом образце (или во Зникающих в детали, например в кромке лопатки турбины), определяется жесткостью нагружения, величиной М = тах т]П И физическими свойствами материала (а, Е). При этом в одинаковых условиях нагружения (по жесткости, температурному циклу) величина размахов деформации может существенно различаться. Примером могут служить результаты иопы-тания трех сплавов (рис. 36), из которых изготовляют детал,п камер сгорания. Сплавы ХН60ВТ и ХН50ВМТЮБ одного класса некоторое преимущество последнего сплава объясняется его более высокими характеристиками при нижней температуре цикла (табл. 5). По расположению кривой термической уста-  [c.61]

В настоящее время температурная усталость исследуется в упрощенной постановке без учета указанных факторов. То обстоятельство, что образование пластических деформаций аа температурный цикл происходит не в микро, а в макрообъемах, позволяет подойти к этому вопросу с позиций схемы сплошной среды. Принимается следующая предпосылка если после нескольких температурных циклов устанавливается циклический режим чисто упругих деформаций, то температурного усталостного разрушения при малом числе циклов не возникнет. Если же в условиях установившегося цикла регулярно образуются пластические деформации, то это значит, что после некоторого числа циклов наступит разрушение.  [c.72]

Задача, следователь , сводится к уравнению (4.18), в котором на этот раз Xi, pi — максимальные значения объемных и поверхностных сил, а напряжения о, определяются объемлющей эпюрой тепловых напряжений соответственно условию [(4.16). Уравнение (4.18) в этом случае иллюстрирует снижение несущей апособности конструкции в связи с воздействием температурных циклов. Как будет показано в следующих главах, это снижение для реальных конструкций типа турбинных дисков, пластин и оболочек часто оказывается существенным.  [c.117]

Путем сопоставления рабочего цикла, определяемого координатами рабочей точки (Р. Т), с некоторым предельным циклом могут быть определены запасы прочности турбинного диска по отношению к двум опасным состояниям (знакопеременное течение, приводящее к термоусталости, и прогрессирующее нарастание деформации, результатом которого может быть нарушение работоспособности конструкции или разрушение статического типа). Аналогия между диаграммой приспособляемости (рис. 71) и известной диаграммой предельных амплитуд напряжений (эта аналогия будет наиболее полной, если линию, определяющую условия знакопеременного течения, построить для температурных циклов при со = onst) позволяет использовать некоторые соображения и методы, принятые в расчетах на выносливость [120, 151, 158].  [c.157]

Таким образом, для опасной точки А (см. рис. 4.3, б), расположенной, как показывает расчет с помощью МКЭ, на внутренней поверхности сферического оболочечного корпуса, схематизированный цикл температуры (см. рис. 4.38) учитывает особенности реального цикла температуры (см. рис. 4.8) повторяемость основных режимов Во -и этапов нагрева 0-1-2а5-6, время вьщержки 20 с в режиме Вг (800 С). Расчетный температурный цикл представляет собой сочетание двух термоциклов (см. рис. 4.38) одного с вьщержками п )и 800 и 900 °С и другого без выдержек. Отсутствие вьщержки при 800 С во втором полуцикле определяется малыми скоростями нагрева, при которых распределение температур в характерном сечении более плавное, чем в режиме Вз, и температурные напряжения на этом этапе не вызывают временньк эффектов.  [c.203]

Расчетная схема процесса цшШпёсШго дёформпровшшя ла в максимально нагруженных зонах. Анализ НДС оболочечных корпусов при основных режимах термоциклического нагр> ения (см. подразд. 4.1) позволяет выявить зоны концентрации температурных напряжений и краевого эффекта в сечениях переходного от фланца к оболочке участка (в месте их стыка и в сечениях сварного шва). При этом уровень термоупругих напряжений в некоторых температурных циклах превышает предел текучести материала, и нагружение протекает при значительных даклических упругопластических деформациях.  [c.203]

Измерять напряжения в модели в процессе ее нагружения на враш,аюп1,ейся центрифуге довольно сложно. Непосредственное визуальное наблюдение картины полос и изоклин возможно при применении плоских моделей, просвечиваемых в полярископе стробоскопического типа. Обычная методика замораживания сопряжена с некоторыми затруднениями, так как в этом случае необходимо осуш ествлять регулируемый температурный цикл. Если центрифугу целиком поместить в печь, то размеры печи оказываются очень большими, поскольку для имитации равномерного гравитационного поля в модели размером 150 мм необходима центрифуга диаметром 3 м. Если печи устанавливаются на центрифуге, то ее вес заметно усиливает напряжения в ступице центрифуги. Кроме того, нагревательные элементы печи и контрольные приборы приходится питать через контактные кольца. Наконец, центрифуга должна работать длительное время ). Использование метода ползучести для фиксирования картины напряжений неудобно, так как для получения оптического  [c.290]

Если при нагреве какого-либо элемента температура по его сечению распределяется равномерно или по линейному закону, то нагрев и остывание не вызовут в нем ни временных напряжений в процессе нагрева, ни остаточных напряжений после полного остывания. Если распределение температуры по сечению элемента неравномерно, то вследствие жесткости э.чемента в процессе нагрева в нем будут возникать временные напряжения. Если эти временные напряжения не превзойдут предела текучести материала (при данном виде напряженного состояния и при данной температуре), то к моменту полного остывания температурные напряжения исчезнут, и остаточные напряжения не возникнут. Если же в процессе нагрева или остывания временные температурные напряжения в какой-либо части сечения элемента достигнут предела текучести и появятся пластические деформации, то пос.че полного остывания в элементе будут существовать остаточные напряжения. Таким образом, остаточные напряжения в металле, образовавшиеся в результате температурных деформаций, равны по величине и обратны по знаку напряжениям, исчезнувшим в процессе температурного цикла вследствие протекавших в металле пластических деформаций.  [c.210]


Смотреть страницы где упоминается термин Температурный цикл : [c.499]    [c.217]    [c.42]    [c.56]    [c.81]    [c.99]    [c.116]    [c.24]    [c.202]    [c.203]    [c.204]    [c.250]    [c.295]    [c.209]   
Смотреть главы в:

Теория высокотемпературной прочности материалов  -> Температурный цикл



ПОИСК



Введение абсолютной температурной шкалы и понятие об энтропии без помощи цикла Карно

Влияние способа охлаждения на температурный градиент при рабочем цикле

Вывод к. п. д. цикла Карно и абсолютной температурной шкалы без использования свойств идеального газа

Долговечность — Зависимость от длительности температурного цикл

Обобщение кинематической теоремы на случай температурных циклов

Термический КГЩ цикла Карно. Понятие о термодинамической температурной шкале

Учет температурной зависимости теплоемкости и изменения состава рабочего вещества в газовых циклах

Характеристические температуры, температурные интервалы и температурно-временной цикл пайки

Цикл изотермический температурный 76—78 — Длительность 78. — Сопротивление термоусталости



© 2025 Mash-xxl.info Реклама на сайте