Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Усталость Определение характеристик

Цель исследования деформационных и энергетических критериев, как и любых других критериев усталостного разрушения,— разработка методов оценки усталостного повреждения металлов с учетом напряжений, числа циклов нагружения, вида напряженного состояния, конструктивно-технологических и эксплуатационных факторов и на их основе разработка расчетных и ускоренных методов определения характеристик усталости металлов.  [c.47]


Для определения характеристик сопротивления усталости предложено большое количество различных методов испытания, в том числе ускоренных, однако отсутствует надлежаш ая оценка их трудоемкости и точности. Основные методы испытаний на усталость по характеру нагружения могут быть разделены на две группы а) испытания с постоянной по величине амплитудой действуюш,их напряжений б) ускоренные испытания с монотонно или ступенчато возрастаюш ей амплитудой напряжений.  [c.61]

В работе [2J предлагается производить оценку точности определения характеристик сопротивления усталости различными методами с помощью проведения многократных выборок различного объема, из результатов испытаний большого числа образцов и статистической оценки получаемых при этом параметров распределения характеристик сопротивления усталости. Такой подход имеет ограниченные возможности статистического моделирования из-за трудностей получения в большом объеме исходных экспериментальных данных по усталости.  [c.61]

Ввиду большого разнообразия конструкций и задач современной техники и в связи с важной ролью сопротивления усталости в вопросах обеспечения надежности и долговечности машин и приборов необходимы наряду с работами по изучению усталости на обычных частотах циклического нагружения аналогичные исследования, проводимые на частотах, лежаш их в верхнем участке звукового диапазона и в начале диапазона ультразвуков. Конкретные побудительные мотивы для работ в рассматриваемой области, т. е. для определения характеристик усталости и изучения процесса усталостного разрушения на высоких частотах нагружения, укладываются в следующие три направления  [c.330]

Вследствие сложного характера временной зависимости сопротивления усталости от частоты циклического нагружения возникают трудности при разработке (на основе высокочастотного нагружения) ускоренных способов определения характеристик усталости. Тем не менее использование методов высокочастотного деформирования, по нашему мнению,— наиболее перспективный подход в решении задач ускоренного определения характеристик усталости. Это утверждение основывается на следующем сравнении различных способов ускоренных усталостных испытаний.  [c.335]

В Институте машиноведения АН СССР разработана система экспериментальных средств для определения характеристик сопротивления деформированию и разрушению конструкционных материалов. Здесь были созданы [16] получившие широкое распространение испытательные машины и стенды с механическим, электромагнитным и электродинамическим возбуждением, применение которых способствовало развитию вероятностных методов расчетов деталей машин на усталость с распространением их на области больших долговечностей и высоких температур.  [c.130]


При проведении исследования распределение пределов выносливости предполагалось нормальным, что соответствовало литературным данным и нашло подтверждение в полученных результатах. Для возможности сопоставления результатов разработке методики ускоренных испытаний предшествовало определение характеристик рассеяния пределов выносливости известными методами испытаний с постоянной амплитудой напряжений (методами проб, экстраполяции кривых усталости и лестницы ).  [c.181]

Возможность ускоренной оценки влияния технологических факторов доказана при исследовании влияния режима термической обработки и вида чистового шлифования на характеристики рассеяния предела выносливости стали ЗОХГСА (работа проводилась совместно с Киевским политехническим институтом). Испытаниям на усталость при изгибе с вращением подвергались образцы из стали ЗОХГСА после закалки с высоким (630°С), средним (510°С) и низким (190°С) отпуском, шлифованные обычными наждачными и алмазными кругами до одинаковой степени чистоты поверхности (8-й класс). Определение характеристик рассеяния пределов выносливости, осуществленное по двум методам — экстраполяции кривых усталости и возрастающей нагрузки, показало, что среднее значение предела выносливости повышается при снижении температуры отпуска приблизительно в соотношении 1 1,3 1,6. При этом среднее квадратическое отклонение также увеличивается, а рассеяние, характеризуемое коэффициентом вариации, остается практически неизменным. Замена обычных кругов алмазными в случае шлифования до одинаковой степени чистоты, поверхности не отразилась существенно на указанных характеристиках при всех трех режимах термообработки. Достигнутая экономия времени (1,3-10 циклов при возрастающей нагрузке, вместо 4,7-10 при постоянной амплитуде напряжений) и образцов (90 шт. вместо 500 шт.) свидетельствует  [c.188]

Принимая во внимание, что в большинстве известных подобных испытаний различные исследователи в основном придерживались общих положений, то можно получить достаточно общую и стабильную основу не только для определения характеристик сопротивления материалов термической усталости, но также и для сопоставления результатов различных испытаний. Однако необходимо учитывать, что в разных исследованиях выбирали различные фиксированные и варьируемые параметры термодеформационного цикла.  [c.67]

Рассмотренная модификация метода Про [28] позволяет производить оценку характеристик рассеяния усталостных свойств как по окончательному разрушению, так и по образованию макротрещины усталости определенного размера.  [c.197]

Особенности исследования демпфирующих свойств материала по методу динамической петли гистерезиса. Определение характеристик демпфирующих свойств материала по методу динамической петли гистерезиса с использованием зависимостей (11.8.29) и (11.8.30) может быть осуществлено на какой-либо установке (машине) для испытаний на усталость при циклическом растяжении-сжатии и при наличии в силовой цепи нагружения образца упругого динамометра.  [c.324]

Экспериментальное определение характеристик сопротивления усталости  [c.23]

Для определения характеристик сопротивления усталости лабораторных образцов или деталей из данного материала проводят их усталостные испытания. Основные понятия, определения и методика усталостных испытаний регламентированы ГОСТ 2860—65.  [c.23]

Физическим пределом усталости ffi называют максимальное напряжение цикла с определенной характеристикой асимметрии, при котором металл выдерживает бесконечное число циклов N.  [c.50]

Специализируется в области комплексного изучения физико-механических свойств материалов для нефтехимической аппаратуры, исследования их сопротивления хрупкому разрушению, определению характеристик их малоцикловой усталости, длительной прочности и ползучести, оценки влияния длительной эксплуатации в коррозионноактивных технологических средах на динамику изменения характеристик материалов в зависимости от их срока службы. При его участии были разработаны нормативные документы по применению сталей в конструкциях сосудов и трубопроводов высокого давления.  [c.444]


Для определения характеристик усталости деталей необходимо знать, как эти характеристики зависят от размера детали d, от уровня концентрации напряжений и от свойств металла при заданной вероятности разрушения.  [c.258]

Кратном повторении. Простейшее представление о причине этого можно составить, если учесть, что напряжение вводилось как результат осреднения внутренних усилий, распределенных неравномерно и беспорядочно между различными микрообъемами. При построении критериев прочности при статических однократных нагрузках по данным опытов эта микронеоднородность учитывается фактическим поведением материала при испытаниях. Но данные этих опытов и построенные по ним критерии прочности нельзя автоматически переносить на случаи повторяющихся нагрузок. Действительно, даже в случае деформирования тела в пределах упругости, когда повторное воспроизведение нагрузок приводит к повторяющейся картине напряженного и деформированного состояний, как статистически определенных характеристик, в малых областях тела, особенно при наличии дефектов внутри или на граничной поверхности тела (трещины, надрезы, инородные включения и т. п.), могут возникать локальные пластические деформации или микроразрушения, так что в этих областях локальное напряженное и деформированное состояние при повторном воспроизведении нагрузки будет уже другим. Накопление этих видоизменений в малых областях при повторении нагрузок может привести к развитию трещины разрушения. Отсюда ясна возможность так называемой усталости материала при периодических нагрузках.  [c.289]

Усталостные характеристики оказываются очень чувствительными к условиям проведения испытаний. Помимо таких условий, как химический состав, микроструктура, температура, термообработка, которые существенно влияют и на данные статических испытаний, серьезное влияние оказывают чистота механической обработки поверхности, форма образца, его размеры, характер испытаний и т. п. Например, предел текучести, определенный для одного и того же материала из опытов на растяжение цилиндрического образца и из опытов на изгиб бруса, на образцах с полированной поверхностью и на образцах, обработанных резцом на токарном станке, будет, по суш еству, одним и тем же. Пределы же усталости, определенные из опытов на растяжение— сжатие и из опытов на изгиб, иногда очень сильно, отличаются, причем разница достигает 40 — 50% (по отношению к меньшей из величин). Несопоставимые данные об усталостных характеристиках получаются из испытаний двух образцов при прочих равных условиях, один из которых хорошо отшлифован, а другой грубо обработан на токарном станке. Небезразличным также оказывается, ведутся ли испытания на знакопеременный симметричный изгиб в одной и той же физической плоскости цилиндрического образца или путем вращения вокруг криволинейной оси изогнутого образца, как это делается в ряде испытательных машин на усталость, когда все диаметральные сечения образца проходят одну и ту же историю напряжений. В справочниках данные об усталости обычно приводятся для трех видов типовых испытаний на изгиб, на одноосное растяжение—сжатие и на кручение (соответствующие пределы усталости обозначаются  [c.307]

Вывод формул для определения характеристик надежности изделия при функции усталости произвольного и экспоненциального  [c.71]

В этом понимании предел усталости далеко отходит от первоначального понятия как характеристики материала, хотя предел усталости, определенный на стандартных образцах, по-прежнему приводят в числе основных прочностных свойств материала.  [c.277]

Методы определения характеристик выносливости при многоцикловой и малоцикловой усталости регламентируются в ГОСТ 25.502—79. Малоцикловая усталость характеризуется базой испытаний Л <5-10 циклов и пониженной частотой нагружения f = 0J- 5 Гц, а многоцикловая усталость — V>10 f = 20- 50 Гц. Повреждение или разрушение в многоцикловой области происходит в основном при упругом, а в малоцпкловой — при упруго-пластичсском деформировании.  [c.77]

В связи с трудностями определения характеристик трещиностой-кости для пластичш,1х материалов (отсутствие испытательного оборудования, большие габариты образцов, сложная методика) предложено много методов опреде.тепия трещиностойкости мета.тлов К с) - через механические характеристики и параметр структуры [2—4], по результатам испытаний на усталость при круговом изгибе [5], по критической длине трещины при испытаниях на усталость [1, 5, 7], по скрытой теплоте плавления и размерам ямок [7], по параметрам зоны вытяжки, определяемой методами количественной фрак-тографии [81, и др. В работе [4] приведен краткий обзор взаимосвязи характеристик трещиностойкости с другими характеристиками.  [c.195]

В каждом из ускоренных способов явление усталости моделируется лишь с некоторой степенью достоверности. Чем полнее и ближе к реальности это моделирование, тем выше качество рассматриваемого ускоренного способа. Для усталости материала определяющими параметрами при прочих равных условиях должны считаться следующие силовой фактор (прежде всего, амплитуда циклических напрянгепий), фактор времени (важнейшее значение имеет время пребывания материала при максимальных значениях напряжений цикла, т. е. длительность верхушки цикла) и специфический для циклической прочности фактор — число перемен характера нагружения (число циклов напряжений). Наиболее трудный (если не невозможный) для моделирования — фактор времени. Обгонять время реально не дано никому, и по этому параметру ни один из экспериментальных способов ускоренного определения характеристик усталости не имеет преимуществ перед другими. Не во всех ускоренных способах осуществляется прямое моделирование и силового фактора, так как не всегда испытания ускоренным способом ведутся при циклическом нагружении с представляющим интерес значением амплитуды мапрян ений. Ни в одном из ускоренных способов, кроме способов, основывающихся на увеличении частоты циклического нагружения, прямо не моделируется фактор количества циклов нагрузки.  [c.335]


Таким образом, только при разработке способов ускоренных испытаний на основе высокочастотного циклического нагружения можно достичь прямой реализации двух из трех указанных выше факторов, определяющих усталостный процесс, т. е. достичь наиболее полного моде.лироваиия его в ограниченное время. Этим определяются потенциальные возможности высокочастотных усталостных испытаний при разработке способов ускоренного определения характеристик усталости материалов. Реальные возможности и преимущества таких испытаний изучены еще но в полной мере. Однако ясно, что весьма перспективно для практики применение высокочастотного циклического нагружения для сравнительных  [c.335]

Предложенные критерии, учитывающие влияние на сопротивление термической усталости определенного сочетания теплофизических характеристик материала, согласуются с полученной закономерностью сопротивления распространению термоусталостных трещин в зависимости от параметра XlaE (см. рис. 64).  [c.168]

Известно, что различные материалы разрушаются при приложении переменных напряжений ниже их предела текучести. Это явле-ние называют усталостью. Несколько экспериментов проведено и по определению характеристик усталости аморфных сплавов [33—36].  [c.242]

Уравнение кривой усталости (108) соответствует определенным характеристикам цикла изменения напряжений. К их числу относятся, помимо максимального Ощах и минимального 0min напряжений, амплитуда 0а, среднее напряжение От (см,  [c.123]

При наличии данных о пределах усталости материала вала (с учетом масштабного фактора) при изгибе и кручении рекомендуется методика расчета, разработанная P. . К и н а с о ш в и л и [О). При йользовании этим методом следует учитывать, что в зависимости от характеристик прокаливаемости различных материалов, из которых изготовляются коленчатые валы, при изменении размеров вала по-разному изменяется предел усталости материала вала по сравнению с пределом усталости, определенным на стандартном образце, изготовленном из этого же материала.  [c.266]

Для приближенного определения пределов усталости при симметричных циклах пользуются эмпирическими зависимостями, установленными из опыта статистической обработки результатов экспериментальных определений соответствуюп1 их характеристик и сопоставления их между собой и с более легко определимыми характеристиками статической прочности. Аналогичные сравнительно простые зависимости применяются и для ориентировочных определений характеристик усталостной прочности при пульси-руюш,ем цикле.  [c.130]

ПРОВЕДЕНИЕ ПРОЧНОСТНЫХ ИСПЫТАНИЙ. Определение характеристик прочности, пластичности, упругости, малоцикловой усталости и трещиностойкости материалов при различных видах нагружения в газовых средах (включая водород) и криожидкостях температура испытаний 4- 1200 К.  [c.512]

Определение характеристик фрикционной усталости материалов. Анализ формул для вычисления износа показывает, что значения износа можно определить, если известен показатель кривой фрикционной усталости. Существует несколько методов определения этого параметра (73, 103]. Однако эти методы достаточно трудоемки. Анализ показывает, что методику определения показателя кривой фрикционной усталости можно существенно упростить, проводя эксперименты при нагрузках, соответствующих минимальному коэффициенту внешнего трения при упругом ненасыщенном контакте. Методика определения показателя кривой фрикционной усталости основана на том, что поверхностные слои твердых тел обладают постоянными усталостными характеристиками при трении без смазочного материала с использованием инактивной смазки. Методика определения показателя I заключается в следующем. Проводят испытания при нагрузках, вычисляемых по формуле (76) гл. 1 и соотвегствующих минимальному коэффицне.чту трения при упругих деформациях в зонах касания н различных То и р в течение определенного времени, достаточного для определения линейного или весового износа (например, в течение  [c.62]

Экспериментальное определение характеристик сопротивления усталости материалов в условиях асимметричных циклов напряжений обычно осуществляется не при изгибе, а на растяжение - сжатие или на кручение (однородное напряжённое состояние). Кривая усталости в координатах lg N получается аналогичной (рис. 1.6). По полученным данным строят диаграмму предельных напряжений цикла в координатах (диаграмма Смита) или диаграмму предельных амплитуд цикла (диаграмма Хейя). В практических расчетах на прочность удобнее пользоваться диаграммой предельных амплитуд в координатах (рис. 1.7).  [c.17]

Проведенные исследования [26-27, 59-60, 91] показали возможность применения уравнения усталостного разрушения для расчётов поверхно-стно-упрочнённых деталей при условии замены их такими же по форме и размерами и эквивалентными по прочности неупрочнёнными деталями, изготовленных из материалов с другими, более высокими свойствами, к которым применимы уравнения (4.3)-(4.4). Задача в этом случае свелась к отысканию условий перехода от поверхностно-упрочнённой детали к эквивалентной, т.е. к определению характеристик сопротивления усталости материала эквивалентной детали по известным характеристикам исходного материала детали и свойствам упрочнённого поверхностного слоя, определяемых режимами проведения ППД или другими методами упрочнения.  [c.72]


Смотреть страницы где упоминается термин Усталость Определение характеристик : [c.172]    [c.262]    [c.17]    [c.129]    [c.5]    [c.4]    [c.126]    [c.131]    [c.3]    [c.519]    [c.149]    [c.153]   
Несущая способность и расчеты деталей машин на прочность Изд3 (1975) -- [ c.258 ]



ПОИСК



141 —149 — Определение характеристика

ВЛИЯНИЕ КОНСТРУКТИВНЫХ, ТЕХНОЛОГИЧЕСКИХ И ЭКСПЛУАТАЦИОННЫХ ФАКТОРОВ Когаев В. ПБойцов Б. В. Новая система справочной информации для определения расчетных характеристик сопротивления усталости

Вал рабочего ступенчатый с галтелью — Определение расчетных характеристик сопротивления усталости

Вывод формул для определения характеристик надежности изделия при функции усталости произвольного и экспоненциального вида

Определение расчетных характеристик сопротивления усталости

Пластина с с отверстием — Определение расчетных характеристик сопротивления усталости

СОВЕРШЕНСТВОВАНИЕ МЕТОДОВ ОПРЕДЕЛЕНИЯ ХАРАКТЕРИСТИК СОПРОТИВЛЕНИЯ УСТАЛОСТИ ПОВЕРХНОСТНОУПРОЧНЕННЫХ ДЕТАЛЕЙ МАШИН

Усталость

Характеристики сопротивления усталости и их определение

Экспериментальное определение характеристик сопротивления усталости



© 2025 Mash-xxl.info Реклама на сайте